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Abstract
Deep reinforcement learning (DRL) algorithms 

have recently gained wide attention in the wireless 
networks domain. They are considered promising 
approaches for solving dynamic radio resource 
management (RRM) problems in next-genera-
tion networks. Given their capabilities to build an 
approximate and continuously updated model of 
the wireless network environments, DRL algorithms 
can deal with the multifaceted complexity of such 
environments. Nevertheless, several challenges 
hinder the practical adoption of DRL in commer-
cial networks. In this article, we first discuss two 
key practical challenges that are faced but rarely 
tackled when developing DRL-based RRM solu-
tions. We argue that it is inevitable to address 
these DRL-related challenges for DRL to find its 
way to RRM commercial solutions. In particular, 
we discuss the need to have safe and accelerated 
DRL-based RRM solutions that mitigate the slow 
convergence and performance instability exhibited 
by DRL algorithms. We then review and categorize 
the main approaches used in the RRM domain to 
develop safe and accelerated DRL-based solutions. 
Finally, a case study is conducted to demonstrate 
the importance of having safe and accelerated 
DRL-based RRM solutions. We employ multiple 
variants of transfer learning (TL) techniques to 
accelerate the convergence of intelligent radio 
access network (RAN) slicing DRL-based control-
lers. We also propose a hybrid TL-based approach 
and sigmoid function-based rewards as examples 
of safe exploration in DRL-based RAN slicing.

Introduction
Next-generation networks (NGNs) will support a 
diverse set of cell and user equipment types, radio 
access technologies, and communication para-
digms. Such multi-level heterogeneity serves a 
wide range of use cases and deployment scenar-
ios simultaneously. This requires mobile network 
operators (MNOs) to configure countless network 
functionalities operating at different timescales 
and having different objectives [1]. Accordingly, 
the process of optimally configuring such func-
tionalities is not straightforward. A fair amount of 
these functionalities is linked to efficiently utiliz-
ing the limited network radio resources. Hence, 
this process is called radio resource management 
(RRM) [2]. RRM supports functionalities such as 

admission control, packet scheduling, and link 
adaptation. Moreover, it provides functions relat-
ed to power allocation, beamforming, load bal-
ancing, handover management, and inter-cell 
interference coordination, among others [3].

The complexity of RRM problems is expect-
ed to continue growing in NGNs as optimization 
domains become larger and network requirements 
become tighter [1]. To deal with that, machine 
learning (ML) techniques have been extensively 
proposed. Recently, more attention has been given 
to deep reinforcement learning (DRL) due to its 
ability to adapt to the dynamic radio access net-
work (RAN) environment in an open control fash-
ion [3]. Nevertheless, DRL is known to suffer from 
convergence issues [2]. For instance, it is common 
for DRL agents to experience a long exploration 
phase during which drastic performance drops are 
unavoidable. Exploration refers to trying actions 
that the agent has not selected before in a given 
state. By doing so, the agent improves its chances 
of recognizing the optimal actions [4].

Exploration is still vital when DRL agents are 
newly deployed in a live network setting and when-
ever new contexts or extreme conditions are expe-
rienced [5, 6]. Taking previously unexplored actions 
might not be optimal for a given condition. This 
situation might be tolerable in some cases. None-
theless, in the case of RRM, any potential drops 
in system performance will affect the end-user’s 
quality of experience (QoE) [5]. Such DRL-related 
practical challenges are rarely tackled in the RRM 
literature [2]. We define safe and accelerated DRL 
as approaches that attempt to avoid system perfor-
mance instabilities and violations of the network’s 
service level agreements (SLAs). Such techniques 
also aim at reducing the DRL agents’ exploration 
duration. These approaches are crucially needed to 
allow the adoption of DRL in commercial NGNs to 
solve dynamic RRM problems.

The main contributions of this article are sum-
marized as follows:
•	 We discuss and categorize the practical chal-

lenges of DRL-based RRM imposed by the 
exploration phase, and the stochastic nature 
of the NGNs RAN environments. We make 
arguments that addressing these challenges 
is essential for DRL to find its way into com-
mercial solutions.

•	 We present and categorize some of the tech-
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niques used to deal with the slow conver-
gence of DRL algorithms and their unstable 
exploration phase in NGNs. Our proposed 
categorization gives the readers a structured 
overview of the approaches that partial-
ly tackle such challenges in the context of 
RRM. It also provides them with insights on 
choosing a suitable technique.

