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Abstract— Current telecommunication networks face a surge
in the number of connected Machine-type Communication (MTC)
devices, creating an unprecedented disproportionate demand for
existing resources, especially when working with a Heteroge-
neous Networks (HetNets). This demand cannot be addressed
adequately as the infrastructure’s transition process between
different generations is slow. Fourth Generation (4G) relies on
Orthogonal Multiple Access (OMA), where a single user can
occupy the same sub-channel, Orthogonality offers interference-
free communication but for normal loaded scenarios, but under
performs in overloaded scenarios. Whereas Fifth Generation (5G)
is targeting more spectral efficiency by using the Non-orthogonal
Multiple Access (NOMA), allowing MTC devices to share the same
resources in frequency and time. However, NOMA medium access
techniques in general have a complex scheduler design as group
users/devices with aligned correlations. In this study, we formulate
and simulate a 4G/5G Uplink scheduler that is based on dual
NOMA-OMA. The objective is to achieve a tangible improvement
in the spectral and scheduling efficiency of the network. We are
able to optimize the system under HetNet objectives and clustering
constraints in overloaded scenarios, to examine the limitations of
both NOMA and OMA in overloaded scenarios.

Index Terms—Scheduling, resource allocation, heterogeneous
networks, NB-IoT, poisson cluster processes, 4G, 5G/NR, PD-
NOMA, OFDMA.

I. INTRODUCTION

The stochastic densification of the entire network on multiple
levels is one of the major motivations for improving the
Spectral Efficiency (SE) of next-generation networks, including
but not limited to Fifth Generation (5G) and already estab-
lished standards like 4G and their variants. That entails a
dynamic change in the number of base stations and users
and is not limited to only human users but also Machine-
Type Devices (MTDs). Beyond 5G networks are expected to
support hundreds of millions of connected MTD [1]. This
surge, in turn, led to the emergence of paradigms that try to
tackle problems congenital to densification in communication
networks, whether it is in time or frequency domains.

Currently deployed systems lack flexibility and adaptability,
and are in ever-consistent need of upgrades and fixes, leading
to unmet demand for higher Quality of Service (QoS) and
efficiency. That is where dynamic Radio Resource Schedul-
ing (RRS) becomes essential [2], as we can assign spectral

resources to MTDs while achieving the minimum QoS require-
ments, whether they are in fairness, delay, or throughput.

Supporting a larger density of connections (e.g., bursty traffic
from proximity sensors [2], [3]) per cell also means putting a
larger load on 4G/5G channels [4], [5]. Moreover, heterogeneity
paradigms remain as a big challenge [6], [7], which hold a
significant impact on how we conceptualize the state of future
networks, such as the Internet of Everything (IoE) [8]. The
paradigm of radio resource allocation/scheduling is generally a
non-convex NP-hard problem [9] and therefore computationally
complex, particularly as the density of the network increases.
Researchers have developed a range of centralized and dis-
tributed radio resource allocation algorithms (User-Pairing as
in [10], or Game-based algorithms [11], [12], using various
techniques such as weighted minimum mean square optimiza-
tion, information-theoretic [13], and fractional programming
[14]. [15] formulated an optimization problem constrained
by properties of cluster process, they focused on maximizing
performance for mMTC, and URLLC devices, however, they
considered a single cell scenario and relied upon PD-NOMA
for transmission. Thus, clustering was useful as it can mitigate
some challenges introduced by the full-collision property of
NOMA. In [16] the authors were trying to bridge the gap
between Poisson point processes and tier-based HetNets. They
developed models for HetNets for different types of BS and UE
configurations, which resulted in a unified model for simulating
the non-uniformity of BSs and UEs locations throughout the
HetNets. We define heterogeneity in a network where users
access the medium using two different techniques: Power-
Domain Non-Orthogonal Multiple Access (PD-NOMA) and
Orthogonal Frequency-Division Multiple Access (OFDMA),
and we try to optimize their resources to satisfy the QoS
requirements for the MTDs.

