
IEEE Network • March/April 2023182 0890-8044/23/$25.00 © 2023 IEEE

Abstract
Deep reinforcement learning (DRL) algorithms

have recently gained wide attention in the wireless
networks domain. They are considered promising
approaches for solving dynamic radio resource
management (RRM) problems in next-genera-
tion networks. Given their capabilities to build an
approximate and continuously updated model of
the wireless network environments, DRL algorithms
can deal with the multifaceted complexity of such
environments. Nevertheless, several challenges
hinder the practical adoption of DRL in commer-
cial networks. In this article, we first discuss two
key practical challenges that are faced but rarely
tackled when developing DRL-based RRM solu-
tions. We argue that it is inevitable to address
these DRL-related challenges for DRL to find its
way to RRM commercial solutions. In particular,
we discuss the need to have safe and accelerated
DRL-based RRM solutions that mitigate the slow
convergence and performance instability exhibited
by DRL algorithms. We then review and categorize
the main approaches used in the RRM domain to
develop safe and accelerated DRL-based solutions.
Finally, a case study is conducted to demonstrate
the importance of having safe and accelerated
DRL-based RRM solutions. We employ multiple
variants of transfer learning (TL) techniques to
accelerate the convergence of intelligent radio
access network (RAN) slicing DRL-based control-
lers. We also propose a hybrid TL-based approach
and sigmoid function-based rewards as examples
of safe exploration in DRL-based RAN slicing.

Introduction
Next-generation networks (NGNs) will support a
diverse set of cell and user equipment types, radio
access technologies, and communication para-
digms. Such multi-level heterogeneity serves a
wide range of use cases and deployment scenar-
ios simultaneously. This requires mobile network
operators (MNOs) to configure countless network
functionalities operating at different timescales
and having different objectives [1]. Accordingly,
the process of optimally configuring such func-
tionalities is not straightforward. A fair amount of
these functionalities is linked to efficiently utiliz-
ing the limited network radio resources. Hence,
this process is called radio resource management
(RRM) [2]. RRM supports functionalities such as

admission control, packet scheduling, and link
adaptation. Moreover, it provides functions relat-
ed to power allocation, beamforming, load bal-
ancing, handover management, and inter-cell
interference coordination, among others [3].

The complexity of RRM problems is expect-
ed to continue growing in NGNs as optimization
domains become larger and network requirements
become tighter [1]. To deal with that, machine
learning (ML) techniques have been extensively
proposed. Recently, more attention has been given
to deep reinforcement learning (DRL) due to its
ability to adapt to the dynamic radio access net-
work (RAN) environment in an open control fash-
ion [3]. Nevertheless, DRL is known to suffer from
convergence issues [2]. For instance, it is common
for DRL agents to experience a long exploration
phase during which drastic performance drops are
unavoidable. Exploration refers to trying actions
that the agent has not selected before in a given
state. By doing so, the agent improves its chances
of recognizing the optimal actions [4].

Exploration is still vital when DRL agents are
newly deployed in a live network setting and when-
ever new contexts or extreme conditions are expe-
rienced [5, 6]. Taking previously unexplored actions
might not be optimal for a given condition. This
situation might be tolerable in some cases. None-
theless, in the case of RRM, any potential drops
in system performance will affect the end-user’s
quality of experience (QoE) [5]. Such DRL-related
practical challenges are rarely tackled in the RRM
literature [2]. We define safe and accelerated DRL
as approaches that attempt to avoid system perfor-
mance instabilities and violations of the network’s
service level agreements (SLAs). Such techniques
also aim at reducing the DRL agents’ exploration
duration. These approaches are crucially needed to
allow the adoption of DRL in commercial NGNs to
solve dynamic RRM problems.

The main contributions of this article are sum-
marized as follows:
•	 We discuss and categorize the practical chal-

lenges of DRL-based RRM imposed by the
exploration phase, and the stochastic nature
of the NGNs RAN environments. We make
arguments that addressing these challenges
is essential for DRL to find its way into com-
mercial solutions.

•	 We present and categorize some of the tech-

Toward Safe and Accelerated Deep Reinforcement Learning for Next-Generation
Wireless Networks
Ahmad M. Nagib, Hatem Abou-zeid, and Hossam S. Hassanein

ACCEPTED FROM OPEN CALL

Digital Object Identifier:
10.1109/MNET.106.2100578

Ahmad M. Nagib (corresponding author) is with Queen’s University, Canada, and also with Cairo University, Egypt;
Hatem Abou-zeid is with the University of Calgary, Canada; Hossam S. Hassanein is with Queen’s University, Canada.