• We conduct a case study on intelligent 
RAN slicing to demonstrate the importance 
of safe and accelerated DRL approaches in 
NGNs. We highlight the exploration behav-
ior of various state-of-the-art DRL algorithms. 
We then analyze the effect of using differ-
ent reward functions and transfer learning 
(TL) techniques on the exploration of DRL-
based slicing agents. We particularly employ 
reward shaping, policy reuse, and policy 
distillation techniques. We finally propose 
a hybrid technique as an example for safer 
TL-accelerated exploration. We develop 
and publicly share the implementation of 
our OpenAI GYM-compatible DRL environ-
ment to enable fellow researchers to further 
address the discussed challenges.

deep reInforceMent LeArnIng-bAsed 
rAdIo resource MAnAgeMent In ngns

DRL does not require prior information about the 
network or access to complete knowledge of the 
system. Access to such information is inefficient 
and even inapplicable for the time-varying and 
uncertain NGNs environments. Hence, the DRL 
framework is a promising tool to solve the dynam-
ic RRM problem. This capability of DRL has driv-
en use cases related to packet scheduling, power 
control, handover, and RAN slicing [3].

As seen in Fig. 1, a DRL-based RRM control-
ler continuously interacts with the RAN envi-
ronment. At any given time-step, the DRL agent 
observes the RAN system state and chooses an 
action to take. Such action changes the RAN 
environment, and the agent receives reward 
feedback representing the system’s performance. 
The agent aims at maximizing such feedback. 
The reward function is designed to guide the 
agent’s search for the optimal policy. It is often 
represented in terms of a weighted sum of the 
relevant network’s key performance indicators 
(KPIs). This way the agent indicates how good 
the action taken was. This is estimated based on 
the agent’s sampled experience from interacting 
with the RAN environment in a real-time and 
dynamic-open control fashion [4].

RAN slicing provides a way to share the physi-
cal infrastructure among several services as shown 
in Fig. 2. It is mainly concerned with two RRM func-
tions. The first is slice admission control in which 
the infrastructure provider decides whether a ser-
vice provider’s slice request is accepted. This is fol-
lowed by allocating the available spectrum to the 
admitted slices. The resources allocated to each 
slice should enable the slices to comply with their 
different service requirements. Such constraints 
should not be violated otherwise monetary penal-
ties can be enforced on the infrastructure provider.

A DRL-based agent is well-suited to this prob-
lem [7]. The agent builds an approximate and con-
tinuously updated model of the RAN’s dynamic 

environment. This way, it can fulfill the different 
requirements for the various services sharing an 
infrastructure simultaneously. The agent learns a 
policy to allocate the available resources to each 
slice based on the changing network conditions. 
This includes the channel conditions, the number of 
admitted slices, the type, and SLAs, of the service 
supported by each slice, and the number of users 
in each slice. Moreover, the traffic demand for 
beyond 5G (B5G) services is dynamic and cannot 
be easily predicted, particularly in the short term.

prActIcAL chALLenges of 
drL-bAsed rrM In ngns

DRL still has some disadvantages, especially when 
employed as part of real-time solutions in sto-
chastic environments such as NGNs RAN. We 
highlight two key DRL-related practical challenges 
that, even when discussed, are rarely tackled by 
the wireless networks’ community. We encour-
age researchers to pay more attention to these 
uncharted territories to speed up the adoption of 
DRL in RRM commercial solutions.

sLoW conVergence of drL ALgorIthMs
This challenge relates to the number of time-steps 
it takes the DRL-based controller to find a good 
set of RRM confi gurations. The reward feedback 
that a DRL agent receives may exhibit some vari-
ability. Hence, it needs to observe a representa-
tive variety of the RAN system’s possible states 
several times. The learning happens by iteratively 
updating a value function until convergence. This 
process is called the exploration phase. The value 
function gives an estimate of the expected return if 
the agent acts according to a particular policy [4].

Given the stochasticity of NGNs RAN systems 
and the exploratory aspect of the DRL agents, 
it typically takes thousands of time-steps to con-
verge to an optimal configuration for a given 
RRM functionality. This is of great signifi cance in 
real network deployments. Only a few exploration 
iterations can be tolerated in the case of real-time 
functionalities [2].

unstAbLe drL expLorAtIon phAse
RAN systems must maintain a certain performance 
level to guarantee users’ QoE and the overall sys-
tem’s quality of service. Hence, RRM problems 
are commonly formulated as constrained optimi-
zation problems. The DRL agent utilizes the explo-

FIGURE 1. The controller–environment interaction in 
DRL-based RRM in NGNs.
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ration phase to search through the wide spectrum 
of possible RRM confi gurations. Hence, there is a 
high probability that sudden drops in the system 
performance occur more often. This happens due 
to exploring RRM configurations that were not 
encountered previously.

