4672

IEEE INTERNET OF THINGS JOURNAL, VOL. 5, NO. 6, DECEMBER 2018

Towards a Practical Crowdsensing System for
Road Surface Conditions Monitoring

Amr S. El-Wakeel

, Student Member, IEEE, Jin Li, Student Member, IEEE,

Aboelmagd Noureldin, Senior Member, IEEE, Hossam S. Hassanein, Fellow, IEEE,
and Nizar Zorba, Member, IEEE

Abstract—The Internet of Things (IoT) infrastructure, systems,
and applications demonstrate potential in serving smart city
development. Crowdsensing approaches for road surface condi-
tions monitoring can benefit smart city road information services.
Deteriorated roads induce vehicle damage, traffic congestion, and
driver discomfort which influence traffic management. In this
paper, we propose a framework for monitoring road surface
anomalies. We analyze the common road surface types and irreg-
ularities as well as their impact on vehicle motion. In addition to
the traditional use of sensors available in smart devices, we uti-
lize the vehicle motion sensors (accelerometers and gyroscopes)
presently available in most land vehicles. Various land vehicles
were used in this paper, spanning different sizes, and year model
for extensive road experiments. These trajectories were used to
collect and build multiple labeled data sets that were used in the
system structure. In order to enhance the performance of the
sensor measurements, wavelet packet de-noising is used in this
paper to enable efficient classification of road surface anoma-
lies. We adopt statistical, time domain, and frequency domain
features to distinguish different road anomalies. The descriptive
data sets collected in this paper are used to build, train, and test
a system classifier through machine learning techniques to detect
and categorize multiple road anomalies with different severity
levels. Furthermore, we analyze and assess the capabilities of
the smart devices and the other vehicle motion sensors to accu-
rately geo-reference the road surface anomalies. Several road test
experiments examine the benefits and assess the performance of
the proposed architecture.

Index Terms—Crowdsensing, machine learning, road informa-
tion services (RISs), signal processing, smart city applications.
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I. INTRODUCTION
A. Background and Motivation

HE Internet of Things (IoT) is a network of devices with
T embedded technology that can collect, analyze, interact,
and communicate data within itself or its environment through
the Internet [1], [2]. According to the analyst firm Gartner
Inc. [3], it is estimated that a total of 8.4 billion devices are
connected to the Internet in 2017, and 20.4 billion IoT devices
will be deployed by 2020. Consequently, in this ever-changing
technological era, the IoT introduces endless opportunities and
connections to enhance the efficiency of existing solutions
leading to the global expansion of technological networks. IoT
applications are seen commonly in smart homes, wearables,
smart cities, and smart vehicles [4], [5]. These applications
create an environment where every device communicates with
other related devices to automate the home and industry and
provides data to interested users [6], [7].

The evolution of smart cities continues to enhance effi-
ciency, safety, and living standards. Smart city services range
from healthcare and waste management to traffic and pedes-
trian monitoring in hopes of creating a sustainable intel-
ligent system [8], [9]. Specifically, intelligent transportation
applies sensing, analysis, control, and communication to
ground transportation through the IoT to increase safety and
mobility [10], [11].

Accordingly, location-based services (LBSs) could be
used to enhance the quality of intelligent transportation.
Crowdsensing as an aspect of crowdsourcing could benefit
LBS, as sensed data can be transmitted with user participa-
tion or in an opportunistic form where no specific involvement
of users is required [12], [13]. Additionally, micro-electro-
mechanical systems (MEMSs) sensors embedded in smart
devices, vehicle motion sensors, and GPS receivers contribute
heavily to the crowdsensing LBS [13], [14]. Consequently,
various intelligent transportation applications such as road
information services (RISs), traffic congestion monitoring,
real-time route planning, driver behavioral pattern systems,
and road surface monitoring could be efficiently implemented,
utilized, and assessed [15]-[18].

Road surface condition information is important for rea-
sons related to vehicle damage and repair costs, safety, and
control. Road surface monitoring is critical in transport infras-
tructure management; however, manual reporting can incur
long delays and challenges for obtaining up-to-date informa-
tion. Governments spend great efforts annually to provide safer
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Fig. 1. Multiple road anomalies.

road networks, for instance, the U.K. government announced
that it will spend $1.2 billion on road repairs between 2017
and 2018 [19]. Similarly, estimates from 2017 determined that
vehicle damage from road anomalies cost an average American
driver $523 in extra vehicle and maintenance fees, and this
price may range depending on the state [20]. In Toronto, it
costs around $25 to repair a pothole, and 360 000 potholes
of all sizes and shapes were repaired in 2014, costing the
city $6 million every year [21]. Likewise, in Montreal, pot-
holes cost around $7 million annually [22]. Though financially
costly, serious accidents can arise due to road anomalies.
For instance, between 2000 and 2011, over 2 million traf-
fic accidents were reported in Canada, 33% of which were
related to poor weather or road conditions [23]. In 2015,
around 50 000 motorists reported damage caused by potholes
in the U.K., with an estimate of potholes damaging cars every
11 min [24]. Therefore, an important part of RIS aims to
efficiently monitor road surface conditions and anomalies.

