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Abstract—Traffic forecasting is imperative to Intelligent Trans-
portation Systems (ITS), and it has always been considered as
a challenging research topic, due to the complex topological
structure of the urban road network and the temporal stochastic
nature of dynamic change. Popular sports events attract vast
numbers of spectators travelling to the event, which will have
a substantial effect on ITS, showing peaks on the network
that can collapse a smart city’s ITS. In this paper, we tackle
traffic forecasting and use the Doha network in Qatar and
the FIFA World Cup 2022 (FWC 2022) event as a case study.
We propose a novel technique for embedding road network
graphs into a Temporal-Graph Convolutional Network. The
embedding process includes a modification to the graph weights
based on graph theory and the properties of the line graph.
Extensive simulations are carried out on a real-world calibrated
dataset from Doha’s road network. Our Temporal Line Graph
Convolutional Network (TLGCN) proposal shows outstanding
performance when compared to state-of-the-art techniques, not
only for huge special events but also for the regular daily traffic.

Index Terms—Traffic Forecasting, Line Graphs, Temporal
Line Graph Convolutional Network, TLGCN, T-GCN, Spa-
tiotemporal Dependence.

I. INTRODUCTION

Transportation plays a vital role in everyone’s daily lives. A

recent report [1] states that commuters in Qatar, vehicles spend

on average an extra 98 hours stuck in congested traffic. The

report also estimated an economic loss of 1.9 billion USD, due

to additional fuel costs and losses in productivity. Given these

consequences, under such circumstances, ITS is of paramount

importance to drivers, the private sector, and governments.

Spatiotemporal forecasting serves a variety of applications,

from autonomous vehicle operations to energy and smart

grid optimization, to logistics and supply chain management.

Widely used transport services, such as flow control (i.e.,

traffic signal timing and ramp metering), route planning, and

navigation, rely heavily on high-quality traffic assessment,

where multi-scale traffic forecasting is the foundation of urban

traffic control and guidance.

Traffic forecasting in itself is challenging, attributable to

the complicated spatiotemporal dependencies and inherent

long-term forecasting difficulties. Traffic time series show

significant temporal dynamics. Combining recurring patterns

(such as rush-hours congestion) with non-recurring events,

like accidents, makes long-term prediction complicated.

Authors in [2] proposed the Temporal-Graph Convolutional

Network (T-GCN), a Neural Network (NN) based traffic fore-

casting model for traffic speed but with reduced accuracy as

the prediction horizon is expanded. They use Gated Recurrent

Units (GRU) [3] to capture temporal dependencies between

graph nodes, and Graph Convolutional Network (GCN) to

capture spatial dependencies of the network complex topologi-

cal structure. Nonetheless, the T-GCN model in [2],(was based

on the notion of GCN [4], later enhanced by [5], and adapted

in [6]) works with vertex-centric graphs, meaning that, it can

only be trained to predict the features on the vertices of a

graph. However, in real road networks, most of the vehicles’

mobility features (such as speed, vehicle, travel time, etc.)

are associated with the road links. Thus a unified approach to

convert the road network graph (which is edge-centric) into

a vertex-centric graph is essential. T-GCN showed promising

results when it was trained on real-world datasets. However,

the scheme is not robust enough to deal with extreme use

cases such as large sports events. When adapted to our case

study (the 2022 FIFA World Cup, to be held in Doha, Qatar),

the T-GCN performed poorly due to the special features in

our case. After each match, an immense number of vehicles

will leave stadiums to different destinations, causing severe

network congestion. It is a challenging use case, and its

features can be encountered in several countries and events

(national sports events, large concerts, etc.). This anticipated

traffic flow is a special characteristic, that results in distinct

traffic conditions, such as the existence of links that are either

empty or heavily crowded for a long time. Additionally, this

traffic pattern results in different routing techniques [7], [8],

where drivers may take longer routes as detours for congested

roads.

In this paper, we introduce a new scheme that converts

edge-centric network graph into line graph, in which, ver-

tices represent the edges in the original road network. Our

novel scheme is an upgraded T-GCN that can understand

the network in a better way, consequently, can account for

extreme cases, by considering a Temporal Line Graph Convo-

lutional Network (TLGCN). More importantly, we introduce

a modification to the weights that considers both the distance

proximity between links, as well as the link connectivity

represented by its degree in the transformed line graph. The
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objective of using the link connectivity is to preserve the

dynamics and topological structure of the original graph.

