
VANET-based Smart Navigation for Emergency
Evacuation and Special Events

Ahmed Elbery
School of Computing
Queen’s University

Kingston, Ontario, Canada
aelbery@cs.queensu.ca

Hossam S. Hassanein
School of Computing
Queen’s University

Kingston,Ontario, Canada
hossam@cs.queensu.ca

Nizar Zorba
EE Department
Qatar University

Doha, Qatar
nizarz@qu.edu.qa

Hesham A. Rakha
CEE Department

Virginia Tech
Blacksburg, Virginia, USA

hrakha@vt.edu

Abstract—In this paper we propose, develop, and analyze the
performance of a new system-optimum navigation model that uti-
lizes Vehicular Ad-hoc Networks (VANETs), linear programming
optimization, and stochastic routing to efficiently and smartly
navigate vehicle crowds in case of an emergency evacuation
or after special events. The objective of the proposed system
is to clear the network in a shorter time by better utilizing
the network resources while taking into consideration the road
capacities. In this model, road links are weighted based on
travel time. Road link capacities and current traffic conditions
are used as constraints in the optimization problem. Vehicles
are employed as sensors to compute travel times of the links
and send this information to the Traffic Management Center
(TMC) in real-time. The TMC periodically optimizes the traffic
assignment. Subsequently, routes for vehicles are created/updated
based on the latest optimized assignments. To test the model,
a real network with calibrated traffic is used. The proposed
model is compared to the Sub-population Feedback Dynamic
Time-dependant Assignment (SFDTA) navigation. Moreover, we
analyze its sensitivity to the re-optimization interval at different
traffic demand levels. The results show that the proposed system
decreases the network-wide travel time and is successful in
clearing the network earlier especially in the case high vehicle
traffic demands.

Index Terms—VANET-based Navigation, Smart Cities, Crowd
Management, Stochastic Routing, Constrained Routing.

I. INTRODUCTION

Intelligent Transportation Systems (ITSs) employ advanced
navigation techniques to improve mobility by reducing travel
time [1], [2], fuel consumption, and the environmental impact
from the transportation sector [3]. However, navigation sys-
tems that perform well in day-to-day traffic conditions are not
suited for some non-recurrent events such as large sporting
events or emergency evacuation, in case of natural disasters.
In such events, there is a large number of vehicles (vehicular
crowds) needs to be routed and exit the crowd area.

Most of the current navigation techniques will not work
efficiently in such situations because most of them utilize best
path routing models. The main problem with best path routing
is the single cost function. These techniques do not account
for other parameters such as road capacity, traffic volume, or
underutilized alternative routes. Moreover, at any given time,
shortest path navigation techniques provide the same guidance
for all vehicles based on their destinations, causing the shortest
path to collapse, while other longer paths are underutilized. It

also can result in route oscillations and unstable global traffic
behavior [4].

The challenge in non-recurrent events is two-fold. First, the
sheer volume of traffic that needs to leave the event area can
cause serious congestion and may result in network grid-lock.
Consequently, adversely affecting the mobility (i.e., increasing
travel time, fuel consumption, and emission levels). Second,
the road networks are not designed to support such a high
traffic demand, basically, because of the required high road
capacities [5] and special traffic control techniques [6].

Thus, vehicle crowds combined with road network resource
constraints, bring forward the need for efficient and smart
management techniques that better utilize the network facilities
while taking into consideration the road capacity constraints.

Inspired by Vehicular Ad-hoc Networks (VANETs) [7] the
advancement in information technology, vehicular navigation
based on real-time information shows potential benefits for
crowd management [8] to reduce travel time [2] and en-
ergy/fuel consumption [9], [10]. Utilizing VANETs in real-
time navigation brings new opportunities to address the prob-
lem of vehicular crowd navigation.

