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Abstract—Deep Reinforcement Learning (DRL) algorithms
have been recently proposed to solve dynamic Radio Resource
Management (RRM) problems in 5G networks. However, the
slow convergence experienced by traditional DRL agents puts
many doubts on their practical adoption in cellular networks.
In this paper, we first discuss the need to have accelerated DRL
algorithms. We then analyze the exploration behavior of various
state-of-the-art DRL algorithms for slice resource allocation,
and compare it with the traditional 5G Radio Access Network
(RAN) slicing baselines. Finally, we propose a transfer learning-
accelerated DRL-based solution for slice resource allocation.
In particular, we tackle the challenge of slow convergence by
transferring the policy learned by a DRL agent at an expert base
station (BS) to newly deployed agents at target learner BSs. Our
approach shows a remarkable reduction in convergence time and
a significant performance improvement compared with its non-
accelerated counterparts when tested against multiple traffic load
variations.

Index Terms—cellular networks, RAN slicing, resource alloca-
tion, deep reinforcement learning, transfer learning, accelerated
reinforcement learning, 5G.

I. INTRODUCTION

5G networks and beyond are being designed and built to
support a diverse set of network scenarios. This can be real-
ized thanks to the advancements in radio access technologies
(RATs), communication paradigms, and cell and user equip-
ment (UE) types. However, these heterogeneous technologies
and devices add several layers of complexities to cellular
networks. Accordingly, a mobile network operator (MNO) is
required to optimize more parameters to be able to provide
a wide set of services. The process of optimally setting such
parameters is not straight forward as it depends on time-varying
factors. A significant percentage of these parameters provide
MNOs with control over the available radio resources, and
hence such optimization process is referred to as radio resource
management (RRM).

The growing complexities of next-generation wireless net-
works require intelligent and automated solutions. As a result,
machine learning (ML) techniques have been proposed to solve
many RRM-related problems in the wireless networks litera-
ture. More recently, many researchers are paying more attention
to Deep Reinforcement Learning (DRL) algorithms due to their
evaluative feedback capabilities. Such capabilities allow them
to adapt to the multifaceted complexities of the dynamic Radio
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Access Network (RAN) environments. DRL agents interact
with such environments and build an approximate model based
on the sampled experience progressing toward, at least, a near
optimal solution. As a result, many DRL-based solutions have
been proposed for RRM-related use cases such as RAN Slicing,
power control, handover control, link adaptation, and packet
scheduling [1].

DRL algorithms, however, are known to face multiple chal-
lenges, especially during the initial exploration phase. One
major issue is the slow convergence experienced by a standard
DRL agent. This issue forces DRL agents to stay in the
exploration phase for a significantly long time. In such period, a
DRL agent is learning by taking actions that were not explored
previously. This situation increases the chances of running
into extreme drops in system performance. By taking random
unexplored actions, the DRL agent will most probably end up
choosing a non-optimal action given a certain system state. This
is naturally unavoidable but can only be tolerated in cases that
do not require real-time feedback.

In RAN systems, however, end users’ quality of experience
(QoE) can be significantly affected by the potential drops
in performance. In 5G RAN slicing, service-level agreements
(SLAs) define the minimum QoE requirements that can be
tolerated by each provided service. For instance, a DRL-based
RAN slicing controller that keeps exploring for a long time
will experience several non-optimal actions. This will result in
potentially violating the defined SLAs, and this consequently
translates into monetary penalties. Hence, resource allocation
in 5G RAN Slicing requires a fast policy-learning scheme
that minimizes the exploration phase duration given any QoE
measure. Such scheme will allow the RAN slicing controller
to adapt, in real-time, to the time-varying wireless channel
conditions and user activities of the provided services.