Authorized licensed use limited to: Queen's University. Downloaded on October 17,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2023 183

niques used to deal with the slow conver-
gence of DRL algorithms and their unstable
exploration phase in NGNs. Our proposed
categorization gives the readers a structured
overview of the approaches that partial-
ly tackle such challenges in the context of
RRM. It also provides them with insights on
choosing a suitable technique.

• We conduct a case study on intelligent
RAN slicing to demonstrate the importance
of safe and accelerated DRL approaches in
NGNs. We highlight the exploration behav-
ior of various state-of-the-art DRL algorithms.
We then analyze the effect of using differ-
ent reward functions and transfer learning
(TL) techniques on the exploration of DRL-
based slicing agents. We particularly employ
reward shaping, policy reuse, and policy
distillation techniques. We finally propose
a hybrid technique as an example for safer
TL-accelerated exploration. We develop
and publicly share the implementation of
our OpenAI GYM-compatible DRL environ-
ment to enable fellow researchers to further
address the discussed challenges.

deep reInforceMent LeArnIng-bAsed
rAdIo resource MAnAgeMent In ngns

DRL does not require prior information about the
network or access to complete knowledge of the
system. Access to such information is inefficient
and even inapplicable for the time-varying and
uncertain NGNs environments. Hence, the DRL
framework is a promising tool to solve the dynam-
ic RRM problem. This capability of DRL has driv-
en use cases related to packet scheduling, power
control, handover, and RAN slicing [3].

As seen in Fig. 1, a DRL-based RRM control-
ler continuously interacts with the RAN envi-
ronment. At any given time-step, the DRL agent
observes the RAN system state and chooses an
action to take. Such action changes the RAN
environment, and the agent receives reward
feedback representing the system’s performance.
The agent aims at maximizing such feedback.
The reward function is designed to guide the
agent’s search for the optimal policy. It is often
represented in terms of a weighted sum of the
relevant network’s key performance indicators
(KPIs). This way the agent indicates how good
the action taken was. This is estimated based on
the agent’s sampled experience from interacting
with the RAN environment in a real-time and
dynamic-open control fashion [4].

RAN slicing provides a way to share the physi-
cal infrastructure among several services as shown
in Fig. 2. It is mainly concerned with two RRM func-
tions. The first is slice admission control in which
the infrastructure provider decides whether a ser-
vice provider’s slice request is accepted. This is fol-
lowed by allocating the available spectrum to the
admitted slices. The resources allocated to each
slice should enable the slices to comply with their
different service requirements. Such constraints
should not be violated otherwise monetary penal-
ties can be enforced on the infrastructure provider.

A DRL-based agent is well-suited to this prob-
lem [7]. The agent builds an approximate and con-
tinuously updated model of the RAN’s dynamic

environment. This way, it can fulfill the different
requirements for the various services sharing an
infrastructure simultaneously. The agent learns a
policy to allocate the available resources to each
slice based on the changing network conditions.
This includes the channel conditions, the number of
admitted slices, the type, and SLAs, of the service
supported by each slice, and the number of users
in each slice. Moreover, the traffic demand for
beyond 5G (B5G) services is dynamic and cannot
be easily predicted, particularly in the short term.

prActIcAL chALLenges of
drL-bAsed rrM In ngns

DRL still has some disadvantages, especially when
employed as part of real-time solutions in sto-
chastic environments such as NGNs RAN. We
highlight two key DRL-related practical challenges
that, even when discussed, are rarely tackled by
the wireless networks’ community. We encour-
age researchers to pay more attention to these
uncharted territories to speed up the adoption of
DRL in RRM commercial solutions.

sLoW conVergence of drL ALgorIthMs
This challenge relates to the number of time-steps
it takes the DRL-based controller to find a good
set of RRM confi gurations. The reward feedback
that a DRL agent receives may exhibit some vari-
ability. Hence, it needs to observe a representa-
tive variety of the RAN system’s possible states
several times. The learning happens by iteratively
updating a value function until convergence. This
process is called the exploration phase. The value
function gives an estimate of the expected return if
the agent acts according to a particular policy [4].

Given the stochasticity of NGNs RAN systems
and the exploratory aspect of the DRL agents,
it typically takes thousands of time-steps to con-
verge to an optimal configuration for a given
RRM functionality. This is of great signifi cance in
real network deployments. Only a few exploration
iterations can be tolerated in the case of real-time
functionalities [2].

unstAbLe drL expLorAtIon phAse
RAN systems must maintain a certain performance
level to guarantee users’ QoE and the overall sys-
tem’s quality of service. Hence, RRM problems
are commonly formulated as constrained optimi-
zation problems. The DRL agent utilizes the explo-

FIGURE 1. The controller–environment interaction in
DRL-based RRM in NGNs.