B. Problem Statement

As previously discussed, the effects of road surface anoma-
lies and the government attention in monitoring and repairing
affected roads they both highlight the importance of address-
ing irregularities and their effect on multiple common driving
styles. This requires performing several driving surveys in dif-
ferent locations to label the most common road anomalies, and
define their effects as per the example shown in Fig. 1. The
several driving surveys should enable the identification and
categorization of road surface types and anomalies over sev-
eral road test trajectories. The road distress appears in different
forms such as transverse cracks, longitudinal cracks, crocodile
cracks, and road dents. Also, this distress might cause the
removal of pavement, introducing various levels of potholes. In
addition, road-related infrastructure services such as manholes,
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Fig. 2. Vehicle motion under single and double-sided road anomalies.

speedbumps, drain pits, road and bridge joints, deceleration
strips, and railroad crossings may also damage vehicles when
they are improperly maintained. Regarding the effects of the
above-mentioned anomalies, they affect the vehicle motion
in different perspectives. According to their nature, a vehicle
can either attend the event with single-sided or double-sided
wheels. Under certain conditions, the vehicle could attend the
event with only one wheel due to swerving. Fig. 2 shows the
effects of the event on the vehicle motion. Therefore, there is
a growing demand toward crowd-based information services
to monitor road health conditions and road hazards.

C. Objective

In this paper, we present a framework to collect crowd-
based information to monitor road health conditions and
road hazards. The proposed system utilizes the sensor tech-
nologies available in both vehicles and driver smart devices
to offer more advanced, accurately localized road surface
anomaly monitoring. While developments have been inde-
pendently made in these areas of intelligent transportation
systems, there is very limited work toward a framework that
integrates the above to provide a real-time, personalized, driver
service application. Therefore, this paper aims at the following.

1) Utilizing different types and grades of accelerome-
ters and gyroscopes including low-cost consumer-grade
MEMS-based sensors and fiber optics automotive grade
sensors to enable rich collection of data for different
road types and anomalies.

2) Exploring multiple common road irregularities while
analyzing the effects of irregular roads over vehicle
motions by adopting eight different car models that
span multiple types, sizes and model year. This pro-
vides a comprehensive collection of a variety of driving
scenarios.

3) Developing a wavelet packet de-noising method to
enhance the quality of the data sensed by low-cost
MEMS sensors, and to separate the vehicle motion
dynamics and the effects of the road anomalies from
other measurement noises and disturbances.

4) Processing the de-noised measurements by a feature
extraction technique using statistical, time domain and
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frequency domain approaches to extract rich and distin-
guishable features for each road anomaly type.

5) Adopting a multilevel support vector machine (SVM)
classifier that is able to detect and classify eight road
anomaly types and irregularities with different levels of
severity.

6) Integrating positioning solution from GPS receiver with
motion sensors, providing robust geo-referencing of
road surface anomalies even in challenging/denied GPS
environment.

II. RELATED WORK

Currently, the authorities monitor road conditions and man-
ual reporting is employed, but this form of tracking does
not account for the constant changes in road conditions,
where road damages can deteriorate quickly. On the other
hand, some crowdsensing-based applications were developed
for road anomaly detection. As in 2012, the city of Boston
partnered with Connected Bits to develop an application
known as “Street Bump,” which requires the user to install
the application on their mobile device to sense and report
potholes [25], [26].

Lately, the smartphones, tablets, and other smart mobile
devices were used for assessing and monitoring road con-
ditions through inputs from mainly the accelerometers,
gyroscopes, and GPS sensors. Recent technical research
has led to various approaches in addressing this problem.
Brisimi et al. [27] introduced a detection and decision support
system called Street Bump which classifies roadway “bumps”
into actionable (potholes and manhole covers) and nonaction-
able (train tracks and speedbump). Predetermined and trained
machine learning algorithms identify the ones of immediate
attention with up to 88% accuracy. Kalim et al. [28] presented
a mobile app that utilizes accelerometers, gyros, and GPS on
smart devices to collect data while driving. Using machine
learning techniques the anomalies are only classified to pot-
holes and speedbumps with an average detection accuracy
of 92.5%. Embedded GPS receiver was used to localize the
anomalies. The proposed crowdsourcing-based road surface
monitoring system from [29] can detect potholes with up to
90% accuracy and road roughness levels using accelerometers
and GPS devices, yet it only focuses on pothole detection.
Pothole in the dark [30], proposed a system that detects and
determines the dimensions of potholes. Leveraging smartphone
sensors and a land vehicle, they trained a system that considers
the vehicle parameters and detects potholes. The main limita-
tion of this system is that it is trained to detect only potholes
at a relatively low speed below 30 km/h that can be irrelevant
for some scenarios.

In [31], a half car model was derived and implemented
to describe the car motion and any encountered disturbances
(in the form of potholes, speedbumps, and road joints). Front
and rear left suspension reflection, vertical acceleration, and
roll rate are the measurement inputs. Threshold-based detec-
tion techniques were used to classify the detected anomalies.
The system achieved a labeling accuracy of ~ 86% and false
negative rate (FNR) of ~ 2%. Additionally, Fox et al. [32]
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involved multilane pothole detections from crowdsourcing,
using accelerometer data from embedded vehicle sensors with
inclined roads. It also presents various mathematical models
and algorithms to assess the simulated data. However, it does
not consider other possible road anomalies and does not obtain
training data through real-world driving.

