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Abstract— Edge networks provide ample resources for low-
latency service recruitment, unlike remote resources in the Cloud.
As such, smart devices and Internet of Things (IoT) nodes form a
pool of Extreme Edge Devices (EED) that are within reach of Mist
and Fog networks, providing significant advantages in latency,
geographic cognizance, and reduced communication costs. EEDs
are often recruited in Edge networks assuming they are reliable
in their commitment to tasks. However, many EEDs may fail
to fulfill their tasks because they operate under opportunistic
approaches and are prone to intermittent connectivity. To ame-
liorate task failure, we aim to optimize task allocation under the
assumption of failure. Additionally, we optimize CPU utilization
to engage reliable EEDs, resorting to replication when needed to
exceed a tunable reliability margin. We demonstrate the efficacy
of our model in multiple scenarios and present future work in
EED utilization.

Index Terms—Edge Computing, Extreme Edge Device, Uncer-
tainty, Task Replication, System Reliability

I. INTRODUCTION

Mobile Edge Computing (MEC) is a paradigm that aims
to facilitate and support the computational capability of mo-
bile devices such as smartphones, wearable devices, laptops,
tablets, and other low-resource systems at the periphery of
the network. MEC is used to mitigate latency challenges with
relatively distant Cloud servers, traditionally used to enable
resource-demanding storage and computational resources in
Mobile Cloud Computing (MCC) [1]. While many Edge
services enlist the resources of MCC given the vast capacity
of the Cloud [2], it is prudent to account for the inherent
delays and costs associated with such services, especially for
time-sensitive edge services.

The proximity of the MEC architecture to the Edge devices
inevitably aids in latency challenges, which is a concern, es-
pecially with the projected growth in IoT devices and services
at the network Edge. What if we can utilize devices that are
much closer to mobile devices, within the realm of personal
and body networks? This may reduce both latency and network
congestion as it aggregates upstream. Resource-limited de-
vices themselves are computing devices, and their ubiquitous
deployment has sparked significant research on short-range
resource probing and provisioning. Resource-limited devices
can perform a range of tasks from small-sized to medium-
sized tasks with ease. Most power-constrained devices such
as smartphones, IoT devices, and tablets, can be referred
to as Extreme Edge Devices (EED) or Mist nodes [3] and
are thereby recruitable to Edge services. EEDs can push

the computation further to the network Edge because they
include any device close to the requesting service [4]. In
addition, traffic heading to the Cloud infrastructures would be
pruned to tasks that require intensive computing capabilities
or non-immediate responses. As a result, this will enhance the
overall performance of Cloud-based networks by applying this
separation of concerns principle.

An EED can be any user-owned smart device, any or-
chestrator that probes its resources cannot assume guaranteed
availability when the task offloading process starts. For ex-
ample, the battery capacity of an EED may no longer be
sufficient because the device is executing a power-draining
task, or is experiencing significantly high CPU utilization.
Furthermore, a worker might reject the task for other reasons,
including connection loss or device mobility that distances
the resource from the orchestrator’s region of operation. Thus,
the uncertainty inherent in Edge networks is a critical factor
that mandates careful planning when probing resources and
provisioning task assignments, whereby task replication is
crucial to ensure task completion with minimal rejection rates.

This paper, introduces our Task Replication in Unreliable
Edge networks (TRUE) scheme. TRUE aims to assign tasks
requested by multiple services to available EEDs, in a highly
uncertain environment. To manage uncertainty, we replicate
the set of tasks on multiple EEDs until a certain level of
reliability is met without over-provisioning the available EEDs.
A central controller or orchestrator will probe the environ-
ment for available EEDs, whether classified as Mist or Fog
nodes [3], which will hereafter be referred to as EEDs. The
uncertainty in the computing environment herein applies to any
uncertainty. However, we will focus on the battery capacity of
the EED. The lower the battery capacity of the workers/EEDs,
the more replicas will be allocated for the task.

To guarantee we are not over-provisioning the available
EEDs, TRUE takes a best-fit approach to recruit with the CPU
capacity closest to the tasks’ requirements. Therefore, we first
introduce a mathematical model for the problem based on the
Integer Linear Program (ILP) formulation. We then derive the
analytical solution to the problem using Karush–Kuhn–Tucker
(KKT) conditions for optimality and Lagrangian analysis [5]
to attain bounds on the optimal solution. Finally, We show
the results using the Gurobi solver [6] and then compare them
with two baseline approaches.