Authorized licensed use limited to: Queen's University. Downloaded on October 17,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2023184

ration phase to search through the wide spectrum
of possible RRM confi gurations. Hence, there is a
high probability that sudden drops in the system
performance occur more often. This happens due
to exploring RRM configurations that were not
encountered previously.

These are not major issues for some applica-
tions such as training an agent to play a computer
game. Training in this case can be done offline
for a long time. Unlike NGNs, the training envi-
ronment will still match the deployment environ-
ment. However, this is a concern in the case of
NGNs. The training environment might be simula-
tion-based, and hence, does not precisely refl ect
the dynamic nature of the real network [8]. Thus,
in-network learning is needed, but cannot be
done for a long time to avoid damaging actions.

sAfe And AcceLerAted drL-bAsed rrM In ngns
In this section, we present and categorize research
efforts that investigate the aforementioned DRL
challenges in the NGNs domain as summarized
in Table 1. We believe that the proposed catego-
rization greatly assists fellow researchers in further
addressing the discussed challenges systematically.

AcceLerAted drL-bAsed rrM soLutIons
The following approaches have shown promise
in minimizing the number of learning iterations a
DRL agent requires for convergence.

Domain Knowledge-Aided DRL Acceleration:
Expert Knowledge-Aided Acceleration: This

category exploits relevant knowledge previous-
ly acquired by experts to guide the exploration
phase. For instance, the authors of [9] propose a
structure-aware mechanism to solve a node-over-
load protection problem in mobile edge comput-
ing. In this respect, the optimal policy is known to
have a multi-threshold structure. Hence, the agent
can reject requests with CPU utilization above a
certain threshold. This allows the agent to recover
quickly whenever the request distribution changes.

Conventional Solution-Aided Acceleration:
Here, a traditional RRM algorithm is used to guide
the exploration phase. For instance, in [10], the
authors use the proportional fair (PF) algorithm as

a separate agent competing with the main DRL
agent to solve a resource scheduling problem.
The reward is calculated based on the diff erence
in the resulting KPIs between the DRL agent’s
action and the PF algorithm. The results suggest
that the agent’s performance and convergence
speed can be improved.

Machine Learning-Aided DRL Acceleration:
ML-Based Experience Building: This approach

proposes the idea of off line experience building to
accelerate training after deploying the agent in a
live network setting. The authors of [5] proposed
this concept in the context of downlink resource
allocation for ultra-reliable low-latency communi-
cations (URLLC). The experience is built by gener-
ative adversarial neural networks that pretrain the
DRL agent using a mix of real and synthetic data.
This allows the agent to be exposed to a broader
range of network conditions. The authors demon-
strate that this approach also helps the agent to
recover in a few steps whenever it experiences
extreme conditions.

Transfer Learning Accelerated DRL: TL expe-
dites learning of new target tasks by exploiting
knowledge from related source tasks. This can
shorten the learning time of ML algorithms and
enhance their robustness to changes in wire-
less environments. TL techniques have recently
emerged as potential solutions to DRL practical
challenges such as the long exploration phase in
the constantly changing wireless environments
[12]. In a previous study, we employed a policy
transfer approach to accelerate the convergence
of DRL-based RAN slicing agents [11]. This was
based on initializing the policies of newly deployed
agents with those of previously trained agents. The
results suggest that despite the considerable dif-
ferences between the traffi c models of the source
and target scenarios, TL can enhance the conver-
gence behavior. TL in DRL is further categorized
based on the knowledge being transferred, and
when and how to transfer such knowledge. We
demonstrate four approaches belonging to two of
these sub-categories in the case study section.

Meta-Learning Accelerated DRL: Meta-learn-
ing was introduced in the context of supervised

FIGURE 2. Overview of RAN slicing.

Authorized licensed use limited to: Queen's University. Downloaded on October 17,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2023 185

ML to design models that can learn new skills
or adapt to new environments with a few train-
ing examples. The same concept can be used to
accelerate DRL agents’ convergence as in [6].
The authors developed a DRL-based solution to
control drone base stations (BSs) providing uplink
connectivity to ground users. The trained policy
should satisfy the users’ dynamic and unpredict-
able access requests. Meta-training is employed
to find, for every user request realization, a set
of initial policy and value functions that are close
to the optimal ones. This can be fulfilled by mini-
mizing the losses that are collected from the sam-
pled user request realizations. This is done while
serving the ground users’ daily requests as an
attempt to generalize the learning to unseen envi-
ronments. Thus, unlike TL, this does not require
prior knowledge from agents previously trained
on similar tasks. The authors demonstrate that the
meta-trained agent yields faster convergence to
the optimal coverage in unseen environments.

