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Abstract—Predictive resource allocation (PRA) has gained
momentum in the network research community as a way to
cope with the exponential increase in video traffic. Existing
PRA schemes have demonstrated profound energy savings and
ubiquitous quality of service (QoS) satisfaction under idealis-
tic prediction of future network states. In this paper, we relax
the main assumption of existing PRA work and tackle uncer-
tainties in predicted information which resulted from space and
time variation of the network load and users demands. A robust
green PRA (R-GPRA) is proposed to: model the uncertainties as
random variables, ensure a probabilistic satisfaction of QoS con-
straints, and follow a risk-aware preallocation of future demand.
A recourse programming model is used to represent the trade-
off between the energy-savings and the risk of wasting resources
while considering the probability of a user terminating the video
session at each time slot. Thus, the scheme prevents the network
from prebuffering the future video content that might be skipped
by the user. Similarly, a chance constrained programming model
is proposed to provide a probabilistic QoS representation to
guarantee that the sum of resources, predetermined to video
streaming users, do not surpass the total time-varying network
capacity. We prove that a near-optimal solution is attainable by
proposing a guided heuristic search with small optimality gap to
numerical methods. Simulation results demonstrate the ability
of R-GPRA to deliver energy-efficient video streaming with less
resources than existing PRA while promising QoS satisfaction.
These results provide the incentive to implement the R-GPRA in
future wireless networks.

Index Terms—Channel state prediction, energy efficiency, par-
ticle filter, radio access networks, resource allocation, robustness,
video streaming.

I. INTRODUCTION

HE GLOBAL Internet traffic is expected to grow tremen-
dously reaching 2.3 zettabyte by 2020 [1]. At that time,
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mobile devices will be contributing to more than two-thirds
of the total Internet traffic, where more than three-quarters
of such traffic is expected to be video content. Maximizing
streaming quality while minimizing the number and durations
of stops remains the ultimate goal for mobile video streaming
users. This, however, will put network operators under huge
pressure as they strive to meet users’ QoS expectations given
the available network resources and infrastructure to maximize
their profit. Nevertheless, the unprecedented increase in carbon
footprint and energy costs raised the need for energy-efficient
video delivery over wireless networks [2], [3]. Such challenges
prompt optimal design for QoS-aware resource allocation
schemes that can target energy minimization during service
delivery [4]. Such design augments the gains of research work
done on regulating spectrum access and maximizing radio
resources [5], [6].

Supported by mobility and channel predictions [7]-[9],
predictive resource allocation (PRA) was recognized as a new
paradigm showing great potential of remarkable energy sav-
ings and pervasive QoS satisfaction [4], [10], [11]. Today’s
networks adopt opportunistic schemes that perform resource
allocation decisions based on current and previous measure-
ments. On the contrary, the PRA leverages future network
conditions to recognize users moving towards regions with
low channel rates (typically needing more resources) and
prebuffers their video content upfront. Whereas prebuffering is
postponed for other users heading to regions with high channel
rates. Despite the reported energy and QoS gains in the liter-
ature, the following practical challenges related to prediction
uncertainty must be addressed:

o Channel Rate Variations: The first parameter used in
PRA is the future channel rate of mobile users based
on their trajectory. Both mobility traces and channel
state prediction accommodate errors due to the noise
of their raw data, adopted low-cost filters, and tempo-
ral variations of the wireless signal [12], [13]. Existing
approaches in [14] and [15] considered robust heuristic
decisions that exploit states of the rate predictor or adapt
the allocation window size to minimize the impact of
uncertainty.

o Demand uncertainty: The user demand is represented by
both the streaming bitrate (i.e., video quality) and the
watching duration. Users can frequently change the qual-
ity of video, skip some frames or terminate the session
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completely before the end [16]. The Non-PRA approach
in [17] and [18] controlled the buffer size during the short
term decisions based on the stability level of the ses-
sion. The impact of demand uncertainty is more severe
in the case of PRA. Fig. 1(a) depicts an example of
energy wastage as a result of terminating the session at
t = 5. The risk of wasting resources increases as PRA
maximizes prebuffering for users experiencing peak rates.
Existing robust non-PRA techniques [17], [18] aim to
decide when to prebuffer the video at the current slot, to
save the tail energy, or postpone the delivery. The PRA,
however, requires further efforts to consider the trade-off
over the time horizon since postponing full video delivery
requires more resources to transmit the remaining content
during future poor channel conditions.

o Network resources: The stochastic arrival of users with
stringent service delay requirements, such as voice calls,
will decrease the total available resources for stream-
ing users. In turn, this will increase the risk of violating
QoS requirements for cell-edge video users who are allo-
cated a small portion of the available resources. Fig. 1(b)
depicts this scenario where the network follows a stingy
allocation for a cell-edge user to minimize the energy
consumption. The risk of violating the demand, when the
user do not receive the minimum amount of data, has to
be modelled by the PRA. Thus, the minimal allocation is
followed during resources stability while an opportunistic
strategy is adopted in uncertain conditions.

Existing PRA assumed idealistic scenarios [4], [10], [11],
[19] where the average values of all three parameters are
adopted. In order to maintain the prediction gains, mobile
buffering capabilities have to be fully exploited while apply-
ing long-term decisions at the beginning of the time horizon.
Our recent work on robust PRA [20]—-[25] tackled the first
parameter (i.e., rate uncertainty) and showed that prediction
gains are still attainable when probabilistic risk-aware PRA is
applied.

We focus on the second and third sources of uncertainties by
considering the possibility of video termination and variations
in network resources while deriving long-term energy-efficient
allocations. The proposed R-GPRA should measure the risk of
wasting resources and compare it to the possibility of energy
savings to determine when and which content to prebuffer.
This is in addition to considering the scenarios in which the
total available network resources are shared with real-time
users. A probabilistic metric is defined to guarantee a min-
imal level of QoS satisfaction and controls the impact of such
scenarios.

This paper introduces, for the first time in literature, a robust
stochastic green PRA framework that achieves energy sav-
ings and QoS satisfaction over a time horizon under both
demand and network resources uncertainties. The framework
is referred to as R-GPRA and incorporates the following
contributions:

1) We capture the uncertainties in both the demand
and network resources by proposing a stochastic
optimization model. The main objective is to minimize
the total allocated resources, i.e., less energy, while

satisfying the time slot demand constraint. The model
relies on Recourse Programming (RP) and Chance
Constrained Programming (CCP) to represent the uncer-
tainties in the objectives and constraints as random
variables. This is unlike existing PRA work [11], [26]
that assumed perfect prediction and used determinis-
tic formulation based on the average value of predicted
information. In essence, our RP considers the risk of
wasting resources due to video streaming users termi-
nating the session before watching the entire video [16],
[27]. Similarly, the CCP controls the QoS degradations
under resources fluctuations due to the random arrival
of users with real-time services. The CCP allows the
network operator to adjust both the maximum allowed
degradation level and the energy-saving gains over the
time horizon.