These are not major issues for some applica-
tions such as training an agent to play a computer 
game. Training in this case can be done offline 
for a long time. Unlike NGNs, the training envi-
ronment will still match the deployment environ-
ment. However, this is a concern in the case of 
NGNs. The training environment might be simula-
tion-based, and hence, does not precisely refl ect 
the dynamic nature of the real network [8]. Thus, 
in-network learning is needed, but cannot be 
done for a long time to avoid damaging actions.

sAfe And AcceLerAted drL-bAsed rrM In ngns
In this section, we present and categorize research 
efforts that investigate the aforementioned DRL 
challenges in the NGNs domain as summarized 
in Table 1. We believe that the proposed catego-
rization greatly assists fellow researchers in further 
addressing the discussed challenges systematically.

AcceLerAted drL-bAsed rrM soLutIons
The following approaches have shown promise 
in minimizing the number of learning iterations a 
DRL agent requires for convergence.

Domain Knowledge-Aided DRL Acceleration:
Expert Knowledge-Aided Acceleration: This 

category exploits relevant knowledge previous-
ly acquired by experts to guide the exploration 
phase. For instance, the authors of [9] propose a 
structure-aware mechanism to solve a node-over-
load protection problem in mobile edge comput-
ing. In this respect, the optimal policy is known to 
have a multi-threshold structure. Hence, the agent 
can reject requests with CPU utilization above a 
certain threshold. This allows the agent to recover 
quickly whenever the request distribution changes.

Conventional Solution-Aided Acceleration: 
Here, a traditional RRM algorithm is used to guide 
the exploration phase. For instance, in [10], the 
authors use the proportional fair (PF) algorithm as 

a separate agent competing with the main DRL 
agent to solve a resource scheduling problem. 
The reward is calculated based on the diff erence 
in the resulting KPIs between the DRL agent’s 
action and the PF algorithm. The results suggest 
that the agent’s performance and convergence 
speed can be improved.

Machine Learning-Aided DRL Acceleration:
ML-Based Experience Building: This approach 

proposes the idea of off line experience building to 
accelerate training after deploying the agent in a 
live network setting. The authors of [5] proposed 
this concept in the context of downlink resource 
allocation for ultra-reliable low-latency communi-
cations (URLLC). The experience is built by gener-
ative adversarial neural networks that pretrain the 
DRL agent using a mix of real and synthetic data. 
This allows the agent to be exposed to a broader 
range of network conditions. The authors demon-
strate that this approach also helps the agent to 
recover in a few steps whenever it experiences 
extreme conditions.

Transfer Learning Accelerated DRL: TL expe-
dites learning of new target tasks by exploiting 
knowledge from related source tasks. This can 
shorten the learning time of ML algorithms and 
enhance their robustness to changes in wire-
less environments. TL techniques have recently 
emerged as potential solutions to DRL practical 
challenges such as the long exploration phase in 
the constantly changing wireless environments 
[12]. In a previous study, we employed a policy 
transfer approach to accelerate the convergence 
of DRL-based RAN slicing agents [11]. This was 
based on initializing the policies of newly deployed 
agents with those of previously trained agents. The 
results suggest that despite the considerable dif-
ferences between the traffi  c models of the source 
and target scenarios, TL can enhance the conver-
gence behavior. TL in DRL is further categorized 
based on the knowledge being transferred, and 
when and how to transfer such knowledge. We 
demonstrate four approaches belonging to two of 
these sub-categories in the case study section.