The main contributions of this work can be summarized in
the following points:
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1) We investigate the task recruitment and replication problem
in highly unreliable Edge networks. The workers/EEDs
we aim to offload and replicate the tasks to have battery
capacities that follow a probability distribution of failure.
TRUE replicates tasks on multiple workers to avoid task
failure until a pre-determined reliability limit is met.

2) We formulate the problem as an ILP with constraints on
computation and communication delays, CPU capacity of
the worker, energy consumption limit of the worker, CPU
requirement of the task, the maximum number of tasks that
can be carried out by the worker, and most importantly,
controlling the overall system reliability by aggregating the
reliability scores of the most reliable workers according to
a pre-determined threshold.

3) We derive the analytical solution of the formulated ILP
using KKT and Lagrangian analysis accompanied with the
proof to attain lower bounds on the optimal solution.

We compare the formulated IL program with two baseline
approaches. The first depends on maximizing the number of
replicas in general, while the second aims to maximize the
CPU utilization of workers, assuming they are committed
to completing their assigned tasks. The results demonstrate
the impact of accounting for the reliability of workers as
an important factor in utilizing the workers better, avoiding
over-provisioning or under-provisioning the resources and
minimizing the probability of task failure.

The remainder of the paper is organized as follows. Section
II highlights some of the related works. Section III presents the
proposed TRUE scheme. Section IV discusses the performance
evaluation and the simulation results. Section V concludes the
paper and presents future insights into the EED assignment
problem.

II. RELATED WORK AND MOTIVATION

Task replication under uncertainty requires significant con-
sideration in MEC, especially given the recent approaches in
opportunistically recruiting Mist and Fog devices for time-
sensitive services. Furthermore, uncertainty affects decision-
making by introducing hindering factors to the computing en-
vironment , such as performance degradation, battery drainage,
and service failure. In this section, we survey novel research
on uncertainty in Edge computing; then, we contrast the
operational mandate of our presented model, TRUE.

Xu et al. [7] proposed a software-defined network-based
(SDN) Edge computing framework and a dynamic resource
provisioning (UARP) method to address the uncertainty. The
uncertainty was addressed through the advantages of a Soft-
ware Defined Network (SDN) with good results. In addition,
a non-dominated sorting genetic algorithm was employed to
optimize the energy consumption and the completion time.
However, the work did not address the replication problem.

Chang et al. [8] investigated the continuous application
offloading decision in Edge computing. In their system model,
it is uncertain how users operate continuous applications and
how long these applications would last before completion. The

uploading and downloading data size for offloading computa-
tion of each user operation, the number of user operations, and
the number of CPU cycles required to execute the computation
of each operation are unknown. The problem was formulated
as an energy consumption constrained average response time
minimization problem among multiple users under uncertainty.
A Response Time-improved Offloading algorithm with Energy
Constraint (RTIOEC) was proposed to make the offloading
decision.

Ghoorchian and Maghsudi [9] investigate the computation
offloading problem in a dynamic network under uncertainty. A
smart device chooses a server under uncertainty to enhance the
decision-making based on historical time and energy consump-
tion. The problem was modeled and solved using a budgeted
non-stationary Multi-armed Bandit (MAB) formulation.

Amer and Sorour [10] proposed a scheme for EEDs recruit-
ment based on recruitment costs. The workers are recruited
subject to constraints on communication and computation de-
lays, task’s CPU requirements, and the amount of task’s data.
A task is divided into several subtasks, where each subtask is
to be executed by a worker. The problem was formulated as
Mixed Integer Quadratically Constrained Quadratic Program
(MIQCQP).

However, these approaches assume that each worker would
fulfill its assigned task. Realistically, workers may fail to do so
due to intermittent or permanent failures. Such failures include
depleted energy reservoirs, run-time errors on the nodes, errors
stemming from multi-tenancy (when serving multiple applica-
tions), operating system-induced pre-emptions, and permanent
failures such as outright component malfunction.

In addition, in environments where EEDs are opportunis-
tically recruited, these workers may decline tasks based on
imposed local optimization criteria beyond those communi-
cated to the central controller, or changes to their operational
conditions after their availability is communicated. In these
cases, the promise that they could deliver on a task would
fail.