2) We leverage the temporal statistical data of video con-
tent and users arrival to obtain a robust allocation of
network resources over the time horizon. Such data
is used to develop a deterministic equivalent form for
the stochastic RP and CCP models. In essence, the
probability distribution of video watching durations is
used to quantify both the possibility of energy-saving
and the risk of wasting resources. Thus, the network
prebuffers future demands that has high likelihood of
watching, and delays the delivery of future uncertain
content. Similarly, the probability distribution of users’
arrival and their traffic load are used to calculate the
fluctuations in the time-varying network resources. The
resultant allocation ensures that the QoS degradations do
not surpass predefined level in the CCP model when the
remaining network resources for video users are scarce.
As such, a deterministic resource allocation model is
obtained and takes into account both energy-savings
and the risk of QoS violation during resources uncer-
tainty. As opposed to traditional non-predictive robust
approaches [28], [29], our model considers allocation
with RP and CCP over a time horizon that captures
dependency between the constraints.

3) For the network to obtain an on-line solution, a guided
heuristic search algorithm with polynomial complexity is
developed. The algorithm exploits the trade-off between
the network constraints, i.e., resources and slot demand,
and prediction gains. The heuristic considers the impact
of decisions at one slot on the energy savings and QoS
satisfaction in future slots. This strategy generates solu-
tions that satisfy the probabilistic QoS level defined
in the CCP model without compromising the energy
savings of the RP. Whilst commercial solvers do not
provide solutions in real-time, they can be only used as
benchmarks.

This paper is organized as follows. In Section II we
provide a background on PRA and robust stochastic-based
optimization. Section III presents the system model and the
problem definition. Section IV introduces the robust prob-
abilistic formulation, and recourse and chance-constrained
programming based deterministic formulations. The low com-
plexity guided heuristic is presented in Section V, simulation
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results are discussed in Section VI, and finally, we conclude
the paper in Section VIIL.

II. BACKGROUND AND RELATED WORK
A. Existing PRA for Video Streaming

Extensive network measurements demonstrated the
predictability of users’ behaviour up to 93% [30], including
human mobility and activity [9]. Meanwhile, the radio signal
strength and available bandwidth are found to follow repet-
itive spatio-temporal patterns [12], [13]. The availability of
navigation systems at current user devices (e.g., smartphones)
has enabled mobile operators to correlate the radio mea-
surements (e.g., channel rates) with geographical locations,
and construct the Radio Environment Map (REM) [31]. The
REM is further used to retrieve the future radio conditions
(e.g., channel rate) for the predicted mobility traces enabling
the PRA to derive long-term proactive decisions over the
anticipated time horizon.

The video delivery approaches in [4], [10], [11], [19],
and [26] have applied the concept of PRA to achieve optimal
radio resource utilization. Hence, the PRA minimizes the
energy consumption and maximizes the delivered video qual-
ity, in low load scenario, while maximizes the QoS satisfaction
by avoiding video stops, in high load scenarios. The PRA in
general tries to avoid allocating resources to users during poor
radio conditions, that consume more airtime per byte, while
maximizing the allocation during peak conditions by leverag-
ing the content availability and prebuffering capabilities at the
Base Station (BS) and user devices. To calculate the resource
share for each user, the PRA typically follows one of two
strategies: greedy prebuffering or minimal allocation. The first
is applied to users experiencing their peak channel rates where
the network transmits as much video content as possible to
avoid transmission with future poor channel rates. This is done
under the assumption that the user will be watching the whole
video. Prior to reaching such peak rates, the network serves
the users with the minimal amount of resources to barely sat-
isfy the time slot demand. The base station after prebuffering
the video or sending the minimal amount, can then go into the
sleeping mode to save energy or serve other real-time users.

To derive performance gains over opportunistic RA, the
PRA in [4], [10], [11], [19], and [26] all assumed stable
user behaviour with perfect knowledge of users’ demands and
network resources. Thus, in low load scenarios, the BS would
be able to prebuffer a long video segment for users experienc-
ing peak channel rates. However, the user might terminate the
session before watching the prebuffered content which results
in suboptimal resource utilization diminishing the prediction
gain compared to the opportunistic non-predictive RA. As
well, the random arrival of real-time users will impact the
resource availability for video streaming users. This impact
increases the risk of resource scarcity for the PRA target users
especially during the minimal allocation strategy, resulting in
increased video stops and QoS degradations.

To tackle the uncertainty problem, we adopt robust stochas-
tic optimization to measure the uncertainty in user demands

and network resources. In addition to the predicted informa-
tion, the stochastic optimization employs the probability of
terminating the video, represented by watching time distri-
bution, and the probability of scarce resources, represented
by the user arrival distribution and load. The schematic dia-
grams presented in Fig. 2(a) and Fig. 2(b) illustrate the main
difference between existing PRA and the proposed R-GPRA
where the latter takes into consideration the uncertainties in
both demand and network resources. As such, the robust
PRA will only prebuffer the content which in all likelihood
will be viewed by the user before terminating the video
session and during time slots with a high probability of
resource availability. We consider energy minimization where
the proposed scheme will be referred to as robust green
predictive resource allocation (R-GPRA) which is based on
stochastic optimization techniques reviewed in the following
subsection.

B. Robust Stochastic Optimization

Robust stochastic optimization refers to incorporating uncer-
tain values in the mathematical programming model. In partic-
ular, these values are represented as random variables, and thus
the set of constraints becomes probabilistic while the objec-
tive function appears in a non-closed scenario-based form [32].
As such, stochastic optimization provides the network designer
with the flexibility of modeling the trade-off between maxi-
mizing prediction gains and minimizing the risk of violating
the QoS.

The CCP is adopted to handle the probabilistic constraints
by transforming them into a deterministic equivalent which is
typically done using either the Probability Density Function
(PDF) or Moment Generating Function (MGF) of the random
variable as in Scenario Approximation (SA) and Bernstein
Approximation (BA), respectively. The SA exploits the PDF
of a random variable to construct all the possible realizations
over the time horizon and their probabilities (i.e., probabil-
ity mass function). The constraint will be represented in a
form that guarantees a solution satisfying N scenarios, where
the total probabilities of such N scenarios is above a minimal
level denoted by . Satisfying more scenarios will generate a
conservative solution that has a lower value of the objective
function and hence lower prediction gains. On the contrary,
satisfying scenarios with less total probability will result in a
non-robust solution that violates the QoS level.

Similar to CCP, the Recourse Programming (RP) is used
for handling problem uncertainties that impact the value of
objective function. The RP model essentially consists of two
terms in the objective function. The first term models the
network gain by using the average of random variables while
the second term adopts their PDF to prevent risky deci-
sions that preserve the total gains in the network during
uncertain conditions resulting in a deterministic closed form
RA formulation which can be further solved by mathemat-
ical optimization techniques. As opposed to existing robust
non-predictive RA [29], [33], our problem considers a time
horizon that takes into account the interdependency between
the resources of a single time slot and the future demands
represented in a cumulative form.
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Fig. 2. Schematic diagrams of existing and proposed frameworks.

Both CCP and RP have been discussed in the literature for
non-predictive RA (without a time horizon) to handle uncer-
tainties in the demand and channel rates [29], [33]. While the
PRA typically involves decisions over a time horizon, the CCP
has to account for the interdependency between the constraints.

The violation of a time slot’s constraint can propagate and
impact the satisfaction of the next slot demand. For the RP,
preventative decisions should be taken at the beginning of the
time horizon to avoid suboptimal future decisions; unlike the
conventional RP that reactively takes counter actions (e.g.,
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releasing extra allocated resources) after the exact values of
uncertain parameters are unveiled.