Meta-Learning Accelerated DRL: Meta-learn-
ing was introduced in the context of supervised 

FIGURE 2. Overview of RAN slicing.
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ML to design models that can learn new skills 
or adapt to new environments with a few train-
ing examples. The same concept can be used to 
accelerate DRL agents’ convergence as in [6]. 
The authors developed a DRL-based solution to 
control drone base stations (BSs) providing uplink 
connectivity to ground users. The trained policy 
should satisfy the users’ dynamic and unpredict-
able access requests. Meta-training is employed 
to find, for every user request realization, a set 
of initial policy and value functions that are close 
to the optimal ones. This can be fulfilled by mini-
mizing the losses that are collected from the sam-
pled user request realizations. This is done while 
serving the ground users’ daily requests as an 
attempt to generalize the learning to unseen envi-
ronments. Thus, unlike TL, this does not require 
prior knowledge from agents previously trained 
on similar tasks. The authors demonstrate that the 
meta-trained agent yields faster convergence to 
the optimal coverage in unseen environments.

Design Choices-Aided DRL Acceleration: 
Unlike the previously discussed methodologies, the 
following approaches rely on intrinsic DRL proper-
ties. The idea is to make efficient DRL design choic-
es to shorten the exploration duration.

DRL Initialization Strategies: Several param-
eters can be specified for a DRL agent. This 
includes the initial policy, learning rates, and 
neural network architecture. The authors in [13] 
propose a decentralized approach for interfer-
ence management between femtocells and mac-
rocells. To overcome the slow convergence of 
the Q-learning algorithm, they propose a Q-table 
initialization procedure. Given a new state, the 
Q-value of the action taken is updated, and the 
costs of the other actions are estimated.

Inherent DRL Agent Properties: Some wireless 
network studies rely on the inherent properties of 
the DRL algorithms when choosing an algorithm 
to employ. This includes picking a DRL algorithm 
and a hyper-parameter setting over another based 
on their relative performance in terms of stability 
and convergence time. Authors of [7] propose 
a collaborative learning framework for resource 
scheduling in RAN slicing. The authors chose the 
asynchronous advantage actor-critic (A3C) algo-
rithm as it is known to have faster convergence 
compared with the actor-critic (AC) algorithm.

Choosing an Acceleration Strategy: The 
knowledge available at the time of training influ-
ences the choice of the acceleration strategy. For 
instance, a domain knowledge-aided approach 
can be employed if relevant prior knowledge is 
available or a traditional RRM strategy is known. 
Moreover, ML-based experience building can be 
used if network data is available and a smooth 
transition between offline simulation and live net-
work deployment is required. Meta-learning can 
be used without prior knowledge about the task. 
It considers generalization while learning so that 
an agent starts with a near-optimal policy in new 
situations. TL requires knowledge from agents 
previously trained on similar tasks. This can be, 
among others, saved policies, or reward functions. 
The design choices-aided acceleration should be 
considered regardless of the available knowledge 
form. Finally, some approaches are restricted to 
specific DRL algorithms so this should also be 
considered while choosing a strategy [12].

Safe DRL-Based RRM Solutions

It is essential to have a means of safe explora-
tion in deployed DRL-based RRM solutions. The 
approaches that attempt to speed up the DRL 
convergence do not necessarily guarantee the 
avoidance of large negative outcomes, particular-
ly in stochastic wireless environments. However, 
despite not being designed to address safety, mit-
igating slow convergence would indirectly reduce 
the times an agent performs damaging actions.

The unstable exploration phase challenge moti-
vates the development of DRL algorithms explicitly 
designed to provide safety measures. Safe DRL 
is the process of learning policies that maximize 
the value function when some safety constraints 
must be imposed. This is not restricted to the per-
formance during the learning process but also 
after deployment [15]. The safety concept does 
not necessarily refer to physical safety (such as in 
robotics environments). It can also be extended to 
situations when an agent following a specific policy 
performs poorly in dynamic environments. Such 
poor performance may still happen while the agent 
follows an optimal policy, since maximizing the 
long-term reward does not necessarily avoid the 
rare occurrences of undesired outcomes.

Safe DRL can be classified into two main cat-
egories [15]:
•	 Transforming the optimization criterion to 

include a form of risk
•	 Modifying the exploration process.

The second category can be fulfilled either by 
external knowledge or risk metric incorporation. 
Constrained DRL is among the main approaches 
that fall into the first category. It is an extension 
of the DRL framework where a set of constraints 
applied to the policy are integrated. This can help 
RRM by enforcing bounds to guarantee that the 
DRL-based RRM controller will not violate any 
constraints posed by the MNOs. In other words, 
the controller will be obliged to avoid choosing 
RRM configurations that might lead to unaccept-
ably low-performance levels. Authors of [14] use 
this approach to enforce both cumulative and 
instantaneous constraints on network slicing 
resource allocation. This allows the RAN system 
to stick to the requirements of the services sup-
ported by the various RAN slices.