The aforementioned issue faced by DRL agents, among
others, puts many doubts on their practical adoption to solve
dynamic RRM problems such as slice resource allocation in
commercial networks. Such challenges are rarely tackled in
the wireless networks literature or research. On a related note,
transfer learning (TL) has recently achieved some noticeable
results in the wireless communications domain [2]. TL is a
paradigm that generally focuses on reusing knowledge gained
while solving a learning task. TL applies the acquired knowl-
edge to a different but related task. This can provide a fast and
efficient way to train an artificial neural network (ANN) model
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exploiting the gained experience rather than learning from
scratch. We propose to use TL to tackle the challenge of slow
convergence in DRL-based RAN slicing resource allocation.
This includes the reuse of the policy learned by a DRL agent
at a source expert base station (BS) to accelerate the training
of a newly deployed DRL agent at a target learner BS.

The main contributions of this paper can be summarized as
follows:

* We highlight the need of accelerated DRL-based RRM
solutions and discuss the techniques that address the challenge
of slow convergence of DRL algorithms in the context of
RRM. We argue that it is essential that researchers address
this challenge in order for DRL algorithms to find their way to
RRM commercial solutions.

* Moreover, we develop a DRL-based solution to 5G RAN
slicing resource allocation problem to analyze the exploration
and reward convergence behavior of various state-of-the-art
DRL algorithms. The simulation infrastructure includes an
OpenAl GYM-compatible Reinforcement Learning (RL) en-
vironment that is shared publicly to enable fellow researchers
to further address the slow convergence challenge among other
challenges.

* We finally propose a transfer learning-based approach
to tackle the challenge of slow convergence in DRL-based
slicing resource allocation. We propose to accelerate the DRL-
based solution by transferring the policy learned by a DRL
agent at an expert base station to newly deployed agents at
learner base stations instead of learning from scratch. We
analyze the exploration behavior with and without the proposed
acceleration approach in learner BSs of different traffic loads
reusing the same policy learned at an expert BS.

To the best of our knowledge, this is the first study to employ
transfer learning to tackle the challenge of slow convergence
in DRL-based RAN Slicing. The rest of the paper is organized
as follows. Section II discusses the related work. The system
model and the proposed approach is described in Section III.
Section IV provides the reader with the experimental evaluation
setup. In Section V we discuss the results. Lastly, our work is
concluded and some future directions are presented in Section
VL

II. RELATED WORK

It may take a DRL agent thousands of learning iterations to
converge to an optimal or a near optimal configuration for a
given RRM functionality. This is mainly due to the exploratory
behavior of the DRL agents and the non-stationary nature of
RAN systems. This may not be a problem in case of simulation-
based RL training. Nevertheless, real networks deployments of
RRM solutions can not tolerate such long exploration phase.
Recently, several researchers started to partially address this is-
sue as part of their RL-based solutions. For instance, a heuristic
mechanism is used in [3] to guide the RL exploration phase by
exploiting the existing knowledge. The heuristic approach is
proposed as part of a user scheduling and resource allocation
solution and it acts as an indicator function on the RL agent’s
action space. Therefore, the agent takes actions based on both

the value function and the traditional scheduling rules using a
weighted sum method.

The authors of [4] propose an approach to guide their RL
solution to the cellular networks resource scheduling problem.
They make use of expert knowledge gained from an existing
traditional solution, namely the proportional fair (PF) schedul-
ing algorithm. The authors suggested that the DRL agent’s
performance during the exploration phase can be improved in
terms of convergence speed. They propose to deploy both the
PF algorithm and their RL agent as competitors. The authors
suggest calculating the RL reward by comparing the system
performance resulting from the two competitors’ actions.

Moreover, the work in [5] proposes an ML framework to
accelerate DRL agent convergence in the context of downlink
resource allocation for ultra reliable low latency communica-
tion (URLLC). The authors use generative adversarial neural
networks (GANs) to pretrain the DRL framework using a mix
of real and synthetic data. This approach allows the DRL agent
to gain an offline experience through being exposed to a wide
range of network conditions before being deployed in a real
network. It is also suggested that such approach can help the
DRL agent to recover in real-time whenever it is exposed to a
drastic condition in the real network.