Motivated by the uncertainty modelling in [12] and [13], our
earlier work in [20]-[22], and [34] focused on energy-efficient
robust PRA where the uncertainty was only in future channel
rates. In this paper, the proposed stochastic based R-GPRA
achieves long-term energy savings and QoS satisfaction under
demand and network uncertainty, which are demonstrated by
the probability of video termination and resource unavailabil-
ity at each time slot. A discrete linear formulation is obtained
by RP and CCP, which can be solved by commercial solvers
for benchmark solutions. Moreover, a low complexity guided
heuristic for real-time allocations is introduced. This heuris-
tic exploits the problem structure to achieve near optimal
energy savings, and satisfy all the QoS and resource limitation
constraints.

III. SYSTEM MODEL AND PROBLEM OVERVIEW
A. System Model

Each BS is serving a set of video streaming users denoted
by M, where each user index is i € M. To achieve energy
savings, a constant streaming rate is assumed which can be
either manually selected by the user or decided by the network.
Both the users’ locations and channel rates are known for the
next T time slots, where each slot index is denoted by t € T
The total video is available at the serving BS, at r = 0, and
the bottleneck is assumed to be the radio link. The prediction
of channel rates is performed by mapping the user’s current
location to the REM at the mobile operator. The REM contains
both the user’s locations and their corresponding channel rates
ri¢ for user i at time slot 7 [31].

1) Resource Allocation: The users of the same BS share the
available radio resources every time slot 7, where each user i is
allocated a fraction of the slot’s airtime denoted by x; ; € [0, 1].
Other real-time users are sharing the same resources, but their
allocation is not handled by the R-GPRA.

2) Predicted User Demand: The average demand of user
i at time slot ¢ is denoted by v;; which corresponds to the
data content played back with fixed quality. We assume that
the user can either terminate the session completely at any
time slot ¢ or skip part of the video and watch the subsequent
frames. Unlike existing models in [35] that handle the first
case only, our model allows the network to prebuffer the future
content which might be watched by the user after skipping
some frames of the video. Accordingly, the per slot demand
is modeled as a random variable v;; that is equal to O (user
terminated the video) or v;; (user streaming the video). The
cumulative demand is denoted as a random variable D,-,, =
Z§/=0 Vi

3) Predicted Network Resources: At each time slot, the
resources are shared among both the streaming users (con-
sidered by the R-GPRA) and other real-time users. The traffic
of the latter is modeled using their arrival rate and demanded
resources. The arrival of real-time traffic users is modeled as
a Poisson distribution with mean X, and the demand per user
is denoted by C. The total airtime share allocated to real-time
traffic users at time slot 7 is denoted by the random variable

C’,. It has to be noted that we model the arrival of users’ real-
time traffic demand which is typically modelled as Poisson
process [36], and not the mobile users admission or arrival at
the BS.

4) Energy Minimization: With the current BS ON/OFF
switching capabilities, the energy consumption E in the down-
link is calculated using the consumed power P and the time
X during which the base station was switched ON. Thus
E =P x X = (Pyw + Pp) x X, where P is the summation
of both the power radiated over the wireless link, denoted by
Pw, and the power for operating devices denoted by Pp. The
value of Py is constant since power control is not applied
in LTE [37]. Similarly, the dominant part of Pp is consumed
by the RF devices which is either fixed or negligibly vary-
ing and thus the power values is also constant, [38]. Thus, the
energy consumption can be expressed in terms of the airtime X
which corresponds to the time in which the above-mentioned
devices are switched ON and the signal is radiated over the
wireless link. In addition, measuring the energy consumption
using the airtime will provide a common ground for energy-
efficient PRA as the power term differs across BSs based on
the efficiency of devices [39]. In conclusion, and similar to the
existing PRA in [4] and [40], our framework will express the
energy consumption as the total time fractions > _ x;, ¢ allocated
to the users.

B. Problem Description

The robust Green Predictive Resource Allocation (GPRA)
scheme aims to calculate the airtime fractions x;, for each
user at time slot ¢ such that the total allocated resources are
minimized to achieve energy-saving or efficient bandwidth uti-
lization. The possibility of terminating the video by the user
at a certain time slot is taken into account. By doing so, this
prevents the PRA from prebuffering future content to users
who might terminate the video at any time slot with a certain
probability. Typically, this results in more energy savings and
optimal bandwidth utilization compared to existing non-robust
PRA that assumed perfect demand prediction.

As illustrated in Fig. 3 (a), the values of predicted rates for
three time slots would typically lead the PRA to prebuffer the
whole content during the first slot to save energy as depicted
in Fig. 3 (c). However, as shown in Fig. 3 (b), the high prob-
ability of terminating the video at the third time slot prevents
the robust PRA from prebuffering the future content due to
the high risk of wasting energy. As such, only the content of
the second slot, with a low probability of video termination,
is prebuffered whereas the delivery of the third slot’s content
will be postponed as illustrated in Fig. 3 (d). To summarize
the example, delivering the rest of the video content in the
third time slot costs more energy, in case of non-termination,
while prebuffering all the contents causes a waste of resources
in case of termination of viewing. The proposed robust PRA
calculates this trade-off based on both the predicted rates and
the probability of termination to perform the energy-efficient
and QoS-aware allocation.

The uncertainty of future network resources, due to ran-
dom user arrival, will interfere with the strategy mentioned
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Fig. 3. Tllustration of R-GPRA under Uncertain Video Streaming Demand.
earlier. Delaying the transmission in the case of high termina-
tion probability might be considered suboptimal if the future
network resources are scarce. The network, in that case, will
miss the chance of exploiting the current channel peaks and
vacant resources, and without being able to satisfy the user
demand given the future anticipated limited resources. As a
result, fewer energy-savings are attained in the case of future
peaks with low resources, while video stops are observed if
future low channel rates are further reduced by real-time traffic
user’s arrival.

IV. R-GPRA FORMULATION UNDER UNCERTAIN
DEMAND AND RESOURCES

In this section, we mathematically formulate the problem of
robust GPRA (R-GPRA) using stochastic optimization, and
then adopt recourse and chance constraint programming to
obtain deterministic equivalent forms.

A. Stochastic Formulation

The introduced energy-efficient robust PRA is formulated
using stochastic optimization. In particular, the uncertain
demand and future network resources are represented by
random variables as follows:

minimize E E Xit
X

VieM VieT
subject to:

1

Cl: > rigxip =Dis, Vie MVieT,
=0
M

C2: > xiy<1-C, VieT,
i=1

C3: x>0, VieM,teT. (1)

High risk of wasting

resources \

Low risk of wasting
resources

—

Prob. of Terminating Video

time
High risk:
No prebuffering

Low risk:
Prebuffer to save energy

" B

(d)

Allocated Resources

time

The objective function aims to minimize the total consumed
energy represented as a function of the total BS airtime [39].
The QoS constraint in C1 guarantees that the total delivered
content to the user satisfies the anticipated cumulative random
demand. C2 models the limited resources at each BS by ensur-
ing that the sum of allocated airtime is less than the total avail-
able network resources (allocation slot duration) while con-
sidering the random resources allocated to the real-time traffic
users. The last constraint C3 ensures the non-negativity of the
decision variables. The main difference between the proposed
robust formulation and the existing PRA work is the first and
second constraints that now incorporate random demand and
network resources. Such randomness has an impact on both
objective function value and QoS satisfaction. In particular,
when the random demand equals to v; ;, the objective function
is minimized by prebuffering the future content in peak rates.
On the other hand, when the random demand becomes 0 (due
to session termination) the objective function is minimized by
avoiding prebuffering of future content. Similarly, the network
should avoid prebuffering when available resources are low
(due to the periodic arrival of real-time traffic users) as the
pre-calculated resources will not be attainable.