The novelty of this work is that we explore the possibility
of deploying a dynamic RRS algorithm as a solution to the
relaxed optimization problem. We also give an insight into
network trends under heterogeneity constraints in a Narrow-
Band Internet of Things (NB-IoT) framework. The problem
at hand incorporates orthogonal and non-orthogonal multiple
access, which will provide a perspective on how integration is
realized in future networks.
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Henceforth, the main contributions of this paper are as
follows:

1) We set up a scenario that couples orthogonal and non-
orthogonal multiple access techniques, while considering
QoS requirements for MTDs.

2) We formulate a constrained Optimization Problem (OP)
to maximize the sumrate of OFDMA and PD-NOMA
connected MTDs.

3) We provide a Pareto optimal solution to a relaxed OP
through a heuristic algorithm, where the formulated non-
relaxed OP is NP-hard.

4) We develop a simulator that considers many features
of standardized systems; we then test the simulator’s
performance and limitations under various scenarios.

The rest of the paper is organized as follows, Section II
will give a holistic view of the system model along with an
introduction to the scenario we are evaluating. In Section III we
formulate our Dynamic RRS problem and provide a heuristic
solution. We showcase our simulation results and discussions
in Section IV. Finally we conclude this work in Section V.

II. SYSTEM MODEL

We investigate a multi-cell scenario with one Small Base
Station (SBS) in each cell center that supports massive MTC
(mMTC) and is following NB-IoT standard specifications. We
assume MTDs are stationary or with very limited mobility. We
Denote M = {1, ...,M} as the set of MTD. For uplink data
transfer in a single Transmission Time Interval (TTI), where
active devices share a single Physical Resource Block (PRB)
every TTI. Each PRB has a bandwidth that is partitioned into
a series of sub-channels S = {1, ..., S}, where a bandwidth of
W will be allocated to each sub-channel. This can be translated
into 48 or 12 sub-channels in NB-IoT commercial systems.

We propose HetNet Poisson cluster process (PCP) scheme
by clustering MTDs in an NB-IoT network, where clusters
are generated in simulation environment according to Matérn
cluster process [16], where the daughter points are distributed
uniformly within a circle centered around a parent point as
shown in Fig. 1. For simplicity, we shall denote the Matérn
cluster process as PCP. The PCP process could be defined as

ρu =
⋃

Θ∈ρpu

Θ+OΘ
u , (1)

where ρpu
denotes the parent PPP of density λpu

and OΘ
u

represents the daughter point process, where each point at
s ∈ OΘ

u is i.i.d. around the cluster center Θ ∈ ρpu
, where

the density of daughter point process is Du.
The MTDs (according to the PCP scheme), share each sub-

channel resources and transceive non-orthognally i.e., multiple
MTDs can share the same sub-channel resources or in an
orthogonal manner in case they are accessing the medium
using OFDMA. As a result, the devices are dispersed into
PCP groups, we denote as C = {1, ..., C} cluster sets. γs,c,b

TABLE I: List of Symbol Notations and Description

Symbol Definition
M The set of MTDs
S The set of sub-channels in the system
s Sub-channel s in the set S

C (U) The set of groups (the set of ranks in each group)
B The set of small base stations in the network

umax The maximum number of MTDsin one group
γs,c,b The binary indicator whether to allocate the sth

sub-channel to the cth group to bth SBS
ps,m The transmit power of the mth MTDsover the sth

sub-channel
N0 AWGN

αm,u,c,b The binary indicator whether to assign the mth

MTD to bth SBS to the uth rank of group c
Rm,b The total transmission rate of the mth MTD in the

bth SBS
W The bandwidth of a single sub-channel in one PRB
hs,m The channel gain of the mth MTD over the sth

sub-channel
Rth

m The minimum transmission rate of the mth MTD
Pmax
m The maximum power threshold of the mth MTD

1500 1000 500 0 500 1000 1500
x (m)