Therefore, this paper focuses on utilizing VANET com-
munication, to efficiently and smartly route vehicular crowds
to minimize the network-wide travel time and to clear the
network faster. The contributions of this paper are:
• Proposing and developing a system-optimum navigation

model for vehicular crowds,
• Using a real network and a calibrated traffic to test the

proposed model, and
• Performing sensitivity analysis against two system param-

eters; traffic load and re-optimization interval.
Firstly, the proposed system uses vehicles as network

sensors and utilizes VANETs as an infrastructure to collect
road state-conditions (traffic volume and travel time on each
road segment) in real-time. The collected information is used
along with historical information to optimize the network-
wide vehicular traffic-assignment using linear programming
(LP) [11]. In the optimization problem, the road capacities
and current traffic loads are used to constrain the network
congestion. Then, a stochastic route construction algorithm is
used to create/update the vehicles’ routes.

The main idea behind the proposed model is to efficiently
utilize all the network resources, allowing vehicles traveling
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from the same origin to the same destination, at the same
time to be assigned different routes. Consequently, in order to
minimize congestion and improve the network-wide mobility,
some vehicles may be subjected to longer travel times.

Secondly, to test the proposed model, we use the FIFA
World Cup 2022, which will be held in Qatar, as a case study.
The Doha road network in Qatar, is implemented and used
to compare our proposed system to the SFDTA user-optimum
traffic assignment.

Thirdly, we perform system sensitivity analysis against the
re-optimization interval at different traffic loads.

In terms of previous related work, there is some research
effort [1], [2] in addition to online services such as Google
Maps and INRIX [12]. However, all of these utilize the shortest
path techniques (which are user equilibrium models) or at most
provide alternative routes without considering the system-wide
performance or trying to minimize network-wide congestion.
Both [4] and [13] developed a heuristic approach to assign
vehicles to different routes. Our proposed model is a step up
because we use matured optimization model to assign routes.
We also account for the current network states in assigning the
traffic. The authors in [9] developed a system-optimum eco-
routing model to minimize fuel consumption. Our proposed
model focuses on clearing the network faster. Moreover, we
focus on improving navigation in special non-recurrent events.

The remainder of the paper is organized as follows. Section
II is the network model and problem definition. Section III
details the proposed system and its components. Section IV
describes our case study using Doha network in Qatar and the
results. The final conclusions are presented in V.

II. NETWORK MODEL AND PROBLEM DEFINITION

Fig. 1 shows the network model being studied in this paper.
We assume that there is a vehicular crowd, represented by the
red area in Fig. 1 which is a stadium where sport matches
are held. The destinations of these vehicles are distributed
across the network. Consequently, these vehicles are grouped
into a set of Origin-Destination (OD) pairs based on their
destinations. Each OD pair represents a traffic flow from the
stadium to a given destination, as shown by the yellow arrows
in Fig. 1. Thus, the network has a set F of f concurrent
flows. Each flow k ∈ {1, 2, ..., f} has Vk cars that need to
leave within a time interval τ . Therefore, each flow k ∈ F
has a traffic rate qk (in vehicles per hour veh/h), where qk =
Vk/τ . We assume these vehicles are connected and follow the
route recommendations they receive from the TMC. We call
these flows the controlled traffic (CT).

In addition to CT, we assume that there is a background
traffic (BT) that is traversing the network. BT vehicles use the
shortest path routing.

The road network is represented by a directed graph
G(N ,L, C), where N = {i : i = 1, 2, ..., n} is a set of n
nodes and L is a set of l directed links (road segment), i.e.,
L = {Li,j : i, j ∈ N}, where Li,j is the road segment from
node i to node j. Each road segment has a capacity Ci,j

which is the maximum traffic flow rate that can enter/exit

Fig. 1: The Network Model

this link. And each segment has time dependent cost Ti,j
that represents its estimated travel time which depends on the
traffic conditions on segment Li,j .

Our objective is to assign routes to the CT vehicles in
such a way that minimizes the network-wide travel time,
consequently, clearing the network faster. The next section
describes the proposed framework to achieve this objective.

III. VEHICULAR CROWD MANAGEMENT FRAMEWORK

This section describes the proposed framework and its
components, including data collection and processing, the
optimization problem formulation and its constraints, and the
stochastic route construction algorithm.