A meta-learning approach is proposed in [6] as a way
to tune an RL solution. The authors suggest that a meta-
tuned RL agent experience a faster convergence in unseen
environments. They propose to solve an optimal coverage
problem using an RL agent that controls drone base stations
(DBSs). DBSs are required in that case to provide uplink
connectivity to ground users given their stochastic access
requests. Furthermore, a collaborative learning framework for
5G RAN slicing resource scheduling is proposed in [7]. The
framework combines DRL and deep supervised learning to
solve an online resource scheduling problem and a large time-
scale resource allocation problem respectively. With respect
to improving DRL convergence speed, the authors proposed
to use Asynchronous Advantage Actor-Critic (A3C) method
suggesting that it improves the convergence speed compared
against the Actor Critic (AC) method.

The authors of [8] propose an interference management
decentralized RL solution to share the spectrum among het-
erogeneous cells. As part of their solution, they propose an
enhanced initialization procedure to overcome the slow conver-
gence of tabular Q-learning. Given a newly experienced state,
the procedure typically starts with updating the Q-value of the
action taken. Additionally, the authors propose to estimate the
costs of the other actions given that same state and update their
values in the Q-table accordingly. More significantly, a DRL-
based energy consumption optimization strategy is proposed in
[9]. The authors combine relational DRL with transfer learning
(TL) to address the insufficient generalization ability and the
slow recovery when exposed to new conditions. The authors
suggest that the scheme combining DRL and TL speeds up
learning when compared with training from scratch in new
scenarios.
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Fig. 1: Overview

III. TRANSFER LEARNING-ACCELERATED DEEP
REINFORCEMENT LEARNING-BASED RAN SLICING

A. Radio Access Network Slicing

Both RAN and core network are considered part of the end-
to-end network slicing, each with a slightly different optimiza-
tion goal. In this paper, we mainly focus on the RAN part of
network slicing. RAN slicing objective is to share the physical
infrastructure among several services. RAN slicing is mainly
concerned with two RRM functionalities, slice admission con-
trol and resource allocation. Slice admission control allows an
infrastructure provider to accept or deny a service provider’s
slice request. While resource allocation in RAN slicing is
concerned with assigning the available PRBs to the admitted
slices approved by the admission control function. An overview
of RAN slicing and its main functionalities are depicted in Fig.
1.

The available resources at a given time are significantly
affected by the stochastic channel quality. Moreover, they are
affected by the time-varying user demands for the provided
services. The traffic demand of each type of service is dynamic
and can not be easily predicted, particularly in the short term.
At the beginning of a slicing window, the available limited re-
sources are assigned among the admitted slices. These allocated
resources are expected to enable the services provided by the
admitted slices to comply with their different QoS requirements
given the dynamic network conditions. The exact requirements
are defined by the SLAs and should not be violated by the
infrastructure provider, otherwise monetary penalties can be
enforced. The aforementioned points pose many challenges for
DRL-based RAN slicing solutions and prevent RAN slicing
from tolerating long DRL exploration phase.

B. System Model

As mentioned in Section III-A, resource management for
network slicing can be considered from several perspectives. In

of RAN Slicing.

this paper, we focus on the downlink case of the radio access
part, and more specifically the RAN slicing resource allocation
problem. The main goal is to allocate the limited PRBs to the
available slices, maintaining an acceptable spectral efficiency
(SE) while keeping an acceptable delay, and generally, quality
of experience (QoE) satisfaction. The slice resource allocation
problem can be mathematically formulated as follows:

There exists a set of s parameters, described by the vector
x € IR™, that needs to be optimized. In our case, s reflects the
number of slices sharing the available bandwidth 1, and hence,
these parameters control the number of PRBs allocated to each
slice. At a given instance, a RAN slicing controller decides
to choose a specific slicing PRB allocation configuration, i.e.
x(a), out of the = possible configurations where a = 1,2,3...X.
Based on such decision, the system performance is affected.