1000

500

0

500

1000

y 
(m

)

cc
MTD

Fig. 1: Simulation of a Matérn cluster process

is a binary indicator where sub-channel s ∈ S is dedicated
to group c ∈ C, hence γs,c,b = 1 if sub-channel s is allotted
and zero otherwise. The MTDs use the same sub-channel for
transmission, with transmit powers of ps,m, respectively. As a
result, the SBS receives a combined message from MTDs with
additive noise N0 and interference in case the MTD is using
PD-NOMA. We denote the point process of the uth SBS tier
as ρu, where ρu is the PCP (∀u ∈ U1), where U1 is the index
set of the SBS tiers being modeled as PCP. Defining the set of
ranks (levels) in each PCP group as U = {1, ..., umax}, where
umax defines the maximum number of MTD that can be in
the same group and thereby utilize the allotted sub-channels
We assume that C × umax is greater than the population of
MTD. It is worth noting that the MTD with the highest rank
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in each group is immune to other MTD’s interference, while
the other MTDs are subjected to interference from MTDs with
higher ranks (u = 2, ..., umax). Furthermore, transmit power
and QoS requirements are taken into account while analyzing
intra-group interference [17]. PCP clustering uses the average
channel gain of MTD, h̃m =

∑
s∈S

hm,s

S . Then based on their

h̃m, they are assigned to the group with the next highest group
rank.

To simplify what we mean by clustering process, and to
be methodically accurate. The term clustering applies not
only to how we group random sets of objects located in
constrained space as shown in Fig. 2 (based on their proximity
for example).

Group 1
…

Fig. 2: Grouping MTDs based on their covariance

But also to higher levels of correlation in certain metrics.
Hence, clustering in our study could mean two things, either
how we initialize the location of MTDs based on PCP models
as mentioned above. The other definition would be how to
cluster MTDs for transmission. For example, suppose we have
a group of MTDs that want to transmit on s sub-channel of
CPD-NOMA, the MTDs then will be clustered in groups that
show the least correlation in their Channel State Information
(CSI) after the first training (pilot) sequence is received the
channel estimate is formulated with the combined knowledge of
received signal and the pilot signal. Henceforth, the MTDs with
the least similar CSI estimates will be clustered together, which
will usually translate to different geographical positions. As
demonstrated in [18], for MTD’ positioning, the CSI signature
should be both generally consistent in the same area and
differentiable at various locations

III. DYNAMIC RRS PROBLEM FORMULATION

A. Quality of Service Constraints

We start by defining pm,s as the mth MTD’s transmit power
over the sth sub-channel, and αm,c,u,b as the binary variable
used to allocate the mth MTD to the uth rank of group c.

If there is scheduled, αm,c,u,b = 1, and zero otherwise. As a
result, the MTD’s achievable data rate Rm, The aggregate rate
over the designated sub-channels for PD-NOMA groups over
all SBS is shown in Eq.2. Consequently, with the assumption
of no interference in OFDMA groups due to the nature of the
access technique, which is robust against co-channel interfer-
ence. The aggregate rate overall OFDMA groups for all SBSs,
is shown below in Eq. 3

RPD-NOMA =
∑
b∈B

Rb =
∑
c∈

CPD-NOMA

∑
u∈U

αm,c,u,b

∑
s∈S

γs,c,bW1 log2

(
1 +

|hm,s|2pm,s

N0W1 +
∑umax

h=u+1 α
c,h
d h5

d,sp
s
d

)
(2)

ROFDMA =
∑
b∈B

Rb =
∑

c∈COFDMA

αm,c,b

∑
s∈S

γs,c,bW2 log2

(
1 +

|hm,s|2pm,s

N0W2

) (3)

where hm,s is the channel gain on sub-channel s between the
mth MTD and the SBS and N0 is the noise power spectral
density. the mth MTD experiences interference only from other
higher ranked MTDs in the same group using the sub-channel.