B. Recourse and Chance Constrained Model

To represent the relation mentioned above between con-
straints C1, C2 and the objective function in a deterministic
form, Recourse Programming (RP) and Chance Constrained
Programming (CCP) models are used as depicted below:

o Z Z Xir+ E[H(Y» D)]

minimize
VieMVteT
subject to:

t t
Cl: Zn’t,xi,ﬂ > ZW’ Vie M,Vie T,
=0 =0
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M
C2uP() xii<1-C)=B. VteT,
i=1

C3:xi; > 0, VieM,teT.

2)

The objective function herein comprises two terms whose sum-
mation must be minimized. The first term represents the total
allocated resources (similar to the non-robust approach) while
the second term corresponds to the expected value of wasted
resources as a result of terminating the video before watching
the prebuffered content. In C2, the probability of satisfying the
network resource constraint by the calculated airtime fractions
is set above the QoS level 8. Where § € [0, 1] represents the
minimal probability of satisfying the QoS. Allocating more
resources than the available capacity, after accounting for the
real-time traffic users, will result in video stops since the users
will not be able to receive the minimal data amount calculated
by the R-GPRA. In the following, we show how to obtain a
closed form representation for both the recourse model in the
objective function, and the probabilistic constraint in C2.

1) Recourse Stage: The second term of the objective func-
tion in Eq. 2, i.e., E[H vy, D)], is the optimal solution of the
recourse stage and formulated as follows!:

minimize 3¢ Z Z P,y[;yl‘,t
¥.X '

VieM VieT
subject to:
Ca: rip—1Yie—1 + TFigXie — Vi < TigVits
Vie M,Vte T,
C5 y:>0, VieM,teT. 3)

The objective function of the recourse stage in Eq. 3 min-
imizes the expected value of excess allocated resources (i.e.,
prebuffered) and calculated as a function of both the second
stage decision variable y;, and the probability of terminating
the video denoted by pl“; The variable ¢ is used to model the
trade-off between the values of the two stages, and its value is
typically less than one. The constraint in C4 is used to calcu-
late the excess resources r; ;y; ; after every time slot ¢. The first
two terms on the left hand-side represent the total prebuffered
and newly delivered content in this time slot, respectively.
The third term represents the per slot demand in case of non-
termination. The right hand-side shows the amount of excess
resources after slot ¢ which corresponds to the prebuffered
future content.

2) Deterministic Equivalent: The probabilistic constraint in
C2 is replaced by the following deterministic equivalent form
which adopts the probability of user arrivals and their load.

M
C6: Y xii<1—(Crwbro) VIET, Vo€,
i=1

=
C7: > Swp’ti, = B VieT.
Ywe

C8: 8., € {0, 1} VieT, VoeQ, @

IThis subsection was preliminary proposed in our prior work [41].

The binary decision variable &, equals 1 if scenario w at
time slot ¢ has to be satisfied by the airtime allocation, and
equals O otherwise. The PDF of user arrival is used to con-
struct the scenarios of network resources at each time slot as
a result of real-time traffic user arrival. At each time slot ¢, the
scenario w represents the existence of w real-time traffic users.
The constraint in C6 demonstrates the scenarios in which the
calculated airtime fractions must satisfy the vacant network
resources 1 —C; 4. In C7, the total probability of satisfied sce-
narios must exceed the predefined QoS level B. pA,’w is the
probability of user arrival scenario w at time slot . When the
scenario is ignored (i.e., s, = 0), the right hand-side of C6
will be the maximum slot duration (i.e., all network resources
are available), and the QoS level B will avoid ignoring the
most probable scenarios.

C. Deterministic R-GPRA Linear Formulation

The complete deterministic formulation of the proposed
R-GPRA can be summarized in the following closed form
representation:

L , W
ml;l’l;glze Z Z Xit+ ¢ Z Z Pi it
VieMVieT Vie M VteT
subject to:

t t
Cl: Zri’,/x,"[/ > ZVU’ VieM, VteT,
=0 =0

C3: x>0, VieM,teT.
Ca: rig—1Yig—1 + FigXig — Vip < Tigis
YVieM, Ve T,

C5: i >0, VieM,teT.

M
C6: > xiy < 1= (Crobro) Vi€ T, Vo € Q,

i=1
C7: > Swbin =B VieT.

Yoe

C8 8,€{0,1}VieT, VYoweQ, 5)

The above formulation is obtained by combining Eq. 3 and
Eq. 4, resulting in a mixed integer linear programming model.
In the next section, we explore the possibilities and challenges
of solving this NP-complete model, and propose a guided
heuristic algorithm for real-time traffic allocation.

V. REAL-TIME OPTIMIZER

This section reviews the numerical optimization methods
that can be used to solve the formulated problem, and intro-
duces the details of heuristic search algorithm followed by
analysis of its computational complexity.

A. Optimal Solution

The robust formulation in Eq. 5 is a mixed integer lin-
ear programming model. As such, an optimal solution, which
satisfies all the constraints, can be obtained using branch-
and-bound or branch-and-cut, among other. Although these
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techniques are capable of reaching an optimal feasible solu-
tion with a small duality gap, they suffer from low scalability
and slow convergence. In particular, the complexity of such
numerical optimization techniques grows exponentially with
the number of decision variables [42]. These limitations are
due to overlooking the problem structure and exploring a large
area of the search space to avoid local optimal solutions. A
guided heuristic algorithm is therefore proposed to provide a
real-time feasible solution that is robust to prediction uncer-
tainty. Commercial solvers (e.g., Gurobi [43]) that adopt these
optimal techniques will be only used to evaluate the ability
of the heuristic technique to maintain the prediction gains and
satisfy the QoS constraints.

B. Guided Real-Time Heuristic

The proposed guided search heuristic algorithm uti-
lizes knowledge about the problem’s structure such as the
interdependency and conflicts between the constraints, and
their impact on the optimality of objective function. In essence,
the algorithm starts by satisfying all the QoS constraints using
the available radio resources while considering the distribution
of user arrival and the predefined QoS level. To achieve energy
minimization, resources are allocated to users that have not
reached peak channel conditions. Then, the algorithm exploits
the prebuffering capabilities of the mobile device for users
experiencing peak channel conditions. This is done by push-
ing the video content in advance to avoid allocation during
time slots with low channel rates or high congestion. In the
next step, the value of the objective function is further mini-
mized while examining the trade-off between possible energy
savings during peak radio conditions, and the risk of wasting
resources due to video termination in future time slots. The
heuristic is summarized in Algorithm 1 and Algorithm 2 and
detailed as follows.

In the first stage, minimal radio resources are calculated
(line 2-18) in order to satisfy the QoS constraint C1 in Eq. 2
for each slot while considering the network resources uncer-
tainties. The available network resources at each time slot are
calculated as follows (lines 2-12):

1) The amount of resources in each scenario are initially
sorted in ascending order and update the corresponding
probability mass function

2) The scenarios are considered iteratively until the total
probability reaches the QoS level B. Including more
scenarios will result in a conservative solution that
over-satisfies the QoS and deteriorates the value of the
objective function.

3) The resources of the last considered scenario (i.e.,
the scenario that needs the maximum resources) are
selected.