For the purpose of this paper, the system performance is
represented in terms of throughput and latency of the admitted
slices and can be represented by a single value as follows:

F(2(a),0(t)) = aT + L € R™ (1)

where 7' and L are the throughput and latency of the
available slices, while o and 3 represent the importance of the
throughput and latency for each slice respectively. Moreover,
0(t) is the system state at time ¢. This function is unknown to
the controller, therefore it can not explicitly relate an input to
an output and can only observe the function’s outcome. The
system state can be represented by the traffic load, the channel
quality or other external factors that might affect the RAN
system performance. The majority of these variables evolve in
a way that is hard to infer theoretically especially in time scales
of seconds or shorter.

The RAN slicing controller explores different slice allocation
configurations and observes the corresponding system perfor-
mance in search of the optimal configuration that maximizes
the performance, i.e.
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Fig. 2: RL-based slicing controller—environment interaction.
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C. Reinforcement Learning-based Slicing Resource Allocation

The most important feature that distinguishes reinforcement
learning (RL) from the other types of machine learning is that it
evaluates the actions taken rather than specifying correct actions
[10]. RL does not require complete knowledge of the RAN
system or prior knowledge of the network. Both requirements
are inefficient and infeasible for a stochastic environments such
as 5G RANSs. Thus, the DRL is an attractive approach to solve
the previously defined slicing resource allocation problem [11].

A DRL-based RAN Slicing controller, that is the RL agent,
typically interacts with the RAN environment bidirectionally
as seen in Fig. 2. At any given slicing time step, the DRL
agent observes the RAN system state and chooses an action to
take, i.e. resource allocation for each slice. The action taken
changes the RAN environment in a way and the RL agent
receives feedback in terms of a reward value that represents
the system performance.

The DRL agent aims at maximizing the reward feedback
that it gets from its interaction with the 5G RAN system.
The reward function is designed by network experts to guide
the DRL agent’s search for the optimal policy 7. It is often
represented in terms of a weighted sum of relevant network’s
key performance indicators (KPIs). This way, the DRL-based
RAN slicing controller indicates how good the action taken
was. This is estimated based on agent’s sampled experience
from interacting with the RAN environment in a real time and
dynamic-open control fashion.

D. Mapping to Reinforcement Learning

Based on the model defined in Section III-B, A DRL agent
would take an action at the beginning of each slicing window to
decide the PRB allocation for each slice; z(a) = (wq, ..., wg),
subject to wy + ... + ws = W. In this paper, such an action
is taken based on the number of packets within a specific time
window for each slice, p = (p1, ..., ps), i.e. the observed system
state. We define the reward function as the weighted sum of

the throughput and the latency. The goal is to maximize the
long-term reward expectation, that is,

E{f(x(a),6(1))} ©)

where the notation E(.) is the expectation of the argument,

argmax E{f(x(a),0(t))}

arglwnax E{aT(z(a),0(t)) + BL(x(a),0(t))}
argmax E{aT(w,d) + SL(w,d)}

“
where 0(t), the system state at time ¢, represents the demand
for each provided service, that is, d = (dy, ..., ds) where d; is a
given traffic model for service i. This allows us to learn a policy
7 that takes a state s €S as input and outputs an action, where
a = 7(s) € A. The key challenge to solve (4) lies in the time-
varying demand in terms of traffic models and number of users
for each service type. The optimal solution for the problem can
be precisely calculated by carrying out an exhaustive search. In
such case, all the possible allocations should be considered at
the beginning of every slicing window and the corresponding
system performance should be noted. This approach, however,
is computationally very expensive and practically infeasible.
Hence, DRL is a good alternative to solve the problem. The
exact RAN slicing RL Design parameters are highlighted in
Table I-(b).

E. Transfer Learning-Accelerated RAN Slicing

Slow convergence of DRL algorithms is a challenge that
relates to the number of learning time steps it takes the RL-
based RAN slicing controller to find a good set of slice
allocation configurations given a certain system state. The DRL
agent needs to observe a representative variety of the RAN
system’s possible states several times. The learning happens by
iteratively updating a value function until convergence. This
process is referred to as exploration phase. The value function
gives an estimate of the expected return if the agent starts in
a given state or state-action pair, and then acts according to a
particular policy.