In contrast to deterministic shortest path routing, the pro-
posed system applies stochastic system-optimum routing. The
main goal is to utilize all available network resources by
routing vehicles (going to the same destination) simultane-
ously through alternative routes while maintaining traffic load
on each road segment within its capacity. To achieve these
objectives, the system uses vehicles as sensors to collect
network-state information in real-time. The collected data is
processed and fused with historical data. Then, this data is used
to optimize the traffic-assignment. By traffic-assignment we
simply mean the portion of each flow k that will be assigned
to each road segment (described in detail in subsection III-B).

After computing the optimized traffic-assignment, the TMC
builds stochastic routes for vehicles upon receiving routing or
rerouting requests. Fig. 2 shows the three components of the
system.

A. Data Collection and Processing

As shown in Fig. 2 vehicles can communicate to the
TMC using either Vehicle-to-Infrastructure (V2I) or Vehicle-
to-Vehicle (V2V) multi-hop connection. In addition to ve-
hicle communication facilities, we assume that vehicles are
equipped with a Global Positioning Systems (GPSs), so a
vehicle can identify which link it is currently traversing. These
facilities are used to collect and communicate the information
needed by the TMC that computes two parameters for each
road link Li,j , namely, travel time Ti,j and traffic load ζi,j on
each link.



Fig. 2: System Components

Whenever, a vehicle enters a new road link, it initializes
the travel time to the current time, and when it exits this
road segment, it computes its travel time on this segment.
Subsequently, it builds a message with this information along
with the current time as well as the next link to be traversed.
The message format is shown in Fig. 3. The vehicle then tries
to send this message to the TMC using either V2I (such as
car A in Fig. 2) or V2V (such as car B in Fig. 2). If the car
does not have a connection (car C in Fig. 2), it will store the
message until reaching an area that is covered by the wireless
network, or finding a vehicle-to-vehicle path to the TMC.

When the TMC receives a message, it finds whether it is
expired by comparing the current time to the message time
stamp. The message expiry interval is assumed to be 180
seconds. The unexpired messages are used to update the link
travel times. The TMC fuses the new travel with the historical
data using exponential smoothing as shown in Eq. 1. In our
case we used an exponential factor α of 0.2.

T t
i,j = α T̂i,j + (1− α) T t−1

i,j (1)

where T t
i,j , T t−1

i,j , and T̂i,j are the new travel time of link
Li,j , the old value, and the received update, respectively.

To compute the currant traffic load on each road link,
the system uses the ”Next LinkID” field in the received
messages. It maintains a linked-list for each road segment that
stores the times at which vehicles enter this link in the last 180
seconds (which is the same as the expiry time). Periodically,
the system computes the average inter-arrival interval and the
traffic volume on each segment. Then, it fuses this new rate

Fig. 3: The Link-State Message Format

with the link history in the same manner as the travel time.
The importance of maintaining a linked-list for each segment
is to enable the system to consider the delayed packets within
the last 180 seconds interval.

The link-state information is then used by the traffic assign-
ment optimization module.

B. Traffic Assignment Optimization

The optimization problem is formulated to allow vehicles
from the same traffic flow k to use different paths at the same
time. This allows load-balancing the traffic among different
alternative routes.

The Optimization Problem

The objective of the linear program is to minimize the
network-wide travel time by computing the link-flow assign-
ment parameters for each link-flow pair. Vehicles in the kth

flow whose rate is qk can be assigned different road links.
The link-flow assignment denoted by qki,j is the portion of
this traffic flow k that will go through Li,j .