Multiple criteria should be analyzed when 
choosing a safe DRL approach. For instance, the 

TABLE 1. Practical challenges of DRL-based RRM in NGNs and approaches to 
tackle them.

Challenge Approach category Approach sub-category

Slow convergence of DRL 
algorithms

Domain knowledge-aided DRL 
acceleration

Expert knowledge-aided DRL acceleration [9]

Conventional solution-aided DRL acceleration [10]

Machine learning-aided DRL 
acceleration

ML-based experience building [5]

Transfer learning accelerated DRL [11, 12]

Meta-learning accelerated DRL [6] 

Design choices-aided DRL 
acceleration

DRL initialization strategies [11, 13]

Inherent DRL agent properties [7]

Unstable exploration phase Safe DRL-based RRM solutions
Transforming the optimization criterion [14]

Modifying the exploration process [15]
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worst-case criterion, which falls under the first cat-
egory of safe DRL, is useful when rare occurrenc-
es of large negative returns must be avoided. The 
reader is referred to [15] for a comprehensive 
analysis of such criteria. Only a few studies in the 
NGNs domain explicitly address the challenge 
of unstable DRL exploration. Hence, more effort 
needs to be directed toward this area of research 
given the uncertainty of RAN environments. With 
critical B5G applications and industrial automa-
tion, downgraded performance will not be toler-
ated since this will result in unacceptable reliability 
measures for these services.

Intelligent RAN Slicing: A Case Study
We demonstrate the need, and impact of various 
approaches for safe and accelerated DRL in the 
resource allocation problem of RAN slicing.

Experiment Setup
Slicing can be done on many levels. In our exper-
iment, we focus on the BS level. The environment 
state reflects the traffic load for each slice rela-
tive to the total BS load within a previous time 
window. The DRL agent takes an action to allo-
cate the available PRBs to the admitted slices. 
Then, round-robin scheduling is carried out inde-
pendently within each slice. Scheduling multiple 
transmissions per TTI is supported if resources are 
available. Requests are generated based on the 
parameters described in Table 2. Unsatisfied users 
with multiple unfulfilled transmission requests 

leave the system.
It is important to design a reward function 

that reflects the requirements of the various slic-
es. Here, we focus on the delay requirements. 
Latency is relatively more important in URLLC 
slices. Hence, a large weight is configured for 
the URLLC slices in the weighted sum reward 
functions as seen in the table. Reward function 
1 reflects the weighted sum of the slices’ average 
latency in a slicing window.

We first evaluate various state-of-the-art DRL 
algorithms implemented in the Tensorforce 
Python package to show the exploration perfor-
mance when using reward function 1. We use 
a hard slicing agent as a baseline that assigns 
the spectrum equally among the available slic-
es. Moreover, fixed slicing statically allocates the 
PRBs according to the percentages in Table 2.

Methods for Safe and Accelerated DRL-Based RAN Slicing
We demonstrate how safety and acceleration can 
be achieved in DRL-based RAN slicing using the 
following approaches. Given the scenario, the 
proximal policy optimization (PPO) agent experi-
enced relatively more frequent drops in rewards 
as highlighted in the results section. Thus, we 
decided to employ PPO as the underlying algo-
rithm in all the approaches. However, the other 
algorithms showed similar behavior. We use a 
time-decayed exploration parameter, e, to control 
the exploration-exploitation trade-off [4]. We start 
with inspecting the effect of using different reward 

TABLE 2. Simulation parameters and DRL design details.

(a) RAN slicing simulation parameter settings

Video VoLTE URLLC 

Scheduling algorithm Round-robin per 0.5 ms slot

Bandwidth allocation window size 40 scheduling time slots

Packet interarrival time distribution
Truncated Pareto (mean = 6 ms, 
max = 12.5 ms)

Uniform (min = 0 ms, 
max = 160 ms)

Exponential (mean = 180 ms)

Packet size distribution
Truncated Pareto (mean = 100 B, 
max = 250 B)

Constant (40 B) Truncated log-normal (mean = 2 MB, standard deviation = 0.722 MB, max = 5 MB)

(b) RAN slicing DRL design

State The ratio of slices’ traffic load in the last slicing window (pVideo, pVoLTE, pURLLC)