To remedy such failure, we aim to optimize our task offload-
ing to workers, and factor in their unreliability by replicating
the tasks to multiple workers, knowing that some may fail
due to the previously mentioned intermittent or permanent
failures. The unreliability of each worker is quantified using
a reliability probability metric. The more unreliable workers
exist, the more replicas our scheme would recruit. We control
the system level of reliability using a pre-determined threshold.
By increasing the threshold value, our scheme assigns more
workers to the task until the desired reliability is reached.

III. MODELLING TASK REPLICATION IN UNRELIABLE
EDGE NETWORKS

In this section, we describe our proposed TRUE scheme.
TRUE strives to assign a set of tasks initiated by some services
to some EEDs in the area. When the worker’s reliability level
is insufficient, TRUE will replicate the task to multiple workers
to ensure the task’s completion under specific constraints. Note
that the terms workers and EEDs are used interchangeably
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throughout this paper. Our objective is to minimize the wasted
resources by recruiting the best fit workers, i.e., the workers
with CPU capacities closest to the task’s requirements. In
addition, the number of replicas will be maximized for tasks
assigned to workers with less battery capacity to ensure that
these tasks will be completed.

We now introduce our system model in detail. Then, in sec-
tion III-B, the problem is formulation as an ILP is presented.
Finally, in subsection III-C, we derive the analytical solution
for the problem.

A. System Model

Consider a set of M tasks, which require processing by
EEDs, are denoted by Γ = {γ1, · · · , γM}. Each task γj ∀j ∈
Γ is defined by three attributes, namely: data size γdata

j in
bits, CPU requirement γCPU

j , and processing density γdensity
j

in cycle/bit, i.e., the number of CPU cycles (burst) required
to process a single bit of task’s data. Each task γj has a
computation delay τ comp

ij when it gets executed on worker wi.
The computation delay of task γj is given by equation (1). In
addition, each task has a delay threshold denoted by γdeadline

j ,
i.e., the maximum delay that can be tolerated by the task’s
request.

To execute the required tasks, a central controller c located
in the area will receive tasks requests that need processing.
The controller will probe local EEDs to determine their
availabilities and facilitate their inclusion in the assignment
round. It would then assign tasks to the available workers
within the area optimally based on the information it has
about the workers. Consider a set of N workers denoted by
W = {w1, · · · , wN} that are available within the area. Each
worker wi has a computation capability denoted wCPU

i , i.e.,
the CPU frequency or clock speed expressed in cycles/second.
Each worker can take on multiple tasks. The maximum number
of tasks that a worker wi can accept is denoted by wtasks

i . Fur-
thermore, the energy consumed by the computation resources
of each worker is defined by equation (2).

τ comp
ij =

γdensity
j γdata

j

wCPU
i

(1)

Ecomp
ij = κ γdata

j γdensity
j

(
wCPU
i

)2
(2)

Where κ is the on-chip capacitance factor of the worker’s CPU.
Each worker has a cap on the maximum energy consumed due
to processing task’s data denoted by Emax

i .
1) Communication Model
We assume that our system is based on the Orthogonal

Frequency-Division Multiple Access (OFDMA) modulation
scheme. The time needed to send the task’s data γdata

j from
the controller c to a worker wi is denoted by τ comm

ij , i.e., the
transmission delay based on the data rate of the link. The
total bandwidth of the controller is denoted by W . To send
the data between the controller and the worker, each worker is
assigned a sub-channel wchannel

i with a bandwidth equal to W
N .

To quantify the level of the transmitted signal (from c to wi) to
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Figure 1: Probability density function of battery drainage with
time using different values of failure/hazard rates.

the level of the background noise, we use the Signal-to-Noise
Ratio (SNR) measure given by:

φi =
P hi
σ2

(3)

where P is defined as the transmission power of the controller
in watts (W), σ2 is the channel noise variance in watts (W),
and hi is the channel gain for each worker expressed as hi =
d−νi g2i where di is the distance between the controller and the
worker wi in meters (m), ν is the path loss exponent, and gi
is the Rayleigh fading channel coefficient for each worker.