Design Choices-Aided DRL Acceleration:
Unlike the previously discussed methodologies, the
following approaches rely on intrinsic DRL proper-
ties. The idea is to make efficient DRL design choic-
es to shorten the exploration duration.

DRL Initialization Strategies: Several param-
eters can be specified for a DRL agent. This
includes the initial policy, learning rates, and
neural network architecture. The authors in [13]
propose a decentralized approach for interfer-
ence management between femtocells and mac-
rocells. To overcome the slow convergence of
the Q-learning algorithm, they propose a Q-table
initialization procedure. Given a new state, the
Q-value of the action taken is updated, and the
costs of the other actions are estimated.

Inherent DRL Agent Properties: Some wireless
network studies rely on the inherent properties of
the DRL algorithms when choosing an algorithm
to employ. This includes picking a DRL algorithm
and a hyper-parameter setting over another based
on their relative performance in terms of stability
and convergence time. Authors of [7] propose
a collaborative learning framework for resource
scheduling in RAN slicing. The authors chose the
asynchronous advantage actor-critic (A3C) algo-
rithm as it is known to have faster convergence
compared with the actor-critic (AC) algorithm.

Choosing an Acceleration Strategy: The
knowledge available at the time of training influ-
ences the choice of the acceleration strategy. For
instance, a domain knowledge-aided approach
can be employed if relevant prior knowledge is
available or a traditional RRM strategy is known.
Moreover, ML-based experience building can be
used if network data is available and a smooth
transition between offline simulation and live net-
work deployment is required. Meta-learning can
be used without prior knowledge about the task.
It considers generalization while learning so that
an agent starts with a near-optimal policy in new
situations. TL requires knowledge from agents
previously trained on similar tasks. This can be,
among others, saved policies, or reward functions.
The design choices-aided acceleration should be
considered regardless of the available knowledge
form. Finally, some approaches are restricted to
specific DRL algorithms so this should also be
considered while choosing a strategy [12].

Safe DRL-Based RRM Solutions

It is essential to have a means of safe explora-
tion in deployed DRL-based RRM solutions. The
approaches that attempt to speed up the DRL
convergence do not necessarily guarantee the
avoidance of large negative outcomes, particular-
ly in stochastic wireless environments. However,
despite not being designed to address safety, mit-
igating slow convergence would indirectly reduce
the times an agent performs damaging actions.

The unstable exploration phase challenge moti-
vates the development of DRL algorithms explicitly
designed to provide safety measures. Safe DRL
is the process of learning policies that maximize
the value function when some safety constraints
must be imposed. This is not restricted to the per-
formance during the learning process but also
after deployment [15]. The safety concept does
not necessarily refer to physical safety (such as in
robotics environments). It can also be extended to
situations when an agent following a specific policy
performs poorly in dynamic environments. Such
poor performance may still happen while the agent
follows an optimal policy, since maximizing the
long-term reward does not necessarily avoid the
rare occurrences of undesired outcomes.

Safe DRL can be classified into two main cat-
egories [15]:
•	 Transforming the optimization criterion to

include a form of risk
•	 Modifying the exploration process.

The second category can be fulfilled either by
external knowledge or risk metric incorporation.
Constrained DRL is among the main approaches
that fall into the first category. It is an extension
of the DRL framework where a set of constraints
applied to the policy are integrated. This can help
RRM by enforcing bounds to guarantee that the
DRL-based RRM controller will not violate any
constraints posed by the MNOs. In other words,
the controller will be obliged to avoid choosing
RRM configurations that might lead to unaccept-
ably low-performance levels. Authors of [14] use
this approach to enforce both cumulative and
instantaneous constraints on network slicing
resource allocation. This allows the RAN system
to stick to the requirements of the services sup-
ported by the various RAN slices.

Multiple criteria should be analyzed when
choosing a safe DRL approach. For instance, the

TABLE 1. Practical challenges of DRL-based RRM in NGNs and approaches to
tackle them.