4) The total vacant capacity C; remaining for video stream-
ing users is calculated and used in the next stage.
After satisfying constraints C7 — C8, the algorithm proceeds
to fulfill the per slot demand constraint C1. This is accom-
plished by setting C1 to an equality and calculate the resource
sharing x;, that guarantee the satisfaction of demand. Such
minimal allocation continues until the user reaches peak radio

conditions (line 14). In high load scenarios, due to the large
number of users or high streaming rates, the total allocated
resources in a certain time slot might violate the airtime con-
straint C6 in Eq. 5. Accordingly, the preceding time slots
with vacant resources will be used to prebuffer the content
of the highly loaded time slots as depicted in lines 19-36 of
Algorithm 1. While efficient exploitation of the radio resources
is mandatory for these scenarios, the algorithm prebuffers the
content of the user with the highest achievable rate. Thus, less
airtime is consumed which increases the chance of satisfying
the radio resource constraint C2. In the case of non-vacant
resources, to accommodate the excess demand, the problem is
said to be infeasible (lines 34-36).

To further minimize energy consumption, a calculated risk
prebuffering strategy is applied by Algorithm 2. In essence,
the possibility of prebuffering is checked. For each time
slot following this peak, the amount of resources in the
case of prebuffering and non-prebuffering is checked while
considering the probability of video termination (lines 3-5)
which approximates the objective function in Eq. 3. In
the case of more resource saving (line 7), prebuffering is
done (line 8-10). Otherwise, the risk of wasting resources
is found to be high and minimal allocation is done for the
demand of this slot without prebuffering in the previous slots
(lines 13-16).

C. Algorithm Complexity

The first stage of the heuristic consists of sorting the sce-
narios (line 3) and calculating the total probability (line 6-11),
each has a complexity of O(N?) in the worst case scenario.
This stage is repeated for a maximum of 7 time slots, thus,
the total complexity (lines 2-12) is OQ2T x N?). The min-
imal allocation in lines 13-18 has complexity of O(MT),
while the repairing of resources in lines 19-37 has a com-
plexity of O(MT?) due to revisiting the preceding time slots
to check the possibility of prebuffering. Similarly, the second
part of the heuristic has a complexity of O(MT?) in which
previous slots are also revisited for prebuffering any of the
future slots with lower rates. Thus, the complexity of the
whole proposed heuristic is O(MT?) which is a polynomial
and significantly lower than the mathematical optimization
methods whose complexity is non-polynomial and depends on
the number of decision variables and constraints.

VI. PERFORMANCE EVALUATION
A. Simulation Environment

The proposed R-GPRA is developed in Network Simulator
3 (ns-3) Long Term Evolution (LTE) module where Gurobi
(a commercial solver) is integrated to obtain benchmark solu-
tions [44]. The probability of terminating the video at any
time slot ¢ is calculated using the model in [16]. Users follow
random mobility traces within the cell coverage region at a
constant velocity typical for suburban areas. The simulation
parameters and numerical values are shown in Table I. The
simulation is performed 25 times, and the average results of
all runs are reported in the next subsections.
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Algorithm 1: QoS Satisfaction Under Network

Resource Uncertainty

Algorithm 2: Calculated Risk Prebuffering for

Energy Minimization

Input : Users: M, Time Horizon: 7, Predicted
Rates: R, Demand Distribution: P,
Streaming Rate: V ;
Output - X;
Initialization: X =0, B=0, Y =0, Z=0 N, =0
VieT,;
1 Define: 7} = argmax{r,-,,, vt € T};
2 for r € T do
3 | € = Sort(PAVw € Q);
4 Initialize S; = 0;
5 Set minimum capacity C'; =1 ;
6 while S; < g do
7 for omega € Q do
8 Update probability sum: S; = S; + IA"éw;
9 Update minimum capacity: é’t =1- é’t,w;
10 end
1 end
12 end
13 for i € M do
14 | forreT |t<t do
15 Calculate minimal airtime x; ; = v; ;/7i s}
16 Update used slot fraction N, = N; + x; 1;
17 end
18 end
19 for t € T do
20 if N; > 1 then
21 Setk=1—1;
2 while k > 0&N; > C; do
23 if x;; > 0]i = argmax{ri,k, Vie ./\/l} then
24 Calculate the violated airtime
Axiy =Ny —1;
25 Calculate the demanded airtime
Axjr = Axj X :l’—;
26 if Ny + Axjp < 1 then
27 Update x; ., x;;, Ny and Ny ;
28 break;
29 end
30 end
31 k=k—1,
32 end
33 end
34 | if N; > C, then
35 Return Infeasible Problem;
36 end
37 end

The main metric to assess the energy consumption is the
total BS airtime [4], while the QoS of video streaming is
quantified by the number and duration of video stops [45].
In addition, the corresponding Quality of Experience (QoE)
of both number and duration of the stops is quantified by the
Mean Opinion Score (MOS) [46], [47]. In essence, the QoE
is a subjective metric that represents the service end-to-end

Input : Users: M, Time Horizon: 7, Predicted
Rates: R, Demand Distribution: P,
Streaming Rate: V ;

Output - X;

Initialization: X =0, B=0,Y=0,Z=0 N; =0

VieT,;
1 Define: 7} = argmax{ri,,, Vt e T};
2 forreTlt>1 do
3 Calculate airtime without Prebuffering x'; ; = v; /rir;
4 forte7 |t <t,rir>riy,Biy#1do
5 Calculate airtime with prebuffering z; = v; ;/ri ¢;
6 Calculate excess resources y; = ¥ X p% X Zit
7 if X'i; > zir + i then
8 Update x; ; = x; ¢ + Zi.13
9 Update used slot fraction N; = N; + z; ¢;
10 Update prebuffering statusB;; = 1;
11 end
12 end
13 if B;; # 1 then
14 Update airtime without prebuffering x; ; = v; /i ;
15 Update used slot fraction N; = N; + x; 3
16 end
17 end
18 return X

performance level from the user’s perspective, and can be
calculated using the MOS formula in [46] and [47] depicted
below:

M
1
MOSys = i > (299 x e 0% +2.01). (6)
i=1
| M
MOSyp = 7 D 459 x g3 (7)

i=1

where MOSys and MOSyp are the MOS values due to number
and duration of video stops, respectively. The average number
and duration of video stops are denoted by 1 and ¢, respec-
tively. The value of MOS varies from 1 to 5 which represents
very poor to excellent service, respectively.