The data rate (bit/s), which is defined as the amount of data
transmitted during a specified time period over a network for
each worker, is given by:

Ri =Wi log2(1 + φi) (4)

The communication delay τ comm
ij is defined as the ratio

between the task’s bits γdata
j and the data rate Ri and is given

by:

τ comm
ij =

γdata
j

Ri
(5)

The total delay that is imposed by the network parameters,
computation capability of the worker, and the task’s require-
ment is given by:

Tij = τ comp
ij + τ comm

ij (6)

2) System Reliability
We denote the failure probability distribution of each worker

by F (t) = P (x ≤ t), where F (·) is the Cumulative Distribu-
tion Function (CDF) and P (·) is the Probability Distribution
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Function (PDF). Such distribution represents the probability
that a worker wi will fail prior to time t [11]. The time t = 0
represents the moment when the worker is put into operation.
Therefore, we can define the system reliability function as
follows:

R(t) = 1− F (t) = P (x > t) (7)

The probability of failure is exponentially distributed with
time and is given by:

P (t) = βe−βt (8)

where β is the hazard or the failure rate of the worker. The
mean time for a hazard/failure is denoted by 1

β . Fig. 1 depicts
the effect of varying the hazard rate on the PDF of failure
across the time.

In addition, the failure CDF is defined as the area under the
curve of the PDF between time 0 and t and is given by:

F (t) =

∫ t

0

P (t) dx = 1− e−βt (9)

As a result of (9), the reliability probability R(t) can be
given by:

R(t) = e−βt (10)

Each worker wi has a hazard rate of βi, and hence, a
reliability probability at time t and is denoted by Ri(t). The re-
liability represents the probability that a task will be executed
successfully by the worker prior to a failure time t. In the next
section, we will illustrate how we can utilize the reliability of
the workers within the edge network infrastructure to meet a
certain reliability level.

B. Problem Formulation

Our objective is to assign the set of tasks Γ to the available
workers set W within an area taking into consideration max-
imizing the number of replicas for tasks assigned to workers
with less reliability subject to the constraints in the constrained
program in (11). The objective function in (11a) aims to
minimize the wasted allocated resources of the workers, in
other words, it tries to find the best fit among the available
workers by minimizing the difference between the task γj CPU
requirement and the CPU capability of the allocated worker
wi.

min
xij

N∑
i=1

M∑
j=1

xij
(
wCPU
i − γCPU

j

)
(11a)

s.t. xij
(
wCPU
i − γCPU

j

)
≥ 0 ∀i ∈ W,∀j ∈ Γ (11b)

M∑
j=1

xijE
comp
ij ≤ Emax

i ∀i ∈ W (11c)

N∑
i=1

xijRi(γ
deadline
j ) ≥ ϵ ∀j ∈ Γ (11d)

Tijxij ≤ γdeadline
j ∀i ∈ W,∀j ∈ Γ (11e)

N∑
i=1

xij ≥ 1 ∀j ∈ Γ (11f)

M∑
j=1

xij ≤ wtasks
i ∀i ∈ W (11g)

xij ∈ {0, 1} ∀i ∈ W, ∀j ∈ Γ (11h)

Constraint (11b) ensures that each worker wi assigned to task
γj has a CPU frequency that is sufficient to handle the CPU
requirement γCPU

j of task γj , which will prevent the objective
function to allocate a worker with CPU that is less than
the task’s requirement. Constraint (11c) ensures that the total
energy consumed by the tasks’ load assigned to the worker wi
is less than a certain threshold Emax

i . Constraint (11d) ensures
that the total reliability probability of all the replicas assigned
to task γj is more than or equal to a certain threshold ϵ. The
reliability probability Ri(γdeadline

j ) for worker wi represents the
probability that the worker will finish the execution of task γj
successfully before the deadline γdeadline

j .
The objective function (11a) along with constraint (11d)

will enforce allocating workers whenever needed only. For
example, if task γj is allocated to a worker with a reliability
probability equal to the system reliability threshold ϵ, then
it is less likely to get allocated/replicated to another worker
because recruiting more workers, in this case, would violate
the minimization objective in (11a). Therefore, we can guaran-
tee no under-provisioning or over-provisioning of the available
resources would occur. The worker reliability probability Ri(·)
here can represent any reliability metric but, in this paper, we
will refer to the reliability as the probability of the worker
executing the task successfully within the deadline before the
battery is completely drained.

Constraint (11e) assures that the total delay of task γj when
it gets executed on worker wi is less than a certain deadline
γdeadline
j enforced by task γj . Constraint (11f) guarantees that

at least one worker will be assigned to each task so that all
tasks get executed. Constraint (11g) guarantees that no worker
is assigned more than the maximum allowed number of tasks
wtasks
i . Constraint (11h) is the integrality constraint associated

with the binary decision variable xij . Each xij is equal to 1 if
task γj is assigned to worker wi and is equal to 0 otherwise.