To ensure that we have higher data rate than Rth
m ’s minimum

data rate, the following constraint is required

Rb
m ⩾ Rth

m , ∀m ∈ M & ∀b ∈ B. (4)

Furthermore, to discern between the minimum required data
rates for devices accessing the medium either using PD-NOMA
or OFDMA, the following constraints are considered to make
sure the QoS requirements of either are met.

RPD-NOMA
m ⩾ RPD-NOMA

m th, ∀m ∈ M,

ROFDMA
m ⩾ ROFDMA

m th, ∀m ∈ M,
(5)

The mth MTD’s overall transmit power is limited by its
maximum power budget Rth

m , i.e.,

pm,s ⩽ Pmax
m , ∀m ∈ M. (6)

B. Optimization Problem Formulation

The clustering-based OP for NB-IoT is described in this
section as a sum rate maximization problem of MTD. In
addition to the QoS requirements in Eq. (4), and Eq. (6),
we should impose additional limitations for the PD-NOMA
clustering process. Each MTD, in particular, should be assigned
to only one group with a single rank, i.e.∑

c∈C

∑
u∈U

αm,c,u,b = 1, ∀m ∈ M, (7)

Because the purpose of PD-NOMA is to share spectral re-
sources among multiple MTD, the PD-NOMA grouping en-
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forces the presence of more than one MTD in each group, i.e.,
the same applies to OFDMA groups as we consider inter-cell
interference, but in this equation we chose to disregard inter-
cell interference∑

m∈M

∑
u∈U

αm,c,u,b⩾ 2, ∀c ∈ CPD-NOMA. (8)

∑
m∈M

∑
u∈U

αm,c,u,b⩾ 2, ∀c ∈ COFDMA. (9)

and we guarantee the priority of rank assignment in each group
by starting with the lowest rank in each group (u = 1), i.e.,

αm,c,u,b ⩽ αm,c,u−1, ∀m ∈ M, ∀c ∈ C, 2 ⩽ u ⩽ umax,
(10)

Finally, the sum-rate maximization of MTDs transceiving
over OFDMA and PD-NOMA channels can be formulated as
joint scheduling and sub-channel allocation multi-objective OP
below

maximize
pm,s, αm,c,u,b, γs,c,b

(RN ,RO) (11a)

subject to

Rm ⩾ Rth
m , ∀m ∈ M, (11b)

RPD-NOMA
m ⩾ RPD-NOMAth

m , ∀m ∈ M, (11c)

ROFDMA
m ⩾ ROFDMAth

m , ∀m ∈ M, (11d)
pm,s⩽ Pmax

m , ∀m ∈ M, (11e)
pm,s> 0, ∀m ∈ M, ∀s ∈ S, (11f)
αm,c,u,b⩽ αm,c,u−1, ∀m ∈ M, ∀c ∈ C, 2 ⩽ u ⩽ umax,

(11g)∑
c∈C

∑
u∈U

αm,c,u,b = 1, ∀m ∈ M, (11h)∑
m∈M

∑
u∈U

αm,c,u,b ⩾ 2, ∀c ∈ CPD-NOMA, (11i)∑
m∈M

∑
u∈U

αm,c,u,b ⩾ 2, ∀c ∈ COFDMA, (11j)∑
s∈S

∑
c∈C

γs,c,bWs,c,b ⩽ WRB , ∀c ∈ C, ∀s ∈ S, (11k)

γs,c,b ∈ {0, 1} , ∀c ∈ C, ∀s ∈ S, (11l)
αm,c,u,b∈ {0, 1} , ∀m ∈ M, ∀c ∈ C, ∀u ∈ U (11m)

where the constraints are considered as follows, (11b) requires
MTDs to have data rates greater than a data rate threshold
requirement. (11c) requires MTDs using PD-NOMA to have
a data rate greater than the minimum threshold PD-NOMA
data rate. The same applies for (11d) which instead specifies a
minimum data rate requirement for MTDs using OFDMA for
transmissions.