Transfer Learning (TL) is widely used in image object clas-
sification, where pre-trained top-performing models are used
as the basis for image recognition and related computer vision
tasks. This includes, but not limited to, initializing an ANN with
the architecture and weights from such pre-trained models to
solve an object classification problem using a local dataset that
might include a different set of objects.

We employ the same concept but in the context of DRL. We
propose a TL-accelerated RAN slicing, where the source task is
performed by a DRL agent at an expert BS, while the target task
is performed by a DRL agent at a learner BS. The DRL agent
at an expert BS learns a policy from scratch until converging to
a good policy, while the DRL agent at a learner BS reuses the
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TABLE I: Simulation Parameters and RL Agent Design Details

(a) RAN Slicing Simulation Parameter Settings

Video [

VoLTE [ URLLC

Scheduling Algorithm Round Robin per 0.5 ms slot

Bandwidth Allocation Window Size

2000 scheduling time slots (1 second)

Number of Users (Expert BS) Poisson (Max = 20, Mean = 12)

Poisson (Max =20, Mean = 12) | Poisson (Max = 7, Mean = 2)

Number of Users (Learner BS) Poisson (Max = 13, Mean = 8)

Poisson (Max = 36, Mean =23) | Poisson (Max = 4, Mean = 1)

Packet Interarrival Time Distribution

(Expert and Learner BSs) Truncated Pareto (Mean = 6 ms,

Max = 12.5 ms)

Uniform (Min = 0, Max = 160
ms)

Exponential (Mean = 180 ms)

Packet Size Distribution

(Expert and Learner BSs) Truncated Pareto (Mean = 100

Byte, Max = 250 Byte)

Constant (40 Byte) Truncated Lognormal (Mean
2 MB, Standard Deviation

0.722 MB, Max = 5 MB)

Packet Interarrival Time Distribution

(Learner BSs) Truncated Pareto (Mean = 4 ms,

Max = 6 ms)

Uniform (Min = 0, Max = 100
ms)

Exponential (Mean = 100 ms)

Packet Size Distribution

(Learner BSs) Truncated Pareto (Mean = 60

Byte, Max = 150 Byte)

Constant (80 Byte) Truncated Lognormal (Mean =
1 MB, Standard Deviation = 0.5

MB, Max = 2 MB)

(b) RAN Slicing RL Design
State The number of packets within a specific time window for each slice
(PVideo, PVoLTE, PURLLC)
. Bandwidth allocated to each slice (22 allocation configurations)
Action
(WVideo» WVoLTE; WURLLC), 8t WVideo + WVoLTE + WurRLLC = W
Reward A weighted sum of throughput and latency experienced in a slicing window

RL Algorithms

DQN, DDQN, Dueling DQN, PPO, AC, A2C + Traditional Slicing Baselines

Total Number of Time Steps

Expert BS: 200,000, Learner BS: 60,000

RL Parameters Exploration Expert BS: 0.9, Learner BS: 0.1
Exploration Decay Expert BS: 0.1, Learner BS: 0.01
Batch Size 20
foo———— - oo o )

(1) DRL Agent Training at Expert BS (2) TL-Accelerated DRL Agent Training at Learner BS

() | | Policy Initialization: e
"7"| DRL Hyper-parameter Settin ¢ “ﬁ” )
YPEER g TUvearmer ss(T=0) = nExpen Bs(T=N)
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L]
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Fig. 3: TL-accelerated DRL-based RAN Slicing

expert BS’s learned policy 7 to tackle the practical challenge
of DRL slow convergence as shown in Fig. 3.

HLearnerBS(t = 0) = HEacpertBS(t = N) (5)
where [V is the number of learning iterations carried out by
the DRL agent at the expert BS until convergence.