C. Analytical Solution

The model illustrated in (11) has a linear objective function
with binary decision variables, i.e., xij . The inequality con-
straints in (11b), (11c), (11d), (11e), (11f), and (11g) are all
linear constraints. Given these inputs alongside the integrality
constraint in (11h), we conclude that the program we have at
hand is an Integer-Linear Program (ILP). ILPs are generally
NP-hard and difficult to solve [12] so we need to relax the
program to be able to solve it analytically. First, we have to
check whether the problem is convex or not. By examining
the objective function and the inequality constraints, we can
see that they are all linear except for the integrality constraint
in (11h). Hence, this leads us to conclude that the problem
is non-convex. However, we can convexify the problem by
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relaxing the constraint (11h) to be in the continuous form of
0 ≤ xij ≤ 1, and then in the solution we can employ rounding
techniques (e.g., stochastic, or deterministic rounding). There-
fore, the program after relaxation is transformed into a linear
program.

Closed-form solutions for linear programs is generally dif-
ficult to attain but, we can obtain a lower bound on the
optimal solution of the problem using Lagrangian analysis
and KKT conditions. The Lagrangian multipliers associated
with the objective function in (11a) are given by the vectors:
λ, δ,ρ,ϕ,ψ,ω,θ(1),and θ(2), respectively.

To find lower bound on the optimal solution, we introduce
Theorem 1. (·)∗ indicates the optimal value of the super-
scripted term and z denotes the replacement of the square
bracketed term in equation (25) for simplification.

Theorem 1. The lower bound on the optimal value of the
vector of decision variables x∗ that is responsible of deciding
which task goes to which worker, is given by:

x∗ij =



0 θ
∗(1)
ij = 0 and z > 0

1 θ
∗(1)
ij > 0, z > 0,

and θ∗(1)ij ≈ z
Emax

i −
∑

1≤l≤M
kl ̸=ij

x∗
kl

E
comp
ij

δ∗i > 0

ϵ−
∑

1≤k≤N
kl ̸=ij

x∗
klRk(γ

deadline
l )

Ri(γ
deadline
j )

ρ∗j > 0

γdeadline
j

Tij
ϕ∗
ij > 0

1−
∑

1≤k≤N
kl ̸=ij

x∗kl ψ∗
j > 0

wtasks
i −

∑
1≤l≤M
kl ̸=ij

x∗kl ω∗
i > 0

(12)

Proof. From the results conducted in Theorem 1, we can
conclude that the closed-form solution can not be attained
because the bounds on the decision variables x∗ij ∀i, j are
expressed in terms of other unknown variables, i.e., the La-
grangian multipliers and the decision variables.

To proof Theorem 1, we start by deriving the Lagrangian
function associated with the objective function and the con-
straints in (11):

L(λ, δ,ρ,ϕ,ψ,ω, θ
(1)
, θ

(2)
) =

N∑
i=1

M∑
j=1

xij

(
w

CPU
i − γ

CPU
j

)

+

N∑
i=1

M∑
j=1

λij

(
xij

(
w

CPU
i − γ

CPU
j

))
+

N∑
i=1

δi

 M∑
j=1

xijE
comp
ij − E

max
i


+

M∑
j=1

ρj

(
ϵ−

N∑
i=1

xijRi(γ
deadline
j )

)
+

N∑
i=1

M∑
j=1

ϕij

(
Tijxij − γ

deadline
j

)

+

M∑
j=1

ψj

(
1 −

N∑
i=1

xij

)
+

N∑
i=1

ωi

 M∑
j=1

xij − w
tasks
i


+

N∑
i=1

K∑
j=1

θ
(1)
ij (xij − 1) − θ

(2)
ij xij

(13)

Applying KKT optimality conditions to the constraints in (11)

we get:

λij

(
xij

(
w

CPU
i − γ

CPU
j

))
= 0 ∀i and ∀j (14)

δi

 M∑
j=1

xijE
comp
ij − E

max
i

 = 0 ∀i (15)

ρj

(
ϵ−

N∑
i=1

xijRi(γ
deadline
j )

)
= 0 ∀j (16)