The mth MTD total transmit power is restricted to the
max power allocation by (11e), Pmax

m available. (11f) restricts
MTDs transmit powers to positive values. (11g) suggest that
MTDs can be assigned to the uth rank of the cth group if

all lower ranks have been assigned to other MTD. (11h) is
designed to guarantee that each device (MTD) is allocated to
just one group and one rank within that group. (11i) and (11j)
are to ensure that there is more than one member in each
PD-NOMA and OFDMA group. (11k) ensures that the total
bandwidth allotted to all PCP groups does not exceed one RB
(bandwidth of one RB in NB-IoT is 180 kHz). (11l) and (11m)
verify that the variables γs,c,b, αm,c,u,b, and are only permitted
to have binary values.

1) NP-Hardness of OP(11): The general Eq. (11) is an
NP-Hard Problem. the OP(11) scheduling part is identical to
the Makespan job shop scheduling problem where we want to
execute n jobs (data transmission αm,c,u,b) by i identical (Sc

b )
(sub-channels), which is by definition a combinatorial NP-Hard
problem [19].

Similarly, the resource allocation part is analogous to a
Multi-Choice Multiple Knapsack Problem (MCMKP), as we
are attempting to fit M items into Sb

c knapsacks (sub-
channels), which is also an NP-Hard problem.

2) Solution to OP(11): WLOG, we relax the power con-
straints for both PD-NOMA and OFDMA MTD. We assume
the MTDs transmit using a predetermined powers ps,m =
Pmax
s,m − um,c,b

P step
s,m

, thus the power-related constraints can be
relaxed. In order to simplify the problem further, we apply
linear scalarization, which is a priori method, where solv-
ing the single-objective OP formed from a multi-objective
problem means that the optimal solutions of the single OP
are Pareto optimal solutions to the multi-objective OP, the
Pareto optimality could be attained by adjusting the weight of
scalarization ωN [20]. Finally, we propose a heuristic solution
in the form of a distributed alternating convex optimization
problem (DCOP) with two secondary optimization problems.
Where the goal for the the first SOP12 is to maximize R
subject to scheduling constraints of αm,c,u,b, which will feed
its optimal scheduling to SOP13 whose goal is to maximize
R subject to sub-channel γm,s,u,b allocation constraints. We
denote the resource distribution with ωN , Therefore, SOP1 is
formulated as follows:

maximize
αm,c,u,b

k∑
i=1

(ωNiRNi + (1− ωNi)ROi) (12a)

subject to 11b− 11d, 11g − 11j, 11m, (12b)
ωN ∈ (0, 1],∀ωN ∈ Ω, (12c)

(12c) bounds the weight of allocated resources of RPD-NOMA
over ROFDMA and vice versa, ωN therefore is between 0 and
1. Respectively, SOP2 is formulated as follows,

maximize
γs,c,b

k∑
i=1

(ωNiRNi + (1− ωNi)ROi) (13a)

subject to
∑
s∈S

γs,c,b= 1, ∀c ∈ C, (13b)

11k, 11l, (13c)
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ωN ∈ (0, 1],∀ωN ∈ Ω, (13d)

where each sub-channel cannot be assigned to more than one
group, according to (13b). The formulated OP1 is an NP-Hard
non-convex mixed integer non-linear program (MINLP), which
is combinatorial in nature, accordingly, the heuristic solution
proposed above can be used to solve OP(11).

IV. SIMULATION RESULTS

In this section, we present our simulation results the results
accuracy is validated using Monte Carlo simulations with up
103 iterations for each scenario with 5×104 different scenarios.
Henceforth, we will discuss which hyper-parameters of the
simulation had the most consequential impact on the sum-rate
maximization. To construct the Pareto dominance rank plot, the
main parameter to tune is ωN (which represents, in our case,
the resource allocations given to MTDs using OFDMA or PD-
NOMA). The effect of changing ωN results in a Pareto frontier

TABLE II: Simulation Hyper-parameters

Definition Value
Parent points density { λpu : 10 ⩽ λpu ⩽ 200}
The cluster radius of Parent point pro-
cess