We further validate our approach by applying TLGCN to

predict traffic conditions on a real-world calibrated dataset

from Doha’s road network. This traffic forecasting will help

the governing authorities make better-informed decisions in

real-time on route planning and traffic control, during this

large event. Since there is no dataset for this future event, we

resorted to simulating this event in the Doha road network

using a microscopic traffic simulator; the INTEGRATION

software [9]. The software accounts for all road network

parameters including traffic signals, queuing, and navigation.

Therefore, it generates traffic conditions close to the real

world.

The remainder of the paper is organized as follows. Section

II is the related work. Section III describes the problem

of traffic prediction on road network graphs including the

conversion to line graph and the different weight manipulation

methods to preserve the original graph properties. Section IV

presents our case study on the Doha road network, the sim-

ulation methodology we utilized, the generated dataset, and

the prediction results. Finally, the conclusions are discussed

in Section V.

II. RELATED WORK

Due to the importance of traffic prediction in practical

systems, several research works have been proposed in the

literature. Outstanding results depend on the prediction tech-

nique used, where real graph-structured data is tackled in [4],

spectral graph convolutional networks are analyzed in [10],

and semi-learning through generalized transductive inference

is presented in [11].

Special consideration is given to deep learning. For in-

stance, the Diffusion Convolutional Recurrent Neural Network

scheme in [5], can model traffic flow through the diffusion

process on a directed graph. It is able to capture spatial

dependencies by generating a graph through a bidirectional-

random-walk-based approach. While being able to capture

temporal dependencies through an architecture of encoder-

decoder with importance sampling (in order to enhance long-

term forecasting), this model is strictly dependent on the

notion of edge-centric graphs.

An alternative architecture is presented in [12], which com-

bines GRU, Long Short Term Memory (LSTM), Recurrent

Neural Network (RNN), and Convolutional Neural Network

(CNN) to capture spectral-spatial-temporal features of geo-

graphical imagery. Instead of using a traditional convolutional

window, the authors proposed a dilated convolutional window,

which allows the exponentially enlarging field of view while

not suffering from a multiplicative increase in the number of

parameters; however, their model is adapted only to Euclidean

structures.

Transductive node classification is used in [13] instead of

inductive node classification, as an effective approximation

method, showing the traffic speed forecasting through a spe-

cialized aggregator. Whereas, an alternative to exploring all

representation of sub-spaces, they added a soft gate to assign

normalized importance to each head. The scheme drawback is

that the attention mechanism that needs to calculate the very

complex spatial dependency weight between the nodes.

In [6], the authors proposed a novel model; High-Order

Graph Convolutional Recurrent Neural Network, which ad-

dresses a drawback of vanilla GCN, as it is unable to learn to

mix relationships between the class of neighbourhood. This

is possible through k-hop graph convolution. Their graph

convolutional-LSTM only needs to learn spatial and temporal

dependencies of neighbouring nodes in a traffic network based

on one step historical data. Nevertheless, this algorithm is an

extension of Gated Convolutional Recurrent Network (GCRN)

[14], which infer the use of gates like input and forget gates

that are akin to LSTM or reset and update gates in GRU, with

their associated drawbacks.

III. TRAFFIC PREDICTION ON ROAD NETWORK GRAPHS

A. Road Network as a Directed Graph

In TLGCN, the road network is represented by a weighted

directed graph G(V, E ,W), where V = {i : i = 1, 2, ..., n}
is a set of n vertices (i.e., intersections or topological change

points), and E is a set of e directed edges (i.e., road links),

i.e., E = {eij : i, j ∈ V}, where eij is the road segment from

vertex i to vertex j. Moreover, the edge weights W = {wij},

where wij ≥ 0 for each eij ∈ E and zero otherwise. This

weighted nxn adjacency matrix, W , represents the graph

structure. At any time step, the traffic flow parameters (i.e.,

speed, density, etc.) are denoted as Xt ∈ R
e×p, where p

represents the number of edge features. Thus, the time series

of the graph features is X ∈ R
e × p × T , where T represents the

number of observation time steps.