Generally, a robust road surface condition monitoring
system should address two main aspects: 1) the anomaly detec-
tion with its classification system structure and 2) the geo-
referencing system for road anomalies. Most recent systems
lack several aspects required for robust detection and classi-
fication. There are some systems highly focused on detecting
a limited variety of anomalies, specifically potholes [29], [30].
Others lack appropriate experimental validation or consider
unrealistic scenarios for their experiments, this spans low
vehicle speed, restricted sensor placements, and using sim-
ulated data [30]-[32]. Moreover, smartphone-based road sur-
face monitoring systems rely on GPS for geo-referencing the
detected events, which is not adequate due to positioning errors
in urban canyons. While considering GPS signal blockage
and multipath, localization errors are significantly increased
in downtown cores and urban areas [33], [34]. The lack of
adequate event localization leads to insufficient system oper-
ation; hence, event detection without accurate localization is
meaningless.

Considering all the aspects of monitoring road anomalies
would enable robust and continuous reporting systems of the
road surface conditions, to benefit present and future smart
cities operation. Additionally, drivers’ prior knowledge of the
road quality will strongly contribute to their route planning. As
the current route planning key players such as Google Maps
and Apple Maps Connect suggest best routes based only on the
shortest distance routes and the fewer traffic roads. Providing
continuous and accurate road quality information will defi-
nitely open the door toward efficient and road maintenance,
dynamic route planning, and traffic management. In addition,
road surface condition information could be highly valuable
for autonomous vehicles to ensure comfort and safe trips.

III. SYSTEM CONFIGURATION AND DATA COLLECTION

Fig. 3 shows the proposed system configuration. Our meth-
ods process both the vehicle and smartphone sensors to
recognize the road-related anomalies, such as the existence
of potholes, manholes, and other road surface objects. Sensor
measurements from both vehicle and driver’s smartphone are
first synchronized and time tagged to the GPS time.

In this paper, we developed multiple trajectories of vary-
ing lengths to be used in identifying, training, and for
testing purposes. For the trajectories, we utilized multiple
inertial measurement units (IMUs), GPS receivers, and inte-
grated positioning units. Three smart devices, two smartphones
(Nexus 5 and Samsung Galaxy S4), and one tablet (Samsung
GT-N8010) were used. These devices are embedded with
six degrees of freedom IMUs and GPS receivers. In addi-
tion, we also used a low-cost MEMS grade six degrees of
freedom IMU (Crossbow), and two integrated positioning
units (VTI and Novatel). The VTI includes a MEMS grade
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Fig. 4. Multiple vehicles, testbed, and sensors.

IMU and an OEM GNSS receiver. The NovAtel SPAN inte-
grated solution includes a tactical grade span-CPT IMU with
MEMS accelerometers, fiber-optic gyros, and the OEM GNSS
receiver. We also used a MiVue 388 Dash Cam for recording
the trajectories.

These sensors are gathered on a testbed or in an open setup
and then mounted on multiple vehicles as shown in Fig. 4.
We utilized eight land vehicles: two vans, two sedans, two
crossovers, one mini-van, and one hatchback. We intentionally
chose them to span multiple sizes, vendors, wheel size, qual-
ity of suspensions, model, and make, which provides a broad
range of real-driving scenarios. The testbeds and open setup
are positioned and oriented differently in the vehicles as shown
in Figs. 4 and 5.

System configuration for monitoring road surface types and anomalies.

Lesibied )

———

pagisa]

Fig. 5. Testbed and smart devices locations in the vehicle.

The positions of the testbed range from the front passenger
seat, middle backseats (minivan and van), and trunk (crossover
and hatchback). In an open setup, smartphones and tablets are
secured on the arm rest, windshield, dashboard, front passen-
ger seats, and cup holder. Using the mentioned forms of the
experimental setup, we held multiple trajectories as shown in
Fig. 6 that spanned different road types and anomalies in the
downtown core, residential neighborhoods, and urban streets.

Using the experimental setup, we approached the different
events using various vehicles, sensor grades, driving behav-
iors, and speeds. This leads to a rich collection of different
data sets, and describe every single event by attending them
in different ways. In order to obtain highly descriptive data, we
logged all sensors at their maximum and relevant data rates.
For smart devices, we logged the accelerometers at approx-
imately 100 Hz, the gyroscopes at approximately 200 Hz,
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Fig. 6. Multiple trajectories used for system building, testing, and training.

and the GPS measurements at 1 Hz. In regards to the external
IMUs, Crossbow (Xbow), and IMU CPT were logged at
100 Hz for both accelerometers and gyroscopes while the VTI
full IMU was logged at 20 Hz. Additionally, the VTI and
NovAtel OEM GPS receivers were logged at 1 Hz. Similarly,
the integrated positioning solution provided by both units (VTI
and NovAtel SPAN integrated solution) were obtained at 1 Hz.

During the trajectories, the attended anomalies were: pot-
holes, manholes, transverse cracks, longitudinal cracks, rail-
road tracks, speedbumps, deceleration strips, paved roads, and
road dents. For every single trajectory, we built a data set for
each sensor that was used and labeled each attended event
using the recorded videos for guidance. Later the data sets
from each trajectory were combined, these data sets were used
independently or combined with other data sets from different
trajectories. The data sets of varying sizes were arranged for
building, training, and testing of classifiers.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
A. Signal De-Noising

Principally, the sensed and collected data reflects vehicle
motion regular dynamics, road anomalies effects, and noise.
For IMU’s, specifically, there are multifarious sources of noise.
Basically, IMU’s noise can be branched to long-term errors
(ones with low-frequency components) and short-term errors
(ones with high-frequency components).