Based on this definition, the optimization problem can be
formulated as:

minimize
qki,j

n∑
i=1

n∑
j=1

Ti,j

f∑
k=1

qki,j

subject to :
n∑

d=1

qki,d −
n∑

s=1

qks,i = 0, if i is an intermediate node

n∑
d=1

qki,d − qk = 0, if i is the source of the kth flow

qk −
n∑

d=1

qks,i = 0, if i is the destination of the kth flow

ζi,j +

f∑
k=1

qki,j 6 Ci,j ∀ Li,j ∈ L,

qki,j ≥ 0.
(2)

where i, s, d ∈ N such that Li,d is a link exiting node i, and
Ls,i is a links entering node i. If the network has f flows and
l links, the linear program calculates l.f argument variables.

In the problem formulation, there are three sets of con-
straints. The first is to satisfy the route continuity. The second
is to guarantee that total flow rate on each link does not exceed
its capacity, and finally the positive traffic assignment.

The Route Continuity Constraints: This set of constraints
is represented by the first three constraints in Eq. 2. The
objective of this constraint is to ensure that the computed
traffic-flow assignment results in connected routes for each
flow k to its destination.



The route continuity condition is achieved by enforcing the
individual flow balance at each node, which can be formulated
as follows.
• For each intermediate node i, and for each individual flow
k, the summation of the sub-flows of the kth flow entering
this ith node must be equal to the summation of the sub-
flows of the kth flow exiting this node.

• For each source (or destination) node, we assume there is
another fictitious source (or destination) sending qk to (or
receiving qk from) it.
The Link Capacity Constraints: For each directed link

Li,j ∈ L, the total flow rate traversing it should not exceed
its capacity Ci,j . The total traffic rate on the link is calculated
as the summation of its current load ζi,j (computed based
on the received link-state information messages) and all the
flows/sub-flows assigned to this link.

The Positive Assignment Constraints: The last constraint
is to allow only positive values for qki,j , to make it consistent
with the directed links.

The system initializes link costs based on the maximum
speed for each link. Then, it uses the latest updated link
information to periodically optimize the link-flow assignment.
This interval is called the Re-optimization Interval. The link-
flow assignment matrix is used to build or update stochastic
routes when requested by a vehicle.

C. Building Vehicle Routes

When a vehicle starts its trip, it sends a route request to
the TMC. The TMC calls the route construction algorithm,
shown in Algorithm 1, which takes four input parameters:
the flow number k, the start node s, the destination node d,
and the link-flow assignment vector qki,j for the kth flow. The
algorithm stochastically creates a route as follows. It starts
with the vehicle’s origin node s, and uses it as the current
node i. Then, it finds all the links going out of this node i,
the link set Ľ = {Li,j : Li,j ∈ L}. For each link Li,j ∈ Ľ,

Algorithm 1

1: procedure BUILD A VEHICLE ROUTE(k,qki,j , s, d )
2: R← φ
3: i← s
4: while i 6= d do
5: R← (R, i)
6: Ľ← Li,j : Li,j ∈ L, Li,j is non-restricted
7: for each Li,j ∈ Ľ do
8: compute pj

9: r ← randomnumber
10: for j=1 to sizeof Ľ do

11: if
j∑

ǰ=1

pǰ 6 r then

12: i← j
13: break
14: return R . Return the computed route.

Fig. 4: Lane Striping and Re-routing (The red and white cars
cannot change the next link in their routes)

it computes pj = qki,j/
∑

Li,d∈Ľ

qi,d, which is the probability to

select this link as the next link in the route. Then, based on the
computed values pj , the algorithm stochastically selects one
of these links to be the next link in the route. After adding
the selected link to the route, the algorithm uses its end node
j as the current node i, and repeats the process until reaching
the vehicle’s destination.

D. Vehicle Re-routing

Vehicle re-routing is the process of updating the vehicle
route while it is moving to react to the new traffic conditions.
This process is challenging because: 1) road network moving
restrictions, and 2) zero value traffic assignment.

Firstly, in road networks, there are some restrictions on
moving a vehicle from one link to another. In other words,
a vehicle on a road segment might not be able to move to
another segment despite that the two segments are connected
in the appropriate directions. Such restrictions include, but not
limited to, turn prohibition and lane striping.