Given a graph G, the traffic prediction model aims at

learning a function f(.) mapping τ̂ historical observations to

future τ observations, as shown below:

[Xt̂0
, Xt̂0+1, ...., Xt̂0+τ̂ ]

f(.)→ [Xt0 , Xt0+1, ...., Xt0+τ ] (1)

Since, the T-GCN is a vertex-centric model, where the

features X are associated with vertices, the road network

graph has to be converted from an edge-centric graph to a

vertex-centric graph, where these features are related to the

nodes. In the literature, each research work addressed this

issue separately based on the case and the dataset. We propose

to use the line graph conversion technique to convert the road

network edge-centric graph to its corresponding vertex-centric

graph, as such, the conversion process would preserve the

graph properties. Thus, the next subsections overview line

graph and its characteristics, as well as some basic definitions

of line graphs that we utilized to preserve the original graph

structure and dynamics, in order to improve evaluation metrics

of the T-GCN.

B. Line Graph and its Properties

Given a graph G, its line graph L(G) is another graph, where

each edge in G maps to a vertex in L(G). Moreover, two nodes

of L(G) are adjacent, if and only if their corresponding edges
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are incident in G. Fig. 1 illustrates the transformation on a

small sample graph.

Figure 1: Line Graph of Undirected Graph

If G is a connected graph, L(G) is a connected graph.

Nonetheless, if G is disconnected, it does not mean L(G)
cannot be connected. A line graph has a bi-connected com-

ponent (articulation point) contingent on the condition of an

underlying graph having a bridge between the two endpoints,

neither of them having a degree of one. In the context of graph

theory, any network line graph preserves network properties,

such as the small-world property, which allows very short

walks between any non-neighbouring vertices as if they are

clustered together in the same clique or near-clique [15].

Another generalization of line graphs is the directed line

graph. For a directed graph Ĝ, its line directed graph has a

node for each edge, where the directed edge from node i to j
and the self-loop from i to i, will form two nodes in the line

graph, where the common starting node is i [15].

C. Weighted Network Line Graph

For the line graph, we define the incidence matrix Z (G),
where Ziα is 1 when the edge α is connected to node i and

0 otherwise, the edges are denoted by α and β where they

are incident to vertex i. Thus L(G) is represented by its e× e
adjacency matrix C(G) [16], where:

Cαβ =
∑
i

ZiαZiβ(1 − δαβ) (2)

The Whitney isomorphism theorem [17] guarantees that the

line graph L(G) encode graph G’s topology, but it does not

guarantee that the dynamics of G are preserved in L(G). Using

the notion of bidirectional random walker, for an edge e in G
that is connected to a node of degree O(k), the T-GCN will

travel over it O(k2) more frequently in the line graph L(G).
Since a vertex in G with a degree k contributes to k(k−1)/2
edges, it will be assigned a higher importance factor when the

GCN traverses the adjacency matrix of G, C(G). A brilliant,

yet a very natural solution to this problem is proposed in [16],

by defining a new weighted line adjacency matrix D(G) of the

form:

Dαβ =
∑

i, ki>1

(
ẐiαZiβ

si − wβ
(1 − δαβ)

)
(3)

where edges α and β are incident to vertex i have weights

wα, wβ and si is the degree of node i. The importance of

dividing by strength si is to reduce the effect of prominence

given to some vertices with high degree, and high strength by

a factor of O(s−1).
We upgrade this technique to improve the line graph

representation in the TLGCN, compared to just assigning

weights based only on the distance in T-GCN. This way, we

can preserve the original graph structure and dynamics, which

should help the GCN to better adjust its weights.

D. Temporal Graph Convolutional Neural Network

a) Spatial Dependency Modeling: In traffic forecast-

ing, acquiring complicated spatial dependence is a central

dilemma. CNN can only spatially localize on Euclidean

spaces, for instance, pictures. On the other hand, a traffic

network is a form of a graph. Thus, CNN cannot compre-

hend the complex topological structure, hence, its inability to

capture spatial dependencies. Graph Convolutional Networks

(GCN) is a generalization of CNN and has successfully been

adopted in many applications, including document classifi-

cation, molecular synthesis, and image classification, among

others.