Consequently, long-term errors could be presented as
a result of different causes. For instance, the noise from
external or internal heat distribution variations or temperature
is represented by exponentially correlated noise. This type of
noise appears in low frequencies and is identified as a time-
varying additive noise. In addition, random walk, another
form of the low noise frequency component, could appear as
result of shot or thermal noise in a photodetector of optical
gyros [33]-[35]. On the other hand for short-term errors, they
could be presented as a result of different causes. For instance,
white sensor noise is distributed in all the frequencies of a sen-
sor according to its bandwidth, this type of noise is a result
of electronic instruments such as power supplies, quantization
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Fig. 7. Wavelet decomposition tree.

errors during digitization or even through the semiconduc-
tor devices intrinsic noise [36], [37]. Clearly, suppressing the
noise effects on the sensed data is a challenging process as
the long-term errors are mixed with vehicle dynamics low
frequencies [38], [39]. Also, removing the effects of the high-
frequency noise could eliminate the road anomalies effects
leading to high detection errors.

In order to achieve robust signal de-nosing, the best case
scenario is that a full prior information about the signal
is available. In such case, signal and noise joint probabil-
ities are known and the average estimation error could be
minimized [40]. One of the trivial de-noising techniques is
the Fourier transform (FT); however, the main disadvantage
of the FT is that once a frequency domain transforma-
tion is performed, any relevant time domain information is
lost. Accordingly, windowed discrete time FT (WDFT) was
proposed to overcome the lack of time localization in ordi-
nary FT. In WDFT, a time window is predefined assuming
local signal periodicity. For each window, the WDFT pro-
duces a sequence of complex values whose magnitudes are
those of the discrete frequencies of the input. A major draw-
back of WDFT is that a window with fixed width always rise
the time-frequency tradeoff, as narrow window width leads to
appropriate time localization, but on the other hand insuffi-
cient frequency resolution is obtained. Furthermore, WDFT
can experience phenomena named spectral leakage, as to
model a frequency that does not have an integral number
of periods in the record length, energy is spread into all the
other frequencies [41]. In order to overcome the challenges
of WDFT, wavelets are proposed and adopted. In wavelets,
the analysis grants the usage of relatively long time windows
where low-frequency components are required. Meanwhile,
where high-frequency content is needed, shorter intervals are
adopted. Consequently, in the wavelet multiresolution anal-
ysis (WMRA) process, the signal is divided into multiple
resolution levels as shown in Fig. 7.

In WMRA, a wavelet function, ¥, is used to seek the details
in a signal in an operation equivalent to high pass filtering
while a scaling function, ¢,, is designed to smooth the input
signal to seek its approximation in a process equivalent to low
pass filtering [38]-[40]. The wavelet and scaling functions are
usually orthonormal functions. On the other hand, even with
adopting thresholds, some motion dynamics or road anomalies
influences could be deteriorated [42].
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Fig. 8.  Wavelet packet decomposition tree.

To bypass the challenges of wavelet de-noising, a wavelet
packet de-noising is adopted in our analysis. Wavelet packets,
as shown in Fig. 8, apply an initial decomposition step that
separates the signal into approximation (A) and details (D).

Furthermore, both of A and D are decomposed for sev-
eral levels in order to break the signal into fine resolution
components [40], [42]. Regarding our de-noising approach,
we utilized bi-orthogonal wavelet packet de-noising analy-
sis. Basically, the analysis utilizes wavelet packet bases that
are able to break down the frequency axis into apportioned
slots with multiple sizes and these slots are translated in time
to cover the entire time-frequency plane. As any space, Vj,
could be split to subspaces of approximation, V;_1, and details,
W;_1, where

Vj:Vj_1+Wj_1. (D

In the case of orthogonal bases, this is done by break-
ing the orthogonal basis of V; to orthogonal bases of
approximation and details to {¢; ;(— 2j_ln)}nEZ and
{\Ilj,1(t—2j_ln)}nez, respectively, this split is specified
by a pair of conjugate mirror filters h[r] and g[n] =
(—=1)!'™"h[n — 1]. Considering bi-orthogonal wavelet pack-
ets, they exploit nonorthogonal wavelet bases which are built
with two pairs of perfect reconstruction filters (4, g) and
(iz, g) [40], [43]. For thresholds, we used soft threshold of
Stein unbiased risk estimator (SURE) introduced in [44]. As
mentioned in [40], reducing the thresholding risk could occur
by choosing a threshold less than ,/2log,N , where o is the
standard deviation and N is the signal length. For the SURE
thresholding, T

T = /2 log,(Nlog,(N). )

In order to assess the performance of the discussed wavelet
packet de-noising, we applied the technique on the system
inputs listed in Table I. These inputs are the linear accelera-
tions and the rotational velocities gathered by various adopted
IMUs. Figs. 9 and 10 show the linear accelerations and angu-
lar rotations for the Crossbow IMU, wavelet packet de-noised
Crossbow IMU and IMU-CPT during a road anomaly.