ϕij

(
Tijxij − γ

deadline
j

)
= 0 ∀i and ∀j (17)

ψj

(
1 −

N∑
i=1

xij

)
= 0 ∀j (18)

ωi

 M∑
j=1

xij − w
tasks
i

 = 0 ∀i (19)

θ
(1)
ij (xij − 1) = 0 ∀i and ∀j (20)

θ
(2)
ij xij = 0 ∀i and ∀j (21)

The gradient of L at the optimal point is 0:

∂L
∂xij

= wCPU
i − γCPU

j + λ∗
ij

(
wCPU

i − γCPU
j

)
+ δ∗iE

comp
ij

− ρ∗jRi(γ
deadline
j ) + ϕ∗

ijTij − ψ∗
j + ω∗

i

+ θ
∗(1)
ij − θ

∗(2)
ij = 0 ∀i and ∀j

(22)

Solving for xij . From equation (22) we have:

wCPU
i − γCPU

j + λ∗ij
(
wCPU
i − γCPU

j

)
+ δ∗iE

comp
ij

− ρ∗jRi(γ
deadline
j ) + ϕ∗ijTij − ψ∗

j + ω∗
i

= θ
∗(2)
ij − θ

∗(1)
ij

(23)

multiplying both sides of equation (23) by x∗ij we get:[
wCPU

i − γCPU
j + λ∗

ij

(
wCPU

i − γCPU
j

)
+ δ∗iE

comp
ij

− ρ∗jRi(γ
deadline
j ) + ϕ∗

ijTij − ψ∗
j + ω∗

i

]
x∗ij

= x∗ijθ
∗(2)
ij − x∗ijθ

∗(1)
ij

(24)

we then substitute equations (20), and (21) in (24) we get:[
wCPU

i − γCPU
j + λ∗

ij

(
wCPU

i − γCPU
j

)
+ δ∗iE

comp
ij

− ρ∗jRi(γ
deadline
j ) + ϕ∗

ijTij − ψ∗
j + ω∗

i

]
x∗ij + θ

∗(1)
ij

= 0

(25)

to simplify the rest of the analysis, we replace the square-
bracketed term in (25) with z.

The final bounds on the optimal value of the decision
variable x∗ij has multiple cases and is given by (12). ■

IV. PERFORMANCE EVALUATION

In this section, we evaluate the proposed TRUE scheme
using ILP formulation and compare it to two baseline schemes.
We will refer to the first baseline as TRUE-RD, which aims
to optimize the best-fit approach based on their promised
capacities. The second baseline, which we will be referring to
as TRMEED, aims to maximize the number of replicas allocated
for each task without knowing their reliability scores, aiming
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Table I: Simulation Parameters

Symbol Parameter Value
N Number of workers [50 – 100]
M Number of tasks [1 – 30]
γdensity
j Processing density per task [1 – 5]×102 cycle/bit
γdata
j Data size per task [1 – 20]MB
γdeadline
j The deadline per task [8 – 10] ms
γCPU
j CPU requirement for each task [1 – 2] GHz
Emax
i Maximum energy consumption limit for each worker 3 mW

wCPU
i CPU Frequency per worker [1 – 4] GHz

wtasks
i Maximum number of tasks per worker [1 – 3] tasks
β Hazard rates for workers [0.01 – 0.5]
P Controller’s transmission power 50 mW
W Controller’s total bandwidth 10×106 bit s−1

ν Path loss exponent 2
σ2 Channel noise variance 1×10−11 W
di Distance between controller c and worker wi [5 – 50]m
κ On-chip capacitance factor of the worker’s CPU 1×10−29

to improve the chances that the assigned tasks will be com-
pleted. Multiple simulations and experiments are conducted
to evaluate the system performance regarding workers’ CPU
utilization, overall system reliability, and the total number of
replicas over varying system parameters.

A. Simulation Setup

TRUE, TRUE-RD, and TRMEED are implemented in MAT-
LAB using the Gurobi solver [6] to find the near-optimal
solution. Workers/EEDs are assumed to be any resource-
limited device and can be positioned indoors or outdoors, as
long as they are within the probing range of the controller c.
The simulation parameters used are described in Table I.