In order to discern how GCN works we define graph

Laplacian as: Δ = I−D− 1
2WD− 1

2 , where D is the degree

matrix and W is the weight matrix. The above Laplacian

matrix is a symmetrical one which admits Eigen decom-

position in the form Δ = ΦΛΦᵀ, through non-negative

eigenvalues 0 ≤ λ1 ≤ λ2 ≤ · · · ≤ λn, which act like

frequencies, and orthonormal eigenvectors Φ = (φᵀ
1 , . . . ,φ

ᵀ
n),

that act as standard Fourier atoms is Hilbert space, it allows

Fourier decomposition as f = Φf̂ , where the graph Fourier

transform of f is f̂ = Φᵀf . Therefore, a convolutional

operation can be defined similarly in Euclidean situation as

f∗g = Φ
(
f̂ · ĝ

)
= Φ(Φ

ᵀ
f ·Φᵀg). Henceforth, GCN model

is designed as a concatenation of stacked convolutional layers

of the form:

f̃l = ξ

⎛⎝ c′∑
l′=1

ΦĜll′Φ
ᵀf l′

⎞⎠ , l = 1, . . . , c, (4)

where the output and the input channels are denoted by

c, c′, respectively, and ξ is the activation function. The filter

is represented by Ĝll′ , which is just a diagonal matrix of spec-

tral multipliers. Among the significant disadvantages of this

design compared to classical Euclidean CNNs is the elevated

computational complexity O(|E|2) owing to the expense of

calculating the forward and inverse graph Fourier transform,

resulting in dense matrix multiplication per layer.

The length of the graph Fourier transform window segment

S trades the temporal resolution for frequency resolution.

Thus, by increasing the size of S, better resolution in the fre-

quency domain can be achieved, hence more details extracted.

Nonetheless, as the window size decreases, the temporal

resolution is enhanced. Consequently, any transition in the

frequency is proportionally more vivid in terms of graph

signals.

A Chebnet filter is presented in [11], which is a CNN

structure that has a Chebyshev basis with polynomial filters.

Authorized licensed use limited to: Queen's University. Downloaded on August 04,2020 at 18:29:38 UTC from IEEE Xplore.  Restrictions apply. 



These filters can be computed by applying powers of the graph

Laplacian. Accordingly, Eigen decomposition is avoided. Con-

sequently, the computational complexity is reduced from

O(|E|2) to O(|E|). The work in [4] limits the polynomial order

to 1, hence, a further simplification of the Chebnet, namely

Graph Convolutional Network (GCN).

In the TLGCN approach, we use a 2-layer GCN model.

However, weighted line graph adjacency matrix is computed

based on Eq. (3). So, the propagation rule is formulated as:

f (X,A) = σ
(
Â ReLU

(
ÂXW0

)
W1

)
, where X denotes

the features matrix, A is the proposed weighted line graph

adjacency matrix. Â = D− 1
2 WD− 1

2 where W = A +
IN denotes a matrix with self-loops structure, W0 and W1

represent the weight matrices of the first and the second layers,

respectively, and σ is the activation function.

b) Temporal Dynamics Modeling: To model temporal

dependency, we use GRU [3], which is a robust variant of

RNNs, that helps overcome various drawbacks of vanilla

RNNs like vanishing and exploding gradients by using a

structure of gated units to memorize long-term information.

GRU is faster to train and requires less data for achieving

consistent results when compared to LSTM. GRU unit is

constructed by only two gates, the reset and the update gates.

Intuitively, the update gate defines how many memories need

to be stored, and the merge of fresh input with the prior

memories is governed by the reset gate.

IV. CASE STUDY: FWC 2022 ON DOHA NETWORK

Qatar will host the FWC 2022. So, in order to improve

the transportation network performance during this event,

authorities need to apply better route planning and navigation.

Thus, efficient real-time traffic forecasting is essential. In

order to improve the prediction accuracy, in our case study, we

apply the traffic prediction using the line graph with modified

weights based on Eq. (3). Notice that even we consider the

FWC 2022 use case, any other massive event would benefit

from our proposed technique.