{ rc: 1000 m⩾ rc ⩾ 200 m}

Daughter points density { Du : 100/km2 ⩽ Du ⩽ 20000/km2}
Path Loss Model (Macro-cell propa-
gation model)

L = 128.1 + 37.6 log10(d), d in km

Transmit power step P step
s,m = 10000

The maximum power threshold of the
mth MTD

Pmax
m = 0.1 mW

The bandwidth of a single sub-channel
in one PRB

W = 15 kHz

The MTD antenna gain of the mth

MTD over the sth sub-channel
{Gs,m: 0 dB ⩽ Gs,m ⩽ 10 dB}

The noise figure of the mth MTD
over the sth sub-channel

NFm,s = 9 dB

Sample size (per experiment step) 10 ⩽ n ⩽ 1000

for each scenario, from which we can draw the following
conclusions. The maximum achievable sum-rate (where PD-
NOMA MTDs are given the same resources as OFDMA MTD)
occurs at ωN = 0.5, as shown in Fig. 3 (100 MTD/group).
In the same figure the total sum-rate of both PD-NOMA and
OFDMA curves is shown, which clearly translates the effect
of varying ωN over the total sum-rate of the all devices in that
particular scenario. Furthermore, using a Monte Carlo method,
we arrive empirically at the conclusion that ωN = 0.566.

Therefore, PD-NOMA MTD’s Sum-Rate will cross with the
OFDM’s at a much higher ωN as we increase the group size.

Subsequently, we can observe in PD-NOMA vs. OFDMA
Pareto dominance rank plots as shown in Fig. 4 we can see that
as we reduce the interference level, we achieve a much larger
capacity region. That above conclusion remains consistent even
with different-sized groups. Similarly, Fig. 5, showcases that as
we decrease the cluster radius, we achieve a much higher sum-
rate for both PD-NOMA and OFDMA.

This conclusion is enriched as we look at the capacity
region plots of PD-NOMA vs. OFDMA, where we can observe
a clear trend towards reducing the generated MTD’s cluster

Fig. 3: Sum-rate performance for variable ωN (PD-NOMA &
OFDMA sum-rate vs Total sum-rate)
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Fig. 4: Pareto dominance rank plot (Normalized Intra-group
Interference effect on maximum sum-rate)

radius. This result is due to how the algorithm is designed.
The way it works, as we increase the cluster radius, MTDs
are still going to be generated in a limited scaled space,
meaning that their channel correlation will get higher as we
increase the cluster radius, and even if we decide to pick
the users with the least correlation in the same group, we
will observe that this decision, which is one of the prime
reasons for improving the overall spectral efficiency of the
MTDs in the same group, is minimal. Further experimentation
while varying SBSs’ scheduling capacity showcased in certain
scenarios that the best 500 MTDs have a on average a sumrate
of 5.91 Gbps, while if we schedule all MTDs we only achieve
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Fig. 5: Pareto dominance rank plot (Normalized cluster radius
effect on maximum rate)

a 7.60 Gbps, which is a mere improvement of 28.59 % as we
allow for ten times more MTDs to transmit to the SBS. We
can say that, on average, 500 MTDs (which are the highest
ranks in their respective groups) and 10% of all MTDs in the
simulation achieve 77.76% of the maximum achievable rate of
the connected MTDs.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we present a perspective on how backward
compatibility could look in the near future. We formulate a
joint scheduling and resource allocation optimization problem
for a HetNet mMTC scenario. We then propose a heuristic
solution to a relaxed OP. We finally come to a conclusion
that certain hyper-parameters have a tangible impact on the
maximum achievable sum-rate. A promising extension to this
work is by using Deep Reinforcement Learning algorithms
(DRL) i.e., actor-critic and policy-based methods to solve the
non-relaxed problem. We hypothesize that DRL is going to be
a primary solving tool for current and next-gen telecommuni-
cation networks paradigms.
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