We have intentionally chosen to show the results of the
packet de-nosing of the Crossbow IMU, as it has the lowest
performance among all the IMUs in our experiments. In addi-
tion, the IMU-CPT were used as a reference IMU due to its
higher performance among the others. The standard deviation
results displayed in Table I show that wavelet packet de-
noising of the Crossbow IMU have been enhanced on average
by approximately 48%.
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TABLE I
STANDARD DEVIATIONS FOR XBOW IMU, WAVELET PACKET
DE-NOISED XBOW IMU, AND IMU-CPT

STD oF STD OF WP STD oF
Hﬁg;ﬁ;sﬂéiﬁk XBOW DE-NOISED IMU-CPT
XBOW
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Fig. 9. Linear accelerations for Xbow IMU, wavelet packet de-noised Xbow
IMU, and IMU-CPT during road anomaly.

Furthermore, all the sensed linear accelerations and angular
rotations gathered by the whole utilized IMUs are de-noised
using the same technique, before being applied to the feature
extraction process as shown in Fig. 3.

In addition to the Crossbow IMU results, and in order to
examine the impact of the wavelet packet de-noising on the
inertial sensors embedded in the smart devices, we provide
the results related to the Samsung tablet in Figs. 11 and 12.
They plot the linear accelerations and angular rotations for the
accelerometers and gyroscopes sensors of the tablet device,
wavelet packet de-noised tablet sensors and IMU-CPT during
the same road anomaly shown in Figs. 9 and 10.

Consequently, as displayed in Figs. 11 and 12, wavelet
packet de-noising enhanced the quality of the tablet accelerom-
eters and gyroscopes. Table II shows the standard deviations of
the linear accelerations and the angular rotations of the tablet
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20f
% : /’\J/\A.N
E10h—AA \ AR ]
0 ‘ ‘ ‘ ‘
0 20 40 Samples 60 80 100
"E 0r =7 Q f\(\ A\ AN
2 ﬁ“ v DU
2
0 10 Sariples 60 80 100

N

nh

0 20 40 60
——Xbow IMU Samples
—— De-noised Xbow IMU

IMU-CPT

fx (m/sec)
O

1
(3]

100

Fig. 11. Linear accelerations for tablet accelerometers, wavelet packet de-
noised tablet accelerometers, and IMU-CPT during road anomaly.

sensors before and after wavelet packet de-noising compared
to IMU-CPT as a reference. The wavelet packet de-noising
enhanced the tablet sensors measurements by approximately
40% on average.

B. Feature Extraction

Highlighting and analyzing the effects of road surface
anomalies on the vehicle motion as shown in Fig. 2, we
noticed that the disturbance of the motion occurs at the sensed
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Fig. 12.  Angular rotations for Samsung tablet gyroscopes, wavelet packet

de-noised tablet gyroscopes, and IMU-CPT during road anomaly.

TABLE 11
STANDARD DEVIATIONS FOR TABLET SENSORS, WAVELET PACKET
DE-NOISED TABLET SENSORS, AND IMU-CPT

INERTIAL SENSOR STD oF STD oF WP STD oF
TABLET DE-NOISED IMU-CPT
MEASUREMENT
TABLET
1z 2.568 2.300 2.290
fy 0.667 0.262 0.248
fx 0.836 0.614 0.596
w, 1.575 0.212 0.200
w, 3.822 2.308 1.607
w, 4.764 2.848 1.274

transversal and angular rotation of the IMUs. However, con-
sidering the data of the angular rotation along the Z-direction
could be misleading as it is mainly used in identifying the
vehicle heading angle. Accordingly, we combine the other five
system inputs as listed in Tables I and II.

Based on the nature of the events, the effects of the attended
anomaly with single-sided wheels (ex. manhole) appears on
the three-axes of the transversal acceleration and on the angu-
lar rotation along the x-axis. Meanwhile, the double-sided
wheel anomalies (ex. transverse cracks) mainly affect the Z—Y
transversal accelerations and the angular rotation around the
y-axis. Additionally, vehicle speed, V, is considered in order to
avoid the misleading effects of getting in or out of a parking
event.

These sensed linear accelerations and angular rotations are
present in all the data sets. For extracting descriptive features
of road anomalies, the data sets are “time windowed” at 1 s
each. During a time window, a vector of more than 75 features
is being constructed. In order to construct efficient data sets,
we mainly considered the events that have their signature on
the sensed data to occur in the same time window. However,
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for some events, where the signature of the anomaly is divided
between two successive time windows, we made an overlap
between these time windows to assure the best collection of
the anomaly signature over the sensed data.

There are multiple feature extraction techniques adopted
for road surface condition monitoring [27], [30] and other
applications such as motion mode recognition [45]. The main
feature extraction techniques can be categorized into statistical,
time-domain, frequency-domain, and time-frequency domain
features. In this paper, we adopted statistical, time domain,
frequency domain, and other features.

Statistical features are mainly describing typical or central
values of a data set and give measures on the data distri-
bution behavior [45], [46]. Regarding the statistical features
used, at each time window, the main statistical features com-
puted are: mean, median, mode, range, maximum, minimum,
root mean square (RMS), peak to RMS range, root sum of the
squares, standard deviation, variance, interquartile range, per-
centile range, cumulative maximum, and minimum. We also
developed some statistical features that combine the effects
of more than one acceleration component at the same time
epoch. These combined features are helpful in distinguishing
similar behavior events as potholes and manholes. Considering
time domain features which describe the signal variation with
respect to the time domain, we mainly used multiple zero
and threshold crossing rates and also the local maxima and
minima points within each time window.