We adopt these metrics to evaluate the proposed R-GPRA,
the existing non-robust PRA and the opportunistic RA (i.e.,
non-predictive). The following abbreviations are used in the
next subsection:

e PF (Non-PRA): the traditional opportunistic proportional
fair scheduler is used to represent the class of non-
predictive schemes. It allocates the resources to the
users based on their current channel measurements and
cumulative served traffic in previous slots [48].

e NR-GPRA: is the existing energy-efficient predictive
resource allocation that assumes perfect prediction and
adopts deterministic formulations [4]. This scheme is sim-
ulated by setting the values of ¢ and C;; to zero in the
objective function of Eq. 5, and the resultant formulation
is solved using Gurobi optimizer [43].
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TABLE I
SUMMARY OF MODEL PARAMETERS

Parameter Value/Definition
BS transmit power 43dBm
Bandwidth 5MHz
Time Horizon T' 60s

0.99
Bit Error Rate 5x107°
Velocity 60 [kmph]
QoS level B 0.95
Packet size 102 [bytes]
Packet rate (from core network to BS) 10351
Buffer size 107 [bits]

Probability of watching ratio pm /T %aq&(%)@(a%),w €

Probability of user arrival pﬁ,t A“;%,”w €
—_
Standard deviation of watching time ratio ¢ 0.18
Skew parameter o 0.84
Mean of watching time ratio 0.27
User arrival rate A 0.5
o(z) PDF of normal distribution
D(x) CDF of normal distribution

o PK-GPRA: this refers to a hypothetical PRA with perfect
knowledge of uncertain demand and network resources.
As such it is aware of exact watching duration and amount
of available resources. This is achieved by replacing the
random variables in Eq. 1 by the exact values from the
simulation.

e OR-GPRA: this represents the proposed robust green
predictive resource allocation as formulated in Eq. 5.
The probability of video termination follows the distri-
bution in [16]. The optimal solution is obtained by the
branch-and-cut methods in Gurobi optimizer [43].

e HR-GPRA: this refers to the heuristic version of OR-
GPRA in which the solution is obtained by the proposed
guided search in Algorithm 1 and Algorithm 2.

B. Simulation Results

1) Evaluating Demand Uncertainties: We initially evaluate
the impact of uncertain demand solely on the prediction gains
(i.e., energy savings). The system load, in terms of number
of users and streaming rates, was configured and set below
the available radio resources. Hence, no video stops were
observed, and thus the QoS was satisfied by all the schemes,
while the main focus remains on energy consumption. The
maximum energy saving gap, referred to as prediction gain,
is observed between the opportunistic non-predictive RA and
hypothetical perfect knowledge PRA. As reported in the PRA
literature [19], and shown in Fig. 4(a), the gain can reach up to
400 % due to the minimal allocation strategy adopted for cell
edge users moving to peak radio conditions. This is in addition
to maximizing the allocation for users exiting the cell.

The existing non-robust PRA (NR-GPRA), however, has
diminished the gain to 150% as a result of the greedy pre-
buffering for cell center users exiting the cell, as yet not
watching the full buffered video. On the contrary, the proposed
robust GPRA has strategically prebuffered the video content to
the users with poor future conditions, rather than transmitting
their full content. Such risk-aware prebuffering strategy avoids

greedy prebuffering of the future content whose delivery can
be postponed until the corresponding time slots are reached,
or the user arrives at time slots which have a low probability
of terminating the video. This is in addition to following the
minimal allocation to users experiencing poor conditions until
they reach peak rate values. As such, the robust scheme was
able to maintain the prediction gain at 320 %.

The same impact of uncertainty on the prediction gain was
observed while increasing the streaming rate for fewer users
Fig. 4(b). In this scenario, the maximum prediction gap can
reach up to 150%, however, the uncertainties resulted in a
25% prediction gap as depicted by the non-robust scheme. The
gain was retained to 100% by adopting the stochastic based
robustness.

2) Evaluating Joint Demand and Resources Uncertainties:
The simulations are extended to incorporate the resources
uncertainties, where the QoS and QoE performance are
depicted in Fig. 5(a)-Fig. 5(b) and Fig. 5(c)-Fig. 5(d),
respectively.

The resources uncertainties violated the QoS level under
the existing non-robust predictive scheme for a different num-
ber of users. Due to the arrival of real-time users, the network
was unable to deliver the video content with the pre-calculated
amount of resources. As such, the demand of cell edge users
is not met by the minimal allocated resources that might be
shared by the real-time users. The cell center video streaming
users were not impacted due to the prebuffered content that
surpasses the demand. Nevertheless, the substantial increase
in the normalized number and durations of stops is attributed
to the short video segments watched by the streaming users
(i.e., demand uncertainty). The corresponding QoS demon-
strates the exponential decay of users’ experience as a result
of experiencing a large number and durations of stops.

Unlike the non-robust scheme, the proposed optimal robust
technique has satisfied the predefined QoS level (8) for all
number of users. The robust scheme balances the amount
of allocated resource to the cell edge and cell center users.
Prebuffering is minimized for the cell center users and more
resources can be reserved for the real-time users. As a result,
the amount of allocated resources to cell edge users will be
secured during the arrival of real-time users.

The performance of non-robust and robust predictive
schemes is compared at different streaming rates and real-time
user traffic as shown in Fig. 6(a) and Fig. 6(b). As the traffic
load (streaming or real-time) increases, so does the number
of unsatisfied users. With regards to energy savings and the
prediction gain, the ability of robust scheme to maintain a high
value was observed. Thus, the cost of robustness is said to be
very low as the robust scheme avoided generating conservative
solutions.

3) Performance of Heuristic: The above-mentioned obser-
vations over different system and streaming loads are also
reported for the proposed heuristic. In essence, the heuris-
tic was capable of satisfying the QoS level and maintain the
prediction gap under demand and network uncertainties. The
complexity of both the optimal and heuristic techniques is
measured in terms of the computation time of a Quad Core i7-
Processor, 3.2 GHz machine. The heuristic algorithm requires
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Fig. 5. QoS and QoE for number and duration of stops with uncertain demand and network resources.
less than O.1ms. to solve the robust PRA formulation for all is sensitive to network load and capacity. The execution time

the network configurations (i.e., number of users and stream- varies from ls to 15s depending on the number of unsat-
ing rate values). On the other hand, the performance of Gurobi isfied users in the previous time slots, their streaming rate,
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and available channel capacity. Requests from users for high
streaming rates while experiencing low channel capacity will
result in a narrow feasibility region. Such situations are very
challenging for the solver that overlooks the problem structure
and generates a large number of branches and nodes to solve
the integer programming model.

VII. CONCLUSION

We introduced a robust green predictive resource allocation
(R-GPRA) scheme for video streaming that handles uncertain-
ties in both the users’ demands and network resources over
a time horizon. Hence, R-GPRA avoids wasting resources
and QoS violation. A stochastic formulation is proposed
and a deterministic equivalent closed form representation
was achieved using Recourse Programming (RP) and Chance
Constrained Programming (CCP) models that adopt the prob-
ability of random video termination and arrival of real-time
users. The resultant RP and CCP based formulations can be
solved either by commercial solvers for benchmark solutions,
or by the introduced guided heuristic search for real-time deci-
sions. The performance evaluation, using a standard compliant
simulator, demonstrated the ability of the introduced R-GPRA
to maintain the energy-saving gains of PRA while satisfy-
ing the QoS levels. An increase in system load underlines
the importance of having a robust scheme to avoid unneces-
sary excessive prebuffering for users leaving the cell center
negating the high probability of terminating the video before
viewing the full content. This is unlike existing PRA schemes
that greedily exploit the peak radio conditions by prebuffer-
ing the whole future content without taking into consideration
the users unstable demands. The proposed robust model can be
extended to Dynamic Adaptive Streaming over HTTP (DASH)
where the objective function can represent other QoS or QoE
metrics such as average quality or quality switches. The video
stops in that case will be handled by the probabilistic QoS
constraints. Our future work thus considers the extension to
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DASH which jointly optimizes the resources and video quali-
ties. This is in addition to considering other robust predictive
forms such as long-term fairness and risk allocation for high
load scenarios.