This includes reusing the architecture and weights from the
expert agent’s trained model. The interaction between a DRL
agent and the RAN system is time-consuming and computa-
tionally expensive. Reusing a learned policy possibly reduces
the dependence on a large number of training samples in the
target domain, thus, accelerating the DRL action exploration
phase at the learner BSs.

As equation (5) suggests, we propose to transfer mggpertBS
to a target learner BS to initialize 7peqrnerps Of its newly
deployed DRL agent. The traffic load at a BS can be defined
in terms of the number of users, inter-arrival times and packet
sizes. We propose to generate different traffic loads at the
learner BSs, i.e. drcarnerBs 7# dEazpertBs. Therefore, the
temporal traffic distribution of a source and a target BS are
different, and hence, the source and target tasks are slightly
different.

This approach is also valid when the training is done in
simulation, while the DRL agent is deployed in real networks.
In other words, the policy is learned in simulation rather than
real networks. Adopting a simulation-based DRL training often
leads to sub-optimal solutions. However, if the policy learned
at the virtual expert BS is transferred to a real network learner
BS, the state and action spaces can be reduced, and hence, the
exploration phase in the target task can be shortened.

IV. EXPERIMENTS AND EVALUATION
A. Simulation Environment Settings

Reproducing an existing DRL-based RAN slicing solution is
not straightforward due to the absence of DRL-based RRM
benchmark environments that can be easily integrated and
reused out of the box. Hence, the algorithms and environment
implementations will vary. We implemented an OpenAl GYM-
compatible RL environment in order to study the exploration
behavior of the developed DRL-based RAN slicing controller
using various DRL agents and configurations. The created
environment will be available on GitHub! to allow further

Uhttp://www.github.com/ahmadnagib/SARL-RRM
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investigation and evaluation of accelerated RL approaches
tackling the slow convergence challenge in RAN slicing.

We first evaluate the performance of the DRL solution we
adopted to solve equation (4) by simulating a scenario at the
expert BS with three types of services; VOLTE, video and
URLLC. The prevalent 4G networks mainly classify services
into voice and best effort, hence it is hard to have access to
real network traces of the services addressed in this paper. We
simulate several other scenarios at the learner BSs in order to
test the generality of our approach as described in the next
sub-section.

The number of users for each service at a given slicing
window follows a Poisson distribution as shown in Table I-
(a). Additionally, user requests are generated based on the
distributions shown in the table. The ones used at the expert BS
are similar to those in [12]. In such case, URLLC users generate
the largest but the least frequent packets compared with users of
the other services. VOLTE users generate the smallest packets,
while video packets are the most frequent ones.

Users belonging to the same slice share bandwidth equally.
More specifically, a round-robin scheduler is used within each
slice at the granularity of 0.5 ms. Moreover, the bandwidth
allocation window size is one second. In other words, the DRL
agent takes an action to adjust the PRB allocation to each slice
every second. We summarize the parameters used to create
the environment and train various DRL agents in Table I-(b).
As shown in the table, we have evaluated various state-of-the-
art DRL algorithms implemented in the Tensorforce Python
package®. We mainly tested three classes of DRL algorithms,
namely Deep Q-Network (DQN), Actor Critic (AC), and Prox-
imal Policy Optimization (PPO). Two other variants of DQN
were used, namely Dueling DQN, and Double DQN (DDQN).
Additionally, Advanced Actor Critic (A2C), a second variant
of AC was investigated.

While analyzing the exploration and reward convergence
behavior of the trained DRL agents, they were compared
against the following traditional slicing baseline methods :

* Number of Users Forecasting-based Allocation: The num-
ber of active users in the upcoming slicing window for each
service type is forecasted assuming a perfect predictor. Then
the available bandwidth is sliced weighted by the predicted
number.

* Number of Packets Forecasting-based Allocation: The num-
ber of packet requests in the upcoming slicing window for each
service type is forecasted assuming a perfect predictor. Then the
available bandwidth is sliced weighted by the predicted number.