Frequency domain features describe the signals’ behavior in
the frequency domain. We computed frequency domain fea-
tures such as mean and median frequencies, and also computed
the estimated power spectral density within a time window.
The other features used include multiple cross-correlations and
cross-covariance between transversal and longitudinal acceler-
ations. The main types of used features and their definitions
are summarized in Table III. All these computed features were
used in constructing a unique feature vector at each time win-
dow and for each type of data set to provide a high description
level of each labeled road surface anomaly.

C. Classifiers Building, Training, and Testing

The held road experiments led to various data sets of more
than 1000 road anomalies, plus data for mild road driving.
Through analysis, it was observed that the roads located down-
town and receive high traffic and less maintenance have a road
anomaly or irregularity on average at every 1 s. Concurrently,
the average anomalies rise to reach an average of 1 anomaly
per 8 s in relatively new and well-maintained residential neigh-
borhoods. These numbers show the demand and the challenges
of robust anomaly detection systems.

The labeled events in the data sets spanned various anoma-
lies with multiple severity levels. Mainly, and based on their
frequent presence and their significant effects on vehicle
motion, we chose to build the system to monitor potholes,
manholes, transverse cracks, longitudinal cracks, road dents,
railway tracks crossings, speedbumps, deceleration strips, and
paved stone road. Some anomalies such as railway track cross-
ings, speedbumps, and deceleration strips have well-known
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TABLE III
VARIOUS FEATURES AND THEIR DEFINITIONS

Feature Domain Definition
. 1
Mean Statistical Mean (s) = EZrI; _.s[m]
Mode Statistical The most frequent value in a time
window
Median Statistical Threshold value that separates the higher
and lower 50% of samples in a time
window
x™ Percentile Statistical Threshold value that separates the (100%
- X %) higher samples from the lower x%
of samples in a time window
Interquartile Statistical The range between (100%-x%) and x%
Range of the samples in time widow
Variance Statistical var(s) = 0.2 = (s —35)?
Standard Statistical std(s) = \fvar(s) = o,
Deviation
. 1 k
Root Mean Statistical RMS(s) = |—= Z s[m]?
Square K m=1
Local Maxima Time The number of maxima points in a time
window
Local Minima Time The number of minima points in a time
window
Threshold Time 1 K
Crossing Rate ter(s) = K—-1 Zmzl(C{s [m]s[m —1
<T}
Mean Frequency Estimates the mean normalized
Frequency frequency of the power spectrum of a
time window
Median Frequency Estimates the median normalized
Frequency frequency of the power spectrum of a
time window
Cross- other ki (fy [m] = F) lml = )
Correlation of — —
Linear (B ] = B S (] — )
Accelerations
Cross- other Ym=1(wy [m] — W) (W, [m] —wy)
Correlation of " — wr —
angular \/ Em=iwy [m] —wy)” X5 (we[m] —wy)
rotations

locations to authorities and road operators. However, these
could be harmful to the vehicles if they are improperly
installed or not well-maintained, hence we decided to detect
and classify their level of severity as well. On the other hand,
there are some road types such as paved stone roads which
can be wrongly detected as longitudinal cracks, therefore they
are also being detected and classified.

As the first step in building the classifier, we adopted vari-
ous classification techniques such as decision trees [47], [48],
SVM [27], [49], k-nearest neighbor [50], and ensemble
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meta classifiers [51]. Additionally, we used the data sets built
for each trajectory to train each type of classifier with the
labeled feature vector constructed from each event. The results
showed a higher average performance within multiple classifi-
cation techniques achieved by the support vector machine and
bagged trees.

Respectively, the main concept of the SVM is in trying to
locate most of the data or features, S,,, that fit a class in
a sphere. The sphere comes with radius, r, where it can be
minimized as follows:

k
minimum > + C Z |
m=1

Such that (||C — Swl)? < " + Ty
>0 3)

where C is a parameter for the number of errors and sphere
volume trade off control and I',, is a factor that allows some
data samples to endure outside a sphere. Consequently, for two
data or feature vectors S,;, and S, it can be proven that

k k
max Z Ym(Sm-Sn) — Z YmVn{Sm-Sn)
m=1 m,n=1
k
s.t. 0 <y, <C and Zymzl 4
m=1

as (S;.S,) is the feature vectors’ inner product, and ¥, and
¥, are Lagrange multipliers.

Training sets could be present at any distribution rather than
spherical and the feature vectors’ inner product could be sub-
stituted by a kernel function. Kernel functions [49] span linear,
polynomial, and radial basis function kernels.

On the other hand, ensemble meta classifiers [51] adopt
classification techniques where multiple classifiers of a differ-
ent or similar type are being trained over the same or subsets
of a training set. Specifically, in bagging, a classifier is being
trained in leveraging subsets of training sets. The construction
of the subsets is a result of random selection from the main
training set. Accordingly, we combined the whole constructed
data sets gathered by different sensors and different cars uti-
lized in all trajectories. Afterwards, we used almost 60% of
the data sets in building and training the SVM module as well
as bagging classifiers. The remaining 40 % was used for the
performance assessment.