Turn prohibition at intersections indicate which direction
a vehicle cannot move (left, right, and/or U-turns). To deal
with this prohibition in our model, when building the route
or updating it, Ľ in step 6 within Algorithm 1 is defined as
the set of links that the subject vehicle can move to (from its
current link). This is why we add the non-restricted condition
in this step in Algorithm 1.

Lane striping poses another re-routing challenge. When a
vehicle approaches the end of a road segment, it has to be in
the appropriate lane for its direction of travel. After a given
point on the segment, marked by the dashed striping line in
Fig. 4, a vehicle cannot move to another lane. So, after passing
this point and before leaving this link, if a vehicle received
a better route it may not be able to update its current one
because of this lane restriction. To overcome this issue, when
re-routing a car, we have to start from the road segment after
the vehicle’s next segment, we call this the re-routing start
link (RSL). This way, we make sure that the lane striping on
the current link will not introduce any restriction, moreover,
on the next link, this vehicle will take the appropriate lane for
the new route.

The second problem with vehicle re-routing is the traffic as-
signment for the RLS. More specifically, this problem happens
if, in the latest optimized assignment, qki,j = 0 for the RSL
(i.e., RSL = Li,j and qki,j = 0 ). In this case, the re-routing
algorithm will not be able to find a route for this vehicle from
the RSL, and the vehicle will continue following its current
route until the next re-routing time.



IV. SIMULATION AND RESULTS

To test the performance of the proposed model, we de-
veloped it within a microscopic traffic simulator, namely, the
INTEGRATION software [14]. INTEGRATION is an agent-
based microscopic traffic simulation and assignment frame-
work. It is characterized by its accuracy that comes from its
microscopic nature. It has a time granularity of 0.1 seconds
that allows it to accurately capture the vehicle steady-state
car-following behavior which results in accurate estimation of
travel time. It also accounts for traffic lights and their impact
on the travel time. Moreover, its microscopic nature enables it
to accurately model vehicle queues and congestion which are
important parameters in link travel time computation.

For the optimization purpose, we use the CPLEX Optimizer
[15] to optimize the traffic assignment.

To study the efficiency of the proposed framework, we
compare it to the Sub-population Feedback Dynamic Time-
based traffic Assignment (SFDTA) [14] which uses the shortest
path routing based on the dynamic link travel times since
this would best reflect the state-of-practice routing. SFDTA
also tries to overcome the shortest path routing problem and
utilize the network resources by dividing the traffic into 5
sub-populations, each sub-population is routed at different
time of the routing/re-routing interval. This way, it can utilize
alternative routes [14].

Regarding the network and the traffic, we use the FIFA
World Cup 2022 event which will be held in Qatar as a case
study. After football matches, we expect a large number of
vehicles need to leave the stadium’s parking lot, resulting in
a vehicle crowd surrounding the stadium area. The following
subsection describes the network and traffic demand setting.

A. Network and Traffic Setup

To achieve realistic results, a part of Doha city in Qatar,
shown in Fig. 1, with calibrated background vehicular traffic
demands is used. To build this network, data were collected
from different sources that include road network Geographic
Information System (GIS) Shapefile, intersection data from
OpenStreetMap (OSM), Google Maps, and ArcGIS. The Doha
city shapefile was used to generate the network nodes and
links. OSM data were used to extract intersection traffic
control information including the traffic control methods (stop
sign, yield sign, or traffic lights). Google Maps and ArcGIS
were utilized for validating road attributes including the num-
ber of lanes, one-way streets, and speed limits for each road
segment. The resulting simulation network has 169 nodes, 301
road segments, and 11 traffic lights.

We assume that the red area in Fig. 1 is a stadium from
which vehicles belong to the controlled traffic (CT) will
depart to different network points (as shown by the yellow
arrows). This traffic is distributed over 10 network exit points.
In regrades to background traffic (BT), which represents the
regular traffic traversing the network, it was calibrated using
the maximum likelihood technique based on car counts data
collected from the OSM website. The BT rate in the first
row (S1) in Table I is 10% of the calibrated traffic. In this

scenario S1, we assume that there are 2800 cars as the CT.
The rates in S1 is multiplied by scaling factors 2 through 5 to
compute the higher traffic rates in S2 though S5. We assume
that these vehicles should leave within one hour with uniform
inter-departure intervals. This way, these car counts can be
converted into traffic rates.