Action
The percentage of bandwidth allocated to each slice (15 allocation configurations)  
(wVideo, wVoLTE, wURLLC), s.t. wVideo + wVoLTE + wURLLC = 100 %

Reward function 1 A weighted sum of the slices’ average latency in a slicing window

Reward function 2 A weighted sum of a sigmoid function-based reward with slices’ latency as a variable 

Reward function 3 (for reward shaping) Same as function 2 with extra reward when URLLC slice requirements are satisfied

Reward function slice weights URLLC: 0.7, Video: 0.2, VoLTE: 0.1

Hard slicing resource allocation URLLC: 33 %, Video: 33 %, VoLTE: 33 %

Fixed slicing resource allocation URLLC: 70 %, Video: 20 %, VoLTE: 10 %

DRL parameters

DRL algorithms Dueling DQN, PPO, A2C, REINFORCE, TRPO + hard slicing and fixed slicing

Experiment time-steps Expert BS: 50,000, learner BS: 20,000

Exploration Expert BS: 0.9, learner BS: 0.2

Exploration decay Expert and learner BS: 0.99

Batch size 4–8 
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functions on exploration behavior. We then 
demonstrate three approaches that belong to two 
sub-categories of TL in [12], namely, reward shap-
ing and policy transfer. Furthermore, we propose 
a fourth approach that falls under the policy trans-
fer sub-category.

Reward Function Design:
Reward Function Change: The first designed 

function is a weighted sum of the slices’ aver-
age latency in a slicing window. We additionally 
design a second sigmoid function-based reward 
with latency as a variable. Unlike the first func-
tion, function 2 penalizes actions that come close 
to violating slices’ latency requirements. Two 
parameters, c1 and c2, are configured to tune the 
shape of the function as seen in Fig. 3. c2 reflects 
the minimum acceptable latency for each slice, 
while c1 determines when to start penalizing the 
agent’s actions. The second function follows a 
safe DRL approach similar to the risk-sensitive cri-
terion in [15]. It is a subcategory of transforming 
the optimization criterion mentioned earlier, in 
which a parameter is used to enable the sensitivity 
to the risk to be controlled.

Reward Shaping: Reward shaping uses exter-
nal knowledge to render auxiliary rewards that 
guide the DRL agent toward the desired policy. 
This can help the agent reach an optimal policy 
faster. We demonstrate this by defining reward 
function 3 where additional rewards are provided 
whenever an action leads to satisfying the URLLC 
latency requirements. As previously mentioned, 
we prioritize URLLC slices due to their intolerance 
to delay.

Policy Transfer: Policy transfer is a class of 
TL in which a source policy is transferred to an 
agent with a similar target task [12]. We employ 
policy transfer in the following three approach-
es. We first train an agent to learn a policy at a 
BS, namely, the expert BS. This scenario includes 
three slices reflecting the URLLC, Video, and 
VoLTE services. The expert policy is then used to 
guide newly deployed agents at other BSs, name-
ly, learner BSs to accelerate their learning process-
es. The learner BSs scenario includes one URLLC 
slice and two VoLTE slices.

Policy Reuse: Here, a source policy that is 
learned at an expert BS is directly reused to guide 
the target policy at a learner BS [12]. We config-
ure the learner BS to follow the expert policy for 
the first 500 time-steps. The target policy is con-
tinuously updated based on the reward feedback 
the learner agent receives. We use a transfer rate, 
q = 1, during these time-steps meaning that we 
always follow the source policy. We follow the 
target policy afterward. However, a smaller or 
different decaying transfer rate can be configured 
to switch between the source and target policies 
during exploration [12].

Policy Distillation: Here, one or more source 
policies are combined to guide an agent in a sim-
ilar target task [12]. This can be done by minimiz-
ing the divergence of action distributions between 
the source and the target policies. We follow a 
similar training approach by minimizing the Euclid-
ean distance between the actions recommended 
by the expert policy and those recommended by 
the learner policy. The learner BS is configured to 
follow the distilled policy for the first 1000 time-
steps during which a transfer rate, q = 1 is used.

Hybrid Policy Reuse and Distillation: We 
propose a hybrid of the last two approaches to 
achieve a safer TL-accelerated exploration. This is 
helpful when the transferred policies are not gener-
ic enough to robustly adapt to new traffic patterns. 
We introduce a parameter similar to q to balance 
between exploiting the expert policy and exploring 
a distilled action. This is done during the first 700 
time-steps while the target policy is continuously 
updated based on the reward feedback the learner 
agent receives. The updated target policy is then 
followed for the rest of the training phase.