Challenge Approach category Approach sub-category

Slow convergence of DRL
algorithms

Domain knowledge-aided DRL
acceleration

Expert knowledge-aided DRL acceleration [9]

Conventional solution-aided DRL acceleration [10]

Machine learning-aided DRL
acceleration

ML-based experience building [5]

Transfer learning accelerated DRL [11, 12]

Meta-learning accelerated DRL [6]

Design choices-aided DRL
acceleration

DRL initialization strategies [11, 13]

Inherent DRL agent properties [7]

Unstable exploration phase Safe DRL-based RRM solutions
Transforming the optimization criterion [14]

Modifying the exploration process [15]

Authorized licensed use limited to: Queen's University. Downloaded on October 17,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2023186

worst-case criterion, which falls under the first cat-
egory of safe DRL, is useful when rare occurrenc-
es of large negative returns must be avoided. The
reader is referred to [15] for a comprehensive
analysis of such criteria. Only a few studies in the
NGNs domain explicitly address the challenge
of unstable DRL exploration. Hence, more effort
needs to be directed toward this area of research
given the uncertainty of RAN environments. With
critical B5G applications and industrial automa-
tion, downgraded performance will not be toler-
ated since this will result in unacceptable reliability
measures for these services.

Intelligent RAN Slicing: A Case Study
We demonstrate the need, and impact of various
approaches for safe and accelerated DRL in the
resource allocation problem of RAN slicing.

Experiment Setup
Slicing can be done on many levels. In our exper-
iment, we focus on the BS level. The environment
state reflects the traffic load for each slice rela-
tive to the total BS load within a previous time
window. The DRL agent takes an action to allo-
cate the available PRBs to the admitted slices.
Then, round-robin scheduling is carried out inde-
pendently within each slice. Scheduling multiple
transmissions per TTI is supported if resources are
available. Requests are generated based on the
parameters described in Table 2. Unsatisfied users
with multiple unfulfilled transmission requests

leave the system.
It is important to design a reward function

that reflects the requirements of the various slic-
es. Here, we focus on the delay requirements.
Latency is relatively more important in URLLC
slices. Hence, a large weight is configured for
the URLLC slices in the weighted sum reward
functions as seen in the table. Reward function
1 reflects the weighted sum of the slices’ average
latency in a slicing window.

We first evaluate various state-of-the-art DRL
algorithms implemented in the Tensorforce
Python package to show the exploration perfor-
mance when using reward function 1. We use
a hard slicing agent as a baseline that assigns
the spectrum equally among the available slic-
es. Moreover, fixed slicing statically allocates the
PRBs according to the percentages in Table 2.

Methods for Safe and Accelerated DRL-Based RAN Slicing
We demonstrate how safety and acceleration can
be achieved in DRL-based RAN slicing using the
following approaches. Given the scenario, the
proximal policy optimization (PPO) agent experi-
enced relatively more frequent drops in rewards
as highlighted in the results section. Thus, we
decided to employ PPO as the underlying algo-
rithm in all the approaches. However, the other
algorithms showed similar behavior. We use a
time-decayed exploration parameter, e, to control
the exploration-exploitation trade-off [4]. We start
with inspecting the effect of using different reward

TABLE 2. Simulation parameters and DRL design details.

(a) RAN slicing simulation parameter settings

Video VoLTE URLLC

Scheduling algorithm Round-robin per 0.5 ms slot

Bandwidth allocation window size 40 scheduling time slots

Packet interarrival time distribution
Truncated Pareto (mean = 6 ms,
max = 12.5 ms)

Uniform (min = 0 ms,
max = 160 ms)

Exponential (mean = 180 ms)

Packet size distribution
Truncated Pareto (mean = 100 B,
max = 250 B)

Constant (40 B) Truncated log-normal (mean = 2 MB, standard deviation = 0.722 MB, max = 5 MB)

(b) RAN slicing DRL design

State The ratio of slices’ traffic load in the last slicing window (pVideo, pVoLTE, pURLLC)

Action
The percentage of bandwidth allocated to each slice (15 allocation configurations)
(wVideo, wVoLTE, wURLLC), s.t. wVideo + wVoLTE + wURLLC = 100 %

Reward function 1 A weighted sum of the slices’ average latency in a slicing window

Reward function 2 A weighted sum of a sigmoid function-based reward with slices’ latency as a variable

Reward function 3 (for reward shaping) Same as function 2 with extra reward when URLLC slice requirements are satisfied

Reward function slice weights URLLC: 0.7, Video: 0.2, VoLTE: 0.1

Hard slicing resource allocation URLLC: 33 %, Video: 33 %, VoLTE: 33 %

Fixed slicing resource allocation URLLC: 70 %, Video: 20 %, VoLTE: 10 %

DRL parameters

DRL algorithms Dueling DQN, PPO, A2C, REINFORCE, TRPO + hard slicing and fixed slicing

Experiment time-steps Expert BS: 50,000, learner BS: 20,000

Exploration Expert BS: 0.9, learner BS: 0.2

Exploration decay Expert and learner BS: 0.99

Batch size 4–8

Authorized licensed use limited to: Queen's University. Downloaded on October 17,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2023 187

functions on exploration behavior. We then
demonstrate three approaches that belong to two
sub-categories of TL in [12], namely, reward shap-
ing and policy transfer. Furthermore, we propose
a fourth approach that falls under the policy trans-
fer sub-category.