REFERENCES

[1] CISCO. (2017). Cisco Visual Networking Index: Global Mobile
Data Traffic Forecast Update, 2016-2021. Accessed: Feb. 15, 2017.
[Online].  Available: http://www.cisco.com/c/en/us/solutions/service-
provider/visual-networking-index-vni/index.html

[2] K. Davaslioglu and E. Ayanoglu, “Quantifying potential energy effi-
ciency gain in green cellular wireless networks,” IEEE Commun. Surveys
Tuts., vol. 16, no. 4, pp. 2065-2091, 4th Quart., 2014.

[3] Y. Bao, X. Wang, S. Zhou, and Z. Niu, “An energy-efficient client pre-
caching scheme with wireless multicast for video-on-demand services,”
in Proc. IEEE APCC, 2012, pp. 566-571.

[4] H. Abou-Zeid and H. S. Hassanein, “Predictive green wireless
access: Exploiting mobility and application information,” IEEE Wireless
Commun., vol. 20, no. 5, pp. 92-99, Oct. 2013.

[5] M. B. Ghorbel, B. Hamdaoui, M. Guizani, and B. Khalfi, “Distributed
learning-based cross-layer technique for energy-efficient multicarrier
dynamic spectrum access with adaptive power allocation,” IEEE Trans.
Wireless Commun., vol. 15, no. 3, pp. 1665-1674, Mar. 2016.

[6] H. Nguyen, G. Zheng, R. Zheng, and Z. Han, “Binary inference for pri-
mary user separation in cognitive radio networks,” IEEE Trans. Wireless
Commun., vol. 12, no. 4, pp. 1532-1542, Apr. 2013.

[71 B. Hawelka, I. Sitko, P. Kazakopoulos, and E. Beinat, “Collective
prediction of individual mobility traces for users with short data history,”
PLoS ONE, vol. 12, no. 1, 2017, Art. no. e0170907.

[8] J. Yao, S. S. Kanhere, and M. Hassan, “Improving QoS in high-speed
mobility using bandwidth maps,” IEEE Trans. Mobile Comput., vol. 11,
no. 4, pp. 603-617, Apr. 2012.

[91 A. Nadembega, A. Hafid, and T. Taleb, “An integrated predictive
mobile-oriented bandwidth-reservation framework to support mobile
multimedia streaming,” IEEE Trans. Wireless Commun., vol. 13, no. 12,
pp. 6863-6875, Dec. 2014.

[10] Z. Lu and G. de Veciana, “Optimizing stored video delivery for mobile
networks: The value of knowing the future,” in Proc. IEEE INFOCOM,
2013, pp. 2806-2814.

[11] R. Margolies et al., “Exploiting mobility in proportional fair cellular
scheduling: Measurements and algorithms,” in Proc. IEEE INFOCOM,
2014, pp. 1339-1347.

[12] H. Abou-Zeid, H. S. Hassanein, Z. Tanveer, and N. AbuAli, “Evaluating
mobile signal and location predictability along public transportation
routes,” in Proc. IEEE WCNC, 2015, pp. 1195-1200.

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:33:43 UTC from IEEE Xplore. Restrictions apply.



568

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
(371

[38]

IEEE TRANSACTIONS ON GREEN COMMUNICATIONS AND NETWORKING, VOL. 2, NO. 2, JUNE 2018

N. Bui and J. Widmer, “Modelling throughput prediction errors as
Gaussian random walks,” in Proc. KuVS Workshop Anticipatory Netw.,
2014, pp. 1-3.

I. Triki, R. El-Azouzi, and M. Haddad, “Anticipating resource manage-
ment and QoE for mobile video streaming under imperfect prediction,”
in Proc. IEEE ISM, 2016, pp. 93-98.

N. Bui, F. Michelinakis, and J. Widmer, “Mobile network resource
optimization under imperfect prediction,” in Proc. IEEE WoWMoM,
2015, pp. 1-9.

Y. Chen, B. Zhang, Y. Liu, and W. Zhu, “Measurement and modeling of
video watching time in a large-scale Internet video-on-demand system,”
IEEE Trans. Multimedia, vol. 15, no. 8, pp. 2087-2098, Dec. 2013.
W. Hu and G. Cao, “Energy-aware video streaming on smartphones,” in
Proc. IEEE INFOCOM, 2015, pp. 1185-1193.

M. A. Hoque, M. Siekkinen, and J. K. Nurminen, “Using crowd-sourced
viewing statistics to save energy in wireless video streaming,” in Proc.
ACM MobiCom, 2013, pp. 377-388.

H. Abou-Zeid, H. S. Hassanein, and S. Valentin, “Energy-efficient
adaptive video transmission: Exploiting rate predictions in wireless
networks,” IEEE Trans. Veh. Technol., vol. 63, no. 5, pp. 2013-2026,
Jun. 2014.

R. Atawia, H. Abou-Zeid, H. S. Hassanein, and A. Noureldin, “Joint
chance-constrained predictive resource allocation for energy-efficient
video streaming,” [EEE J. Sel. Areas Commun., vol. 34, no. 5,
pp. 1389-1404, May 2016.

R. Atawia, H. S. Hassanein, H. Abou-Zeid, and A. Noureldin,
“Robust content delivery and uncertainty tracking in predictive wire-
less networks,” IEEE Trans. Wireless Commun., vol. 16, no. 4,
pp. 2327-2339, Apr. 2017.

R. Atawia, H. Abou-Zeid, H. Hassanein, and A. Noureldin, “Chance-
constrained QoS satisfaction for predictive video streaming,” in Proc.
IEEE LCN, 2015, pp. 253-260.

R. Atawia, H. S. Hassanein, and A. Noureldin, “Robust long-term
predictive adaptive video streaming under wireless network uncertain-
ties,” IEEE Trans. Wireless Commun., vol. 17, no. 2, pp. 1374-1388,
Feb. 2018.

R. Atawia, H. Hassanein, and A. Noureldin, “Optimal and robust QoS-
aware predictive adaptive video streaming for future wireless networks,”
in Proc. IEEE GLOBECOM, Dec. 2017, pp. 1-6.

R. Atawia, H. Hassanein, and A. Noureldin, “Fair robust predictive
resource allocation for video streaming under rate uncertainties,” in Proc.
IEEE GLOBECOM, Dec. 2016, pp. 1-6.

H. Abou-Zeid, H. Hassanein, and S. Valentin, “Optimal predictive
resource allocation: Exploiting mobility patterns and radio maps,” in
Proc. IEEE GLOBECOM, 2013, pp. 4877-4882.

L. Chen, Y. Zhou, and D. M. Chiu, “Video browsing—A study of user
behavior in online VoD services,” in Proc. IEEE ICCCN, 2013, pp. 1-7.
N. Y. Soltani, S.-J. Kim, and G. B. Giannakis, “Chance-constrained
optimization of OFDMA cognitive radio uplinks,” IEEE Trans. Wireless
Commun., vol. 12, no. 3, pp. 1098-1107, Mar. 2013.

M. Abdel-Rahman and M. Krunz, “Stochastic guard-band-aware channel
assignment with bonding and aggregation for DSA networks,” IEEE
Trans. Wireless Commun., vol. 14, no. 7, pp. 3888-3898, Jul. 2015.
M. C. Gonzidlez, C. A. Hidalgo, and A.-L. Barabdsi, “Understanding
individual human mobility patterns,” Nature, vol. 453, no. 7196,
pp. 779-782, 2008.