B. Simulation Results and Analysis

We assess the performance of TRUE, TRUE-RD, and
TRMEED in terms of different metrics by conducting six
experiments.
Experiment 1. We show in Fig. 2 that changing the reliability
threshold ϵ increases the total number of recruited workers and
increases the overall system reliability to minimize task failure
due to the worker’s unreliability probability. Meaning that
constraint (11d) successfully controls the system’s reliability.
The results were obtained using 100 workers and 15 tasks.
Experiment 2. Fig. 3 depicts the CPU gap or under-utilization,
i.e., the objective function’s value over the number of workers
available. We can see that increasing the number of workers
allows the system model to find the best-fit workers more
suited for the task’s requirements. The results were obtained
using 30 tasks.
Experiment 3. Fig. 4 shows that the system model has suc-
cessfully minimized the CPU gap between recruited workers
and tasks’ requests up to 14 tasks. However, the CPU gap
begins to increase from this point on. Since the number of
EEDs is fixed, increasing the number of tasks will make it
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Figure 2: Impact of varying the reliability threshold ϵ on the
total number of workers assigned to all tasks.

more complex for the system model to find the optimal CPU
gap value. The results were obtained using 100 workers.
Experiment 4. We show in Fig. 5 the effect of varying the
number of tasks while fixing the number of workers on the
reliability score between the proposed scheme and TRUE-RD.
In TRUE-RD, we do not consider the workers’ reliability
factor. As a result, TRUE-RD will recruit workers without
their reliability. The figure shows that the total reliability score
of the workers for TRUE outperforms TRUE-RD indicating
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Figure 3: The impact of varying the number of workers on
CPU gap (under-utilization) between the workers and the
assigned tasks.

the importance of considering the reliability of the workers in
constraint (11d). The results were obtained using 100 workers
and [5 – 30] tasks.
Experiment 5. TRMEED tends to maximize the number of
replicas/workers for each requested task, TRUE performs
better by smartly recruiting workers/replicas without over-
provisioning the available workers, as depicted in Fig. 6.
The number of workers/replicas can be controlled in TRUE
efficiently by varying the reliability threshold ϵ.
Experiment 6. We evaluate the efficacy of our TRUE scheme
against TRUE-RD and TRMEED using the percentage of
failed tasks metric. In this experiment, we fix the number
of workers to 100 while varying the number of tasks, and
then we calculate the percentage of failed tasks. In Fig. 7,
we can see that the percentage of failed tasks for TRUE is
noticeably lower than its counterparts. We can deduce that
TRUE maintained a constant 0% of failure for a maximum
of 18 tasks. Additionally, we conclude that TRUE provides
consistent behavior and a low percentage of failures, unlike
TRUE-RD and TRMEED schemes that tend to offer inconsistent
and higher percentages of failures.

We also deduce from Fig. 7 that TRMEED is performing bet-
ter in minimizing the percentage of failed tasks than TRUE-RD
this is because TRMEED aims to maximize the number of
workers for each task therefore the chances of task failure
is minimized.

V. CONCLUSIONS & FUTURE WORK

This paper presents Task Replication in Unreliable Edge
(TRUE) networks scheme recruits, assigns, and replicates task
requests to workers in an unreliable Edge network environ-
ment. The unreliability can be represented by any factor
affecting the worker’s availability, such as battery drainage,
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Figure 4: The effect of varying the number of tasks on CPU
gap (under-utilization) of the workers.
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Figure 5: The impact of varying the number of tasks and fixing
the number of workers on the total reliability score of the
workers (higher is better).

and connectivity loss. We firstly aim to minimize the CPU
gap (under-utilization) between tasks and the target workers.
Each worker has a reliability score that represents the ability
of the worker to execute an assigned task successfully before
a failure.

We control the overall system reliability by increasing the
number of replicas for each task using a certain threshold
parameter. The problem has been formulated as an ILP prob-
lem and relaxed into the equivalent convex linear program.
Lower bounds on the optimal solution have been obtained
using Lagrangian analysis and KKT conditions. Extensive
simulations show the effectiveness of our scheme in multiple
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Figure 6: Impact of varying the number of tasks, while
controlling the number of workers, on the total number of
recruited workers.
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Figure 7: The percentage of failed tasks for TRUE, TRUE-RD,
and TRMEED schemes while varying the number of tasks,
demonstrating their reliability under varying loads (lower is
better).

scenarios.
One potential direction of future work is to use stochastic

optimization techniques to optimize the system uncertainty.
We can also add other uncertainty factors such as the workers’
communication, computation, and location unreliability.
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