Reward Function Design:
Reward Function Change: The first designed

function is a weighted sum of the slices’ aver-
age latency in a slicing window. We additionally
design a second sigmoid function-based reward
with latency as a variable. Unlike the first func-
tion, function 2 penalizes actions that come close
to violating slices’ latency requirements. Two
parameters, c1 and c2, are configured to tune the
shape of the function as seen in Fig. 3. c2 reflects
the minimum acceptable latency for each slice,
while c1 determines when to start penalizing the
agent’s actions. The second function follows a
safe DRL approach similar to the risk-sensitive cri-
terion in [15]. It is a subcategory of transforming
the optimization criterion mentioned earlier, in
which a parameter is used to enable the sensitivity
to the risk to be controlled.

Reward Shaping: Reward shaping uses exter-
nal knowledge to render auxiliary rewards that
guide the DRL agent toward the desired policy.
This can help the agent reach an optimal policy
faster. We demonstrate this by defining reward
function 3 where additional rewards are provided
whenever an action leads to satisfying the URLLC
latency requirements. As previously mentioned,
we prioritize URLLC slices due to their intolerance
to delay.

Policy Transfer: Policy transfer is a class of
TL in which a source policy is transferred to an
agent with a similar target task [12]. We employ
policy transfer in the following three approach-
es. We first train an agent to learn a policy at a
BS, namely, the expert BS. This scenario includes
three slices reflecting the URLLC, Video, and
VoLTE services. The expert policy is then used to
guide newly deployed agents at other BSs, name-
ly, learner BSs to accelerate their learning process-
es. The learner BSs scenario includes one URLLC
slice and two VoLTE slices.

Policy Reuse: Here, a source policy that is
learned at an expert BS is directly reused to guide
the target policy at a learner BS [12]. We config-
ure the learner BS to follow the expert policy for
the first 500 time-steps. The target policy is con-
tinuously updated based on the reward feedback
the learner agent receives. We use a transfer rate,
q = 1, during these time-steps meaning that we
always follow the source policy. We follow the
target policy afterward. However, a smaller or
different decaying transfer rate can be configured
to switch between the source and target policies
during exploration [12].

Policy Distillation: Here, one or more source
policies are combined to guide an agent in a sim-
ilar target task [12]. This can be done by minimiz-
ing the divergence of action distributions between
the source and the target policies. We follow a
similar training approach by minimizing the Euclid-
ean distance between the actions recommended
by the expert policy and those recommended by
the learner policy. The learner BS is configured to
follow the distilled policy for the first 1000 time-
steps during which a transfer rate, q = 1 is used.

Hybrid Policy Reuse and Distillation: We
propose a hybrid of the last two approaches to
achieve a safer TL-accelerated exploration. This is
helpful when the transferred policies are not gener-
ic enough to robustly adapt to new traffic patterns.
We introduce a parameter similar to q to balance
between exploiting the expert policy and exploring
a distilled action. This is done during the first 700
time-steps while the target policy is continuously
updated based on the reward feedback the learner
agent receives. The updated target policy is then
followed for the rest of the training phase.

The simulation environment where all these
methods are implemented is available on GitHub
(https://github.com/ahmadnagib/SARL-RRM). This
allows researchers to study and easily compare the
behavior of the developed DRL-based RAN slicing
controllers. The developed environment follows the
standard OpenAI GYM interface (OpenAI Gym:
http://gym.openai.com/). This enables research-
ers to develop algorithms that work instantly with-
out any changes to the environment. It also gives
researchers a wide spectrum of GYM-compatible
software libraries to choose from.

Numerical Results and Discussion
We first illustrate the exploration performance of
the various DRL algorithms in Fig. 4a. Hard, and
fixed slicing have the lowest reward values as they
do not explicitly consider the latency. The results
highlight the challenge of slow convergence of
DRL algorithms. It can take an agent more than
17,000 learning steps to converge. This is a con-
cern in NGNs because live networks cannot toler-
ate a non-optimal performance for a long duration.
Exploration is needed primarily in two situations:
•	 When an agent is newly deployed in a live

network. This would happen even for DRL
agents trained in simulation-based environ-
ments. Such environments fail to accurately
reflect the multi-faceted complexities of the
dynamic NGNs across all deployments [5].