For the SVM, a cubic kernel function was used to build
a multilevel classifier with an automatic kernel scale. In the
training process, all 75 features were used in order to achieve
better results. For the ensemble meta classifier, we built and
trained a bagged trees classifier. Hence, in the early stages
of training, both classifiers were observed to have a better
performance of the multilevel SVM over the bagged trees. As
a result, we assessed the performance of the SVM classifier
with the remaining data sets. Table IV presents various types
of road types or anomalies with their corresponding num-
ber of occurrences. The data sets for the anomalies presented
in Table IV are used for testing the classifier. Furthermore,
we adopted a confusion matrix that presents the results for
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TABLE IV
VARIOUS ROAD TYPES OR ANOMALIES AND THEIR NUMBER OF
OCCURRENCES USED FOR CLASSIFIER TESTING

RoAD TYPE OR ANOMALY ONCICJ?JA]?;;N(C)E S
Mild Road 60
Mild Pothole 30
Severe Pothole 20
Mild Manhole 40
Severe Manhole 25
Transverse Crack 50
Longitudinal Cracks 40
Mild Dent 20
Severe Dent 10
Deceleration Strips 10
Speedbumps 20
Mild Railway Crossing 20
Severe Railway Crossing 10
Paved Stone Road 50

eight various road types and anomalies with different lev-
els of severity. Additionally, in Table V, the SVM multilevel
classifier showed an average performance of approximately
90% true positive rate (TPR) while achieving approximately
10% of average FNR. The highest TPR of approximately 95%
was present in predicting two different kinds of road types
and anomalies (mild road driving and longitudinal cracks).
On the other hand, the highest FNR of approximately 20%
was achieved while detecting deceleration strips. In many
occasions when attending the deceleration strips, they were
being detected as transverse cracks (20%) because of improper
construction or less maintenance.

Moreover, to assess the analysis of the extracted features
in building the classifier, we calculated the average FNR
of single-sided events (ones attended with one side of the
wheels) and double-sided events to check how often a miss-
detected event is being predicted within the same general class.
Consequently, the single-sided events (mild potholes, severe
potholes, mild manholes, and severe manholes) achieved an
average FNR of approximately 11%. We found that approx-
imately 91% of the miss-detected single-sided events were
detected as other single-sided events at different types and
multiple severity levels. On the other hand, the double-sided
events (ones attended with both sides of the wheels) of the
same general class (transverse cracks, deceleration strips, mild
railway crossing, and severe railway crossing) achieved an
average FNR of 13%. While 83% of the miss-detected double-
sided events were being predicted as single-sided events.

Regarding the false positive rate (FPR), the average FPR for
the whole anomalies and types is 9.7%. As the highest FPR
is achieved in the case of deceleration strips with 40%, while
the lowest is obtained in the case of speedbumps with 0%. For
single-sided events, the case of severe manhole experienced
the highest FPR with 16.6%. On the other hand, for double-
sided events, deceleration strips experienced the highest FPR
with 40%.
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TABLE V
CONFUSION MATRIX FOR ROAD SURFACE ANOMALIES DETECTION

Predicted Road Anomaly

Actual
Road
Anomaly

MR MP SP MM SM IC LC | MRD

SRD DS SB | MRC | SRC | PSR TP FN FP

MR 95%

5% 95% 5% | 6.6%

MP 90% 3.3%

3.3% 3.3%

16.6

90% %

10%

SP 85% 5% 5% 5%

85% | 15% 2%

MM 5% 90% 5%

90% | 10% 10%

SM 4% 92%

4% 92% 8% 8%

TC 4% 94%

2% 94% 6% 10%

LC 2.5% 2.5% 95%

1.25

95% %

5%

MRD 10% 90%

90% | 10% | 15%

SRD 10%

90% 90% | 10% 10%

DS 20%

80% 80% | 20% | 40%

SB

90

% 5%

5% 90% | 10% 0%

MRC 5% 10%

85% 85% | 15% 5%

SRC

10% 90% 90% | 10% 10%

PSR 2% 2% 2%

94% R 94% 6% 2%

Average

90% | 10% | 9.7%

Mild Road: MR, Mild Pothole: MP, Severe Pothole: SP, Mild Manhole: MM, Severe Manhole: SM, Transverse Cracks: TC,
Longitudinal Cracks: LC, Mild Road Dent: MRD, Severe Road Dent: SRD, Deceleration Strips: DS, Speedbumps: SB, Mild
Railway Crossing: MRC, Severe Railway Crossing: SRC, Paved Stone Road: PSR

In our opinion, the main reasons for the miss-predicted
events occur as different levels of severity might have the same
features when sensed with different car models. For example,
the mild pothole sensed by a sedan or hatchback car with a rel-
atively old year make and low suspension performance might
have the same features as a severe pothole being sensed by
a van with large tire sizes and good suspension performance.
Additionally, when sensing an event with equivalent car mod-
els, the features of the same anomaly may vary based on the
driver behavior, way of attendance, and the velocity during the
attendance. Even with high qualities of detection, a dynamic
road monitoring system is essential to avoid the miss-detection
that could occur because of different car models and the fur-
ther deterioration of roads due to high-traffic, less frequent
maintenance, and weather conditions.