Because we are working with a future event, we do not have

real data for the traffic conditions. Therefore, we resorted to

using microscopic simulation to generate the road network

traffic conditions after the match.

This section describes the simulation methodology we used

to build the network, and to and generate the traffic flows.

A. The Simulation Software

For the simulation purpose, we use the INTEGRATION

software [9], which is an agent-based microscopic traffic sim-

ulator and assignment framework. INTEGRATION is charac-

terized by its modelling accuracy for vehicle mobility and the

associated parameters, such as speed, traffic density and travel

time. The program traces each car at a resolution step of one

deci-second from its origin to its destination. Its accuracy is

reasoned to its capability to replicate vehicle longitudinal mo-

tion using the Rakha-Pasumarthy-Adjerid (RPA) car-following

model [18], which captures vehicle steady-state car-following

behaviour using the Van Aerde model, in which, movement

from one steady-state to another is constrained by a vehicle

dynamics model and safety constraints. Its microscopic nature

allows it also to model the vehicle lateral motion that considers

the surrounding vehicles and their speeds. INTEGRATION

also accounts for traffic lights and their impact on the speed

and travel time. The scalability of the INTEGRATION soft-

ware is a key feature that enables us to model up to 46000
vehicles and track them in the network scenario.

B. Road Network and Traffic Setup

To achieve realistic traffic condition dataset, we developed

the Doha road network shown in Fig. 2.

To build this network, data is collected from different

sources. The first is the road network Geographic Information

System (GIS) Shapefile, where Doha city shapefile is used

to generate the network nodes and links. The second is the

OpenStreetMap (OSM) website. The intersection data from

OSM is used to extract intersection traffic control information

including the traffic control methods (stop sign, yield sign,

or traffic signals). The number of phases for each traffic

signal and its timing information are obtained based on field

observation. The third source is Google and ArcGIS which

are utilized for validating road attributes of the road links,

including number of lanes, one-way streets, and speed limits.

The generated simulation road network has 301 road links,

169 nodes, and 11 traffic lights.

The road network graph G is constructed and line graph

L (G) is created. The resulting line graph has an adjacency

matrix of size 301 × 301 and the weights are adjusted using

Eq. (3), which encodes edge weights as the proximity between

the link midpoints measured by the road network distance,

in addition to the effect of the strength of the nodes of the

original graph to reserve dynamics of a random walker moving

around the graph.

In regards to the traffic setup, we generated the time-

dependent Origin-Destination (O-D) traffic demand matrices

every 15 minutes using the car counts collected from OSM.

The car counts are converted to O-D traffic rates (car flow

rate from origin to destination) using the maximum likelihood

estimation.

Figure 2: Doha Network and sport Event Case Study

Authorized licensed use limited to: Queen's University. Downloaded on August 04,2020 at 18:29:38 UTC from IEEE Xplore.  Restrictions apply. 



To model the FWC 2022 events, the red area in Fig. 2 is

used as a stadium from which, vehicles will depart to different

network destinations after the match (as shown by the yellow

arrows). This traffic is distributed over 10 network destination

points.

We use two main cases for the traffic; the calibrated traffic

case which represents the daily regular traffic conditions, and

the stadium case, in which, we assume there is a match and

vehicles leave the stadium towards their destinations, directly

after the match, producing distinct traffic patterns.

1) Calibrated Traffic Scenario: This scenario represents

the daily traffic condition in the Doha network. As aforemen-

tioned, we use the vehicle count from the OSM website to

create the traffic demands between each O-D pair of nodes.

The total number of vehicles generated for this case based

on the traffic calibration is about 18,000. For each traffic

flow, the inter-departure interval between vehicles is computed

assuming exponential distribution.