•	 Whenever the network context changes sig-
nificantly. This situation is typical of highly
dynamic environments, such as when DRL-

FIGURE 3. An example of reward function 2: c1 decides the point to start penaliz-
ing the agent’s actions; and c2 reflects the acceptable latency for each slice.

Authorized licensed use limited to: Queen's University. Downloaded on October 17,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2023188

based drone BSs need to provide coverage
to ground users in previously unseen envi-
ronments [6].
In Fig. 4b, we show the results of the approach-

es described in this case study. We observe the
following:
• The agent using reward function 1 has the

lowest reward throughout most of the explo-
ration phase. This is because function 1
reflects the average latency in a slice with-
out considering the latency requirements for
each service type.

• Reward function 2 explicitly includes the
latency requirements and penalizes the
agent whenever it takes actions that violate
them. Hence, the agent using function 2 has
an enhanced exploration performance. How-
ever, it still converges close to the 20,000
steps mark.

• Reward shaping succeeds in accelerating
convergence. The auxiliary rewards consis-
tently guide the agent toward satisfying the
latency requirements of URLLC.

• The two policy transfer approaches per-
formed relatively better throughout most of
the simulation in terms of convergence time
and reward value. However, they have con-
siderably diff erent behavior at the beginning
of the simulation. This is mainly a result of
the nature of each approach.

• Policy reuse starts with a relatively high
reward value as the transferred policy recom-
mends actions close to the optimal ones. On
the other hand, policy distillation starts with
a lower value as it tries to reduce the diver-
gence between the actions recommended
by the learner policy and the expert policy.
This smooths out the reward to some value
in between. However, it converges faster
as it explores more actions at the beginning
rather than steadily following a transferred
policy.

• Both policy transfer techniques experience
significant performance drops, unlike the
previous approaches. This is mainly because

they both rely on a non-generic expert pol-
icy. This affects exploration robustness and
hence the end-users’ QoE.

• The proposed hybrid approach combines a
good starting reward value, a more stable
exploration performance, and a fast conver-
gence rate. This is mainly because it strikes a
balance between relying totally on an expert
policy trained on a specific scenario and
learning from scratch.

concLusIon
The deployment of DRL-based RRM solutions
in real networks is subject to several challeng-
es given the uncertainty of NGNs’ RAN envi-
ronments. Safe and accelerated exploration is
an essential concept that will open the door to
DRL-based RRM commercial solutions. Our case
study on intelligent RAN slicing demonstrates
that DRL agents can take thousands of learning
time-steps to converge to a good policy. This
results in violations of the various slices’ SLAs,
and consequently, monetary penalties and
undesirable QoE. Our experiment highlights the
potential of using transfer learning to guide the
exploration process. Moreover, we propose a
hybrid approach as an example of safe TL-ac-
celerated exploration. Utilizing acceleration
strategies does not guarantee a certain desired
performance level. Hence, more effort should
be directed toward innovating safe techniques
that guarantee the instantaneous and cumulative
RRM constraints in NGNs.

reFereNCes
[1] F. D. Calabrese et al., “Learning Radio Resource Manage-

ment in Rans: Framework, Opportunities, and Challenges,”
IEEE Commun. Mag., vol. 56, no. 9, 2018, pp. 138–45.

[2] L. Maggi, A. Valcarce, and J. Hoydis, “Bayesian Optimization
for Radio Resource Management: Open Loop Power Con-
trol,” IEEE JSAC, vol. 39, no. 7, 2021, pp. 1858–71.

[3] A. Feriani and E. Hossain, “Single and Multi-Agent Deep
Reinforcement Learning for Ai-Enabled Wireless Networks:
A Tutorial,” IEEE Commun. Surveys Tutorials, vol. 23, no. 2,
2021, pp. 1226–52.

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An
Introduction, MIT press, 2018.

FIGURE 4. Numerical results: a) DRL-based RAN slicing exploration performance using various algorithms. Reward is smoothed using a
moving average of window size = 500 time-steps; b) comparison of acceleration and safety approaches for DRL-based RAN slicing.
Reward is smoothed using a moving average of window size = 1000 time-steps.

a) b)

Authorized licensed use limited to: Queen's University. Downloaded on October 17,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

IEEE Network • March/April 2023 189

[5] A. T. Z. Kasgari et al., “Experienced Deep Reinforcement
Learning With Generative Adversarial Networks (Gans) for
Model-Free Ultra Reliable Low Latency Communication,”
IEEE Trans. Commun., vol. 69, no. 2, 2021, pp. 884–99.