* Hard Slicing: The bandwidth is equally distributed among
the available slices, i.e. one third of the available PRBs are
allocated to each slice.

The three aforementioned methods decide the percentage of
PRBs to be allocated to each slice. Afterwards, round-robin
scheduling is followed within each slice as in the case of the
DRL-based approach.

2Tensorforce: a TensorFlow library for applied reinforcement learning -
available at http://www.github.com/tensorforce/tensorforce

B. Transfer Reinforcement Learning Settings

The objectives of both the expert and the learner agents
are the same. However, as seen in Table I-(a), we gener-
ate different traffic loads at the learner base station to ex-
plore the approach’s capacity for generalization. It is ex-
pected that the traffic load at the learner BSs will vary
from the expert BS in both the simulation-to-real network
and real network-to-real network scenarios. We use the RL
mapping defined in Section III-D at both the expert and
learner BSs. According to the scenarios defined, the DRL
agent action at both expert and learner BSs can be repre-
sented as (Wvideo, WV oLTE; WURLLC)» S-t. WV ideo FWVoLTE+
wyrrLe = W. Moreover, the state of both categories of
BSs can be represented as (pvideo, PvoLTE, PURLLC)- Finally,
based on the system performance function defined in Section
III-B, the reward function can be defined as:

R=oa (Tverre + Tvideo + TurLLC)

(6)
+ B8 (Lvorre + Lvideo + LurLLC)

In this study, we give more weight to latency in deciding
the system’s performance, and hence [ is much larger than a.
We also assume that the policy learned at expert BS becomes
available to the learner BS’s DRL agent before the latter starts
the exploration process. It is good to note that the issue of
slow convergence of the DRL agent is not directly related to
the latency defined in the reward function. However, having a
shorter exploration phase will lead to faster convergence to bet-
ter latency performance, given the reward function formulation.

1) Expert Base Station Settings:

a) Reinforcement Learning Agents: We decided to employ
the policy learned at the expert BS using the AC agent to be
later transferred to initialize all the learner BSs’ policies. This
decision was based on the results from the first part of this
study in Section V-A.

b) Traffic Load Model: We generated one traffic model
for the expert BS as seen in the Table I-(a). It is represented
in terms of the number of users, inter-arrival times, and packet
sizes.

2) Learner Base Stations Settings:

a) Reinforcement Learning Agents: We decided to explore
TL’s potential to guide the PPO and A2C agents at the learner
BSs. The PPO’s performance was very close to a random agent
and needs to be guided if deployed at a BS to reduce the con-
vergence time and stabilize the exploration phase. Additionally,
A2C was also chosen to see TL’s ability to further enhance the
performance of an already well performing agent.

b) Traffic Load Model: Multiple levels of variations were
used at the target learner BSs to reflect the expected variation
from the expert BS as seen in Table I-(a). We examined the
DRL-agent behavior against three main levels of variation
which can be categorized as follows:

« Different Seed: Traffic and number of users are generated

based on the same models used at the expert BS but with
a different random seed.
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Fig. 4: Comparison of DRL Agents Learning Performance.

« Different Number of Users: Traffic is generated based on
a number of users model different from the expert BS and
with a different random seed.

o Different Traffic Model: The traffic generated follows
models different from the one used at the expert BS.
Additionally, the number of users models and random
seeds are also different.

V. RESULTS AND DISCUSSION
A. Expert Base Station

It is obvious that the three classes of algorithms behave
differently with the problem in hand given the settings used.
Fig. 4 shows the cumulative reward every 200 slicing resource
allocation decisions, i.e. 200 DRL-agent learning time steps.
The performance of the PPO algorithm goes randomly up
and down. The DQN variants have a different behavior. The
change in their performance is less frequent but the jumps
are much larger. Finally, the AC variants experience the best
performance, both in terms of stable exploration of action space
and convergence speed. We can observe the following:

* A2C agent inherits the best behavior in terms of conver-
gence time. However, compared with AC, it takes a longer time
to get closer to the best performance. However, it still took the
AC variants thousands of learning iterations (around 5800) to
converge.