2) The Stadium Case Study: For this use case, we add

a fictitious node, as shown in Fig. 2, that represents the

stadium along with additional five edges, making the line

graph adjacency matrix of size 306×306. In this case, because

of the high traffic from the stadium, the calibrated traffic is

approximately 18000 vehicles and the stadium traffic gener-

ates approximately 28000 vehicles. Thus the total number of

cars is approximately 46000 vehicles, which results in a very

Table I: Impact of weight modifications (TLGCN vs. T-GCN)

Prediction Horizon Metric

Calibrated Doha Network Stadium Case Study

T-GCN TLGCN
with

1
ki−1

TLGCN
with

1
si−wβ

T-GCN TLGCN
with

1
ki−1

TLGCN
with

1
si−wβ

1 Period
Accuracy 0.8202 0.852 0.92 0.8162 0.8462 0.8834
R2 0.3741 0.5761 0.86 0.5037 0.6524 0.8621
Variance 0.3747 0.577 0.8605 0.5038 0.653 0.86
RMSE 13.341 10.979 6.0058 13.715 11.478 8.17
MAE 8.5936 5.9617 2.7812 8.3699 5.1042 4.2

2 Periods
Accuracy 0.8062 0.8378 0.9039 0.8059 0.8272 0.8975
R2 0.2785 0.4943 0.7964 0.4631 0.5745 0.7957
Variance 0.2788 0.4956 0.796 0.4648 0.5932 0.8
RMSE 14.3728 12.0321 7.22 14.449 12.8626 9.98
MAE 9.2973 6.5245 3.48 8.6529 6.3209 5.39

3 Periods
Accuracy 0.8038 0.8287 0.893 0.7989 0.8196 0.8378
R2 0.258 0.4338 0.7442 0.4271 0.5392 0.7365
Variance 0.26 0.4345 0.75 0.4396 0.5403 0.7363
RMSE 14.555 12.714 8.05 14.957 13.414 11.36
MAE 9.2242 7.0601 4.06 8.8764 6.4024 6.46

Figure 3: Sample high speed link prediction

Figure 4: Sample low speed link prediction
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congested network.

C. Simulation Output

The generated network and the calibrated traffic are used

to generate the dataset over the graph network. The output

of the simulation is a link-temporal-speed matrix of the form

St ∈ R
n×e, where e is the number of edges in the network

graph, and n is the number of time steps. St is the average

speed over the edge at time i. This speed matrix represents

the feature input Xτ to be used for model training and testing.

D. Prediction Results

Doha’s datasets are partitioned for training (80%) and

testing (20%). Table I compares the results for our proposed

scheme, and their benchmarking to state-of-the-art technique.

It shows how our proposal outperforms for all considered

cases. The table only features the results of the Doha network

in both cases with the finalized weight type of 1
si−wβ

. Thus,

through preserving the topological and dynamical structure

of the original graph G, TLGCN reached an accuracy of

88.34%, 89.75%, and 83.78% for the three prediction horizons

respectively, compared to 84.42%, 82.61%, and 81.61% for

the original T-GCN distance-based weights.

Table I also shows a significant improvement in R2 showing

that the weight modification results in enabling the model to

capture the changes in link speeds, which is important for

many applications such as prediction based navigation.

Fig. 3 and Fig. 4 show the performance of TLGCN on

two sample links from the calibrated Doha network dataset

road links. Each of them has different characteristics. Fig. 3

features a high-speed link, which naturally has a low variation

of speeds over time, where most of the traffic flow is close to

the maximum road speed. Fig. 4, represents a hot road link

with frequent abrupt drops in speed due to bursts of traffic on

this specific link. Using the 1
si−wβ

weight, the TLGCN was

able to predict quite accurately in both cases with different

rates. The two figures also show that the TLGCN is able to

capture most rates of variations in the speed, which is reflected

by the high R2 value in Table I.

V. CONCLUSION

In this paper, we introduce a novel approach for traffic

prediction that is suitable for large events like sports, musical

or any other event that triggers massive vehicle departures

from a specific location in time. It allows, through mathemat-

ical manipulation of weights, to deal with adjacency matri-

ces based on edge-centric structured graphs, while ensuring

the dynamics of the original graph is preserved as well as

its topological structure with the transformation. Extensive

experimentation shows that our proposed approach helps

improve the T-GCN comprehension of the network structure,

consequently performs better when adapted to our case study.

The results were accomplished with much less training time

and faster convergence. Besides, our proposed TLGCN model

can be extended to more general Spatiotemporal community

structure based graphs, such as emerging social networks,

neural links, while preserving the topological and dynamical

properties of these graphs.
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