[6] Y. Hu et al., “Distributed Multiagent Meta Learning for Tra-
jectory Design in Wireless Drone Networks,” IEEE JSAC, vol.
39, no. 10, 2021, pp. 3177–92.

[7] M. Yan et al., “Intelligent Resource Scheduling for 5G Radio
Access Network Slicing,” IEEE Trans. Vehicular Technology,
vol. 68, no. 8, 2019, pp. 7691–7703.

[8] N. Kato et al., “Ten Challenges in Advancing Machine Learn-
ing Technologies Toward 6G,” IEEE Wireless Commun., vol.
27, no. 3, 2020, pp. 96–103.

[9] A. Jitani et al., “Structure-Aware Reinforcement Learning for
Node-Overload Protection in Mobile Edge Computing,” IEEE
Trans. Cognitive Commun. Networking, vol. 8, no. 4, 2022.

[10] J. Wang et al., “Deep Reinforcement Learning for Schedul-
ing in Cellular Networks,” Proc. IEEE 11th Int’l. Conf. Wireless
Commun. Signal Processing, 2019, pp. 1–6.

[11] A. M. Nagib, H. Abou-Zeid, and H. S. Hassanein, “Transfer
Learning-Based Accelerated Deep Reinforcement Learning
for 5G Ran Slicing,” Proc. IEEE 46th Conf. Local Computer
Networks, 2021, pp. 249–56.

[12] C. T. Nguyen et al., “Transfer Learning for Wireless Net-
works: A Comprehensive Survey,” Proc. IEEE, vol. 110, no. 8,
2022, pp. 1073–1115.

[13] M. Simsek et al., “Improved Decentralized Q-Learning
Algorithm for Interference Reduction in Lte-Femtocells,” IEEE
Conf. Wireless Advanced, 2011, pp. 138–43.

[14] Y. Liu et al., “A Constrained Reinforcement Learning Based
Approach for Network Slicing,” Proc. IEEE 28th Int’l. Conf.
Network Protocols, 2020, pp. 1–6.

[15] J. García and F. Fernández, “A Comprehensive Survey on
Safe Reinforcement Learning,” J. Machine Learning Research,
vol. 16, no. 1, 2015, p. 1437–80.

Biographies
Ahmad M. Nagib [GS] (ahmad@cs.queensu.ca) is a Ph.D. stu-
dent and graduate research fellow at the School of Computing,
Queen’s University. He received his B.Sc. and M.Sc. degrees
from the Faculty of Computers and Artificial Intelligence, Cairo
University. He also works there as an Assistant Lecturer. He is
currently part of an industry-academia collaboration project with
Ericsson, Canada. His research mainly addresses the practical
challenges of applying machine learning, and specifically rein-
forcement learning, in next-generation wireless networks. He
served as a TPC member and reviewer in several IEEE flagship
venues such as TNSM, GLOBECOM, ICC, and LCN.

Hatem Abou-Zeid [M] (hatem.abouzeid@ucalgary.ca) is an Assis-
tant Professor at the University of Calgary. Prior to that he was at
Ericsson leading 5G radio access research and IP in RAN intelli-
gence, low-latency communications, and spectrum sharing. Several
wireless access and traffic engineering techniques that he co-invent-
ed and co-developed are deployed in mobile networks and data
centers worldwide. His research interests are broadly in 5G/6G
networks, extended reality communications, and robust machine
learning. His work has resulted in 19 patent filings and 50 journal
and conference publications in several IEEE flagship venues. He
received the PhD degree from Queen’s University in 2014.

Hossam S. Hassanein [S’86, M’90, SM’05, F’17] (hossam@
cs.queensu.ca) is a leading authority in the areas of broadband,
wireless and mobile networks architecture, protocols, control and
performance evaluation. His record spans more than 600 publi-
cations in journals, conferences and book chapters, in addition to
numerous keynotes and plenary talks in flagship venues. He has
received several recognition and best paper awards at top inter-
national conferences. He is a Fellow of the IEEE and is a former
chair of the IEEE Communication Society Technical Committee on
IoT, AdHoc and Sensor Networks. He is an IEEE Communications
Society Distinguished Speaker (Distinguished Lecturer 2008-2010).

Authorized licensed use limited to: Queen's University. Downloaded on October 17,2023 at 15:25:35 UTC from IEEE Xplore. Restrictions apply.