The simulation environment where all these 
methods are implemented is available on GitHub 
(https://github.com/ahmadnagib/SARL-RRM). This 
allows researchers to study and easily compare the 
behavior of the developed DRL-based RAN slicing 
controllers. The developed environment follows the 
standard OpenAI GYM interface (OpenAI Gym: 
http://gym.openai.com/). This enables research-
ers to develop algorithms that work instantly with-
out any changes to the environment. It also gives 
researchers a wide spectrum of GYM-compatible 
software libraries to choose from.

Numerical Results and Discussion
We first illustrate the exploration performance of 
the various DRL algorithms in Fig. 4a. Hard, and 
fixed slicing have the lowest reward values as they 
do not explicitly consider the latency. The results 
highlight the challenge of slow convergence of 
DRL algorithms. It can take an agent more than 
17,000 learning steps to converge. This is a con-
cern in NGNs because live networks cannot toler-
ate a non-optimal performance for a long duration. 
Exploration is needed primarily in two situations:
•	 When an agent is newly deployed in a live 

network. This would happen even for DRL 
agents trained in simulation-based environ-
ments. Such environments fail to accurately 
reflect the multi-faceted complexities of the 
dynamic NGNs across all deployments [5].

•	 Whenever the network context changes sig-
nificantly. This situation is typical of highly 
dynamic environments, such as when DRL-

FIGURE 3. An example of reward function 2: c1 decides the point to start penaliz-
ing the agent’s actions; and c2 reflects the acceptable latency for each slice.
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based drone BSs need to provide coverage 
to ground users in previously unseen envi-
ronments [6].
In Fig. 4b, we show the results of the approach-

es described in this case study. We observe the 
following:
• The agent using reward function 1 has the 

lowest reward throughout most of the explo-
ration phase. This is because function 1 
reflects the average latency in a slice with-
out considering the latency requirements for 
each service type.

• Reward function 2 explicitly includes the 
latency requirements and penalizes the 
agent whenever it takes actions that violate 
them. Hence, the agent using function 2 has 
an enhanced exploration performance. How-
ever, it still converges close to the 20,000 
steps mark.

• Reward shaping succeeds in accelerating 
convergence. The auxiliary rewards consis-
tently guide the agent toward satisfying the 
latency requirements of URLLC.

• The two policy transfer approaches per-
formed relatively better throughout most of 
the simulation in terms of convergence time 
and reward value. However, they have con-
siderably diff erent behavior at the beginning 
of the simulation. This is mainly a result of 
the nature of each approach.

• Policy reuse starts with a relatively high 
reward value as the transferred policy recom-
mends actions close to the optimal ones. On 
the other hand, policy distillation starts with 
a lower value as it tries to reduce the diver-
gence between the actions recommended 
by the learner policy and the expert policy. 
This smooths out the reward to some value 
in between. However, it converges faster 
as it explores more actions at the beginning 
rather than steadily following a transferred 
policy.

• Both policy transfer techniques experience 
significant performance drops, unlike the 
previous approaches. This is mainly because 

they both rely on a non-generic expert pol-
icy. This affects exploration robustness and 
hence the end-users’ QoE.

• The proposed hybrid approach combines a 
good starting reward value, a more stable 
exploration performance, and a fast conver-
gence rate. This is mainly because it strikes a 
balance between relying totally on an expert 
policy trained on a specific scenario and 
learning from scratch.

concLusIon
The deployment of DRL-based RRM solutions 
in real networks is subject to several challeng-
es given the uncertainty of NGNs’ RAN envi-
ronments. Safe and accelerated exploration is 
an essential concept that will open the door to 
DRL-based RRM commercial solutions. Our case 
study on intelligent RAN slicing demonstrates 
that DRL agents can take thousands of learning 
time-steps to converge to a good policy. This 
results in violations of the various slices’ SLAs, 
and consequently, monetary penalties and 
undesirable QoE. Our experiment highlights the 
potential of using transfer learning to guide the 
exploration process. Moreover, we propose a 
hybrid approach as an example of safe TL-ac-
celerated exploration. Utilizing acceleration 
strategies does not guarantee a certain desired 
performance level. Hence, more effort should 
be directed toward innovating safe techniques 
that guarantee the instantaneous and cumulative 
RRM constraints in NGNs.
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