Table I: Traffic Levels.

Scenario # Controlled Traffic Background Traffic Total

S1 2800 1603 4403
S2 5600 3383 8983
S3 8400 5245 13645
S4 11200 7127 18327
S5 14000 9085 23085

Increasing the traffic more than S5 results in optimization
failure which means the traffic rate becomes higher than the
network capacity.

B. Evaluation Metrics
Our main objective is to minimize the network clearance

time by minimizing network-wide travel time. So, we use the
following two metrics: (1) Network Clearance Time is the
time at which the last vehicle reached it destination and the
network is completely cleared, and (2) Average Vehicle Travel
Time is computed as the summation of all vehicles’ travel
times divided by the number of vehicles, i.e., Tav =

∑
v∈V Tv

||V || .
The travel time for each individual vehicle Tv is the time it
takes from its scheduled departure time to the time it reaches
its destination.

C. Simulation Results
We run each of the 5 traffic levels using both the proposed

model (Stochastic LP) and SFDTA. To have statistically sig-
nificant results, each scenario is run 15 times with different
seeds and the average evaluation metrics are computed.

1) Network Clearance Time: Fig. 5 compares the network
clearance time for both the SFDTA and our stochastic LP rout-
ing. It demonstrates that: (1) at low traffic demand levels (S1,
S2), there is no significant difference between the two routing
techniques at 0.05 confidence level, (2) for the higher traffic
levels (S3, S4, S5), the proposed model reduces the network
clearance time by 28%, 32%, and 38%, respectively. These two
findings demonstrate the importance of the proposed model in
the case of large events or evacuation, which are the typical
scenarios for which it is proposed.

2) Average Vehicle Travel Time: Fig. 6 shows the average
travel time for CT cars. It is clear that the proposed model is
successful in decreasing the average network wide average
travel time except for the lower traffic demand level (S1)
where the CT travel time increased by approximately 9%. The
reason for this increase in the CT travel time is that for the
low traffic rates, the network is not congested. And, in order to
avoid causing congestion on the shortest paths, the stochastic
LP routing assigns the CT vehicles longer routes that increases
the travel time. While, in the higher traffic rates, the congestion
level becomes higher and the shortest path becomes congested
which makes the stochastic LP more beneficial.
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3) Sensitivity analysis: This section investigates the clear-
ance time sensitivity to re-optimization interval. We ran exten-
sive simulations at different traffic demand rates and different
re-optimization intervals.

Fig. 7 shows the average network clearance time versus the
re-optimization interval (60, 120, 240, 360 and 600 seconds)
for the 5 traffic cases. It is clear that, at low traffic demands
(S1, S2), changing the re-optimization interval does not have
significant effect on the network clearance time. This can be
reasoned to the fact that, at these traffic demands, network con-
ditions do not change significantly, and there is no congestion
occurring in the network that needs re-optimization.

However, as the traffic demand increases, the need for
shorter re-optimization interval becomes higher to adapt to
the dynamic network-state conditions.

V. CONCLUSION

In this paper, we develop and test a VANET-based naviga-
tion system that can enhance navigation in the large gathering
events and emergency evacuation cases. In this system, vehi-
cles are employed as network sensors, and VANET is used as
infrastructure to collect the network-state conditions in real-
time. The collected data is utilized to optimize the link-flow
assignment at the TMC, then the TMC stochastically assigns
routes to vehicles.

The micro-simulation of the proposed model shows its su-
periority to currently available navigation models, as SFDTA,
in the case of high traffic demands.

A future extension of this work is to study the effect of
route acceptability probability on the system performance.
Additionally, we plan to consider the communication network
load and to study the communication requirements. Moreover,
studying the sensitivity of the