* DQN and PPO agents experience a very poor performance
in terms of convergence, and hence receive non-optimal reward
value for a long time. Thus, the RAN system will suffer
from poor throughput and latency during such long duration,
potentially leading to several SLA violations. As previously
mentioned, MNOs can not tolerate such convergence delay in
practical settings as this translates into monetary penalties.

* AC variants and PPO agents perform much better with
respect to performance variations, i.e. they experience more
stable exploration.

* All the examined RAN slicing baselines perform poorly as,
unlike DRL, they only consider load without paying attention

to the latency and actual temporal distribution of such load.
Hence, they will potentially perform very badly if other KPIs,
such as latency, were of more importance as in the case of the
reward function used in this paper.

We meant to use the same initial DRL configurations for
all the trained algorithm to highlight the importance of the
DRL agent’s hyper-parameter tuning. The results indicate the
sensitivity and importance of hyper-parameter optimization in
accelerating and stabilizing the agents’ learning process. The
process of hyper-parameter setting is very exhausting and time
consuming. Even the automation of such process is not straight
forward and is computationally expensive.

B. Learner Base Stations

We simulated the three traffic variations defined in Section
IV-B2. The results for different seed, different number of users,
different traffic model variations are shown in Fig. 5. It is
clear that the proposed TL-accelerated DRL shows performance
improvement in all the defined target traffic scenarios at the
learner BSs. However, more investigation is needed to study
the effect of the TL-based approach on the various RAN slicing
scenarios including the nature of the training data. We can
observe the following:

* Although A2C has a relatively good performance, the TL-
accelerated approach still contributed to the reduction in the
convergence time in all the A2C cases. The reduction exceeded
17,000 learning iterations in some cases as seen in Fig. 5b.

* As seen in Fig. 5a and Fig. 5b, the TL-accelerated approach
not only helped the A2C agent in reducing the convergence
time, but also in avoiding being stuck with a sub-optimal
solution for a long time, and hence converging to a better
solution. This is a remarkable feature as it allows TL to guide
the poorly-tuned DRL agents.

* Even when there is a big variation in the traffic model
such as the case in Fig. 5c and Fig. 5d, the TL-accelerated
approach still contributes to the improvement of both A2C and
PPO performance. This is promising for MNOs as variations
are expected to happen when moving from a simulation-based
expert BS to a real network learner BS for instance. However,
the PPO agent seems to be not stable and may still need extra
investigation and hyper-parameter tuning.

VI. CONCLUSION AND FUTURE WORK

In this paper, we developed a DRL-based solution to the 5G
RAN slicing resource allocation problem to analyze the explo-
ration and reward convergence behavior of various state-of-the-
art DRL algorithms. We then proposed a transfer learning-based
approach to accelerate our DRL-based resource allocation so-
lution. To the best of our knowledge, this is the first study to
employ transfer learning to accelerate DRL-based RAN Slicing.

Our approach demonstrated the potential to save thousands
of learning iterations at learner base stations. It showed a
general pattern of reducing the convergence time and improving
the system performance compared with its non-accelerated
counterparts tested against multiple traffic load variations. Our
approach was furtherly able to enhance the performance of
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Fig. 5: Comparison of Accelerated and Non-accelerated DRL

already well performing agents. It also enhanced the DRL
agent’s ability to avoid sub-optimal solutions in multiple cases.
This is a very promising alternative to the expensive DRL
hyper-parameter tuning, especially when considering the deep
learning interpretability issues.

We argue that it is essential that researchers address the chal-
lenge of slow convergence of DRL agents. In addition, more
effort should be directed toward investigating the effect of using
real network traces and those based on mathematical models
or simulations with respect to acceleration. The challenge of
unstable DRL agents’ exploration phase is another interesting
research problem that should be addressed.
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