M. Neuland, T. Kurner, and M. Amirijoo, “Influence of positioning
error on X-map estimation in LTE,” in Proc. IEEE VTC (Spring), 2011,
pp. 1-5.

P. Kall and S. W. Wallace, Stochastic Programming. Chichester, U.K.:
Wiley, 1994.

A. O. Fapojuwo, K. T. Chi, and F. C. M. Lau, “Energy consumption
in wireless sensor networks under varying sensor node traffic,” in Proc.
IEEE WCNC, 2010, pp. 1-6.

R. Atawia, H. Abou-Zeid, H. Hassanein, and A. Noureldin, “Robust
resource allocation for predictive video streaming under channel uncer-
tainty,” in Proc. IEEE GLOBECOM, Dec. 2014, pp. 4683-4688.

A. Finamore, M. Mellia, M. M. Munafo, R. Torres, and S. G. Rao,
“YouTube everywhere: Impact of device and infrastructure synergies on
user experience,” in Proc. ACM SIGCOMM, 2011, pp. 345-360.

B. Chandrasekaran, Survey of Network Traffic Models, Washington
Univ., St. Louis, MO, USA, vol. 567, 2009.

LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); Physical
Layer Procedures, v12.5.0, 3GPP Standard 36.213, 2015.

Y. Li, M. Reisslein, and C. Chakrabarti, “Energy-efficient video trans-
mission over a wireless link,” IEEE Trans. Veh. Technol., vol. 58, no. 3,
pp. 1229-1244, Mar. 2009.

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

(48]

C. Desset et al., “Flexible power modeling of LTE base stations,” in
Proc. IEEE WCNC, 2012, pp. 2858-2862.

H. Abou-Zeid and H. S. Hassanein, “Toward green media delivery:
Location-aware opportunities and approaches,” IEEE Wireless Commun.,
vol. 21, no. 4, pp. 38-46, Aug. 2014.

R. Atawia, H. Hassanein, and A. Noureldin, “Energy-efficient predictive
video streaming under demand uncertainties,” in Proc. IEEE ICC,
May 2017, pp. 1-6.

G. Ausiello et al., Complexity and Approximation: Combinatorial
Optimization ~ Problems and Their Approximability — Properties.
Heidelberg, Germany: Springer, 2012.

Gurobi. Gurobi Optimization. Accessed: Sep. 29, 2016. [Online].
Available: http://www.gurobi.com/

H. Abou-Zeid, H. S. Hassanein, and R. Atawia, “Towards mobility-
aware predictive radio access: Modeling; simulation; and evaluation in
LTE networks,” in Proc. ACM MSWiM, 2014, pp. 109-116.

Y. Xu et al., “Analysis of buffer starvation with application to objec-
tive QoE optimization of streaming services,” IEEE Trans. Multimedia,
vol. 16, no. 3, pp. 813-827, Apr. 2014.

L. G. M. Ballesteros et al., “Energy saving approaches for video stream-
ing on smartphone based on QoE modeling,” in Proc. IEEE CCNC,
2016, pp. 103-106.

T. HoBfeld et al., “Quantification of YouTube QoE via crowdsourcing,”
in Proc. IEEE ISM, 2011, pp. 494-499.

T. Bu, L. Li, and R. Ramjee, “Generalized proportional fair scheduling
in third generation wireless data networks,” in Proc. IEEE INFOCOM,
2006, pp. 1-12.

Ramy Atawia (S’12-M’17) received the B.Sc.
and M.Sc. degrees in communication engineering
from the German University, Cairo, Egypt, in 2012
and 2013, respectively, and the Ph.D. degree in
electrical and computer engineering from Queen’s
University in 2017. He is currently an Indoor
Radio Solutions Developer with Ericsson Research
and Development, Canada. He was a Member of
Technical Staff and a Researcher with Bell Labs,
Nokia. He was with Vodafone on autonomous
optimization of radio networks, and was with Nokia

on customer experience management and analytics. He was a teaching assis-
tant and a guest lecturer where he delivered tutorials on optimization, wireless
networks, and programming. His research work has appeared in top-tier IEEE
journals and conferences, and it has led to 15 patents. His research includes
stochastic optimization, predictive video streaming, machine learning, and Al
in communication networks. He was a recipient of the Best Paper Award at
IEEE GLOBECOM 2017. He also serves as a TPC member and a reviewer
in IEEE flagship conferences and journals.

Hossam S. Hassanein (S’86-M’90-SM’05-F’17) is
a leading authority in the areas of broadband, wire-
less, and mobile networks architecture, protocols,
control, and performance evaluation. He is also the
Founder and the Director of the Telecommunications
Research Laboratory, Queen’s University School of
Computing, with extensive international academic
and industrial collaborations. His record spans over
500 publications in journals, conferences, and book
chapters, in addition to numerous keynotes and ple-
nary talks in flagship venues. He was a recipient

of several recognitions and best papers awards at top international confer-
ences. He is a Former Chair of the IEEE Communication Society Technical
Committee on Ad hoc and Sensor Networks. He is an IEEE Communications
Society Distinguished Speaker (Distinguished Lecturer from 2008 to 2010).

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:33:43 UTC from IEEE Xplore. Restrictions apply.



ATAWIA et al.: UTILIZATION OF STOCHASTIC MODELING FOR GREEN PREDICTIVE VIDEO DELIVERY UNDER NETWORK UNCERTAINTIES 569

Najah Abu Ali (M’07) received the B.Sc. and
M.Sc. degrees in electrical engineering from the
University of Jordan, and the Ph.D. degree from the
Department of Electrical and Computer Engineering,
Queen’s University, Kingston, Canada, specializing
in resource management in computer networks. She
is currently an Associate Professor with the Faculty
of Information Technology, United Arab Emirates
University (UAEU). She has further co-authored a
Wiley book on 4G and beyond cellular communica-
tion networks. Her general research interests include
modeling wireless communications, resource management in wired and wire-
less networks, and reducing the energy requirements in wireless sensor
networks. She has strengthened her focus on the Internet of Things, particu-
larly at the nano-scale communications level, in addition to vehicle-to-vehicle
networking. Her work has been consistently published in key publications
venues for journals and conference. She has also delivered various seminar
and tutorials at both esteemed institutions and flagship gatherings. She has also
been awarded several research fund grants, particularly from the Emirates
Foundation, ADEC, NRF/UAEU funds, and the Qatar National Research
Foundation.

Aboelmagd Noureldin (S°98-M’02-SM’08)
received the B.Sc. degree in electrical engineering
and the M.Sc. degree in engineering physics
from Cairo University, Egypt, in 1993 and 1997,
respectively, and the Ph.D. degree in electrical
and computer engineering from the University of
Calgary, Alberta, Canada, in 2002. He is a Professor
with the Departments of Electrical and Computer
Engineering, Royal Military College of Canada
(RMCC) with a cross-appointment with the School
of Computing and the Department of Electrical and
Computer Engineering, Queen’s University. He is also the Founder and the
Director of the Navigation and Instrumentation Research Group, RMCC.
His research is related to GPS, wireless location and navigation, indoor
positioning, and multisensor fusion. He has published over 230 papers in
journals and conference proceedings. His research work led to ten patents in
the area of position, location, and navigation systems.

Authorized licensed use limited to: Queen's University. Downloaded on June 25,2020 at 21:33:43 UTC from IEEE Xplore. Restrictions apply.