D. Geo-Referencing of Road Surface Anomalies

As mentioned earlier, robust monitoring of road surface
anomalies cannot be achieved without adequate and continu-
ous localization and positioning. Relying on commercial GPS

receivers embedded in smart devices could lead to improper
geo-referencing for monitored events. Generally speaking,
GPS receivers are vulnerable to outages and multipath specif-
ically in urban canyons and downtown scenarios [33], [34].
To assist with such GPS problems, integrated naviga-
tion systems shows high potential to enhance the over-
all performance of geo-referencing [52], [53]. There are
multiple techniques of integrated navigation with GPS
such as in inertial navigation systems, visual odometry,
radar sensors, LIDAR’s, or other approaches such as map-
matching [33], [34], [54], [55]. For geo-referencing, we use
GPS receivers embedded in smart devices and external posi-
tioning units that include GPS receivers, inertial navigation
systems, and their integration. To assess the capabilities of
GPS receivers by comparing them to integrated navigation
systems, Figs. 13—15 show the 2-D position in different driv-
ing locations. In these figures, the positioning solutions are
obtained by GPS receivers embedded in smart devices, OEM
GPS receiver, and the integrated positioning solution obtained
by integrating OEM GPS receiver and the inertial naviga-
tion systems of the VTI unit and NovAtel SPAN unit. In
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Fig. 13.  2-D position utilizing smart devices GPS receivers, OEM GPS
receiver, integrated positioning solutions of VTI unit, and NovAtel SPAN
unit, downtown portion 1.
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Fig. 14.  2-D position utilizing smart devices GPS receivers, OEM GPS

receiver, integrated positioning solutions of VTI unit, and NovAtel SPAN
unit, downtown portion 2.

Fig. 13, through downtown driving scenario, the GPS posi-
tion obtained by Samsung Galaxy S4 smartphone and OEM
GPS receiver showed a continuous drift of the road, while
the GPS positioning obtained by the Samsung tablet was on
the road, as the positioning solutions obtained by integrated
positioning of the VTI unit and NovAtel SPAN unit. On the
other hand, in Fig. 14, the GPS position obtained by the
smartphone was within the road as the integrated positioning
solutions, while the OEM GPS receiver showed high position-
ing errors and the tablet showed off-road drifted position, these
results are within the second portion of downtown driving
scenario.

In residential area driving scenario, the positioning solution
of the smartphone showed initial drifted solution then started
to align with the integrated positioning solutions, while the
positioning solution of the tablet showed off-road drift and
the OEM GPS receiver displayed high positioning errors dur-
ing most of the presented portion before aligning with the

Fig. 15.  2-D position utilizing smart devices GPS receivers, OEM GPS
receiver, integrated positioning solutions of VTI unit, and NovAtel SPAN
unit, residential area.

Galaxy S4

Samsung Tablet

Fig. 16.  2-D road anomaly geo-referencing utilizing smart devices GPS
receivers, OEM GPS receiver, integrated positioning solutions of VTI unit,
and NovAtel SPAN unit, downtown area.

integrated positioning solutions. In residential area driving
scenario, the positioning solution of the smartphone showed
initial drifted solution then started to align with the integrated
positioning solutions, while the positioning solution of the
tablet showed off-road drift and the OEM GPS receiver dis-
played high positioning errors during most of the presented
portion before aligning with the integrated positioning solu-
tions. As a conclusion, Figs. 13—15 showed that relying only
on the GPS receivers either the ones embedded on smart
devices or the external ones lead to deteriorated position-
ing accuracy and therefore misleading geo-referencing for
the road surface anomalies. Integrated positioning systems
exhibited accurate performance even when the GPS solu-
tion was drifted or experienced high positioning uncertainties
and errors. Such performance of integrated positioning units
indicated the importance of their utilization in road surface
anomalies monitoring systems. In order to highlight the capa-
bilities of GPS receivers and integrated positioning systems,
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Fig. 16 provides the 2-D geo-referencing of a detected road
anomaly compared to the ground truth. The integrated geo-
referencing obtained by NovAtel and VTI presented the
least errors compared to the ground truth. On the other
hand, the standalone GPS receivers of the smart devices
and the external ones achieved lower geo-referencing accu-
racy which is not sufficient for robust monitoring of road
surface anomalies.

V. CONCLUSION

The rapid development of the IoT is prompting further
growth in crowdsensing applications to provide smart and
robust solutions for challenges arising in smart cities. An
important aspect of RISs as a smart city application is the
monitoring of road surface conditions. We proposed a robust
framework for road anomaly detection based on extensive
experimental activities held in Kingston, ON, Canada. In such
activities, we adopted eight different car models mounted with
multiple smart devices and integrated positioning units. The
sensed and collected data from these experiments were used
to build data sets with various and multiple types of events.
All the sensed data were applied to a wavelet packet de-
noising technique, which enhanced the performance of the
feature extraction by decreasing the noise effects. Also, we
adopted feature extraction techniques to effectively describe
the effects of the road irregularities on the sensed data. These
data sets were used to build training and assessment multilevel
SVM classifier, and it was able to efficiently detect and classify
multiple anomalies with varying levels of severity, achieving
an average TPR performance of 90%. We analyzed the capabil-
ities of GPS receiver and integrated positioning systems in the
localization of the monitored events, and we highlight the chal-
lenges and needs for accurate and acceptable geo-referencing.
In order to achieve a dynamic robust system, we suggest con-
tinuous monitoring of the road anomalies, building data sets
that could be used for further training. For geo-referencing,
we discussed various GPS receivers on smart devices along
with integrated positioning system units. Results showed the
need for integrated positioning units for achieving an appropri-
ate level of accuracy for the geo-referenced events. However,
for maintaining sustainable and a high positioning accuracy
level, we suggest using integrated positioning units at high
data rates for getting better resolution specifically at high
vehicle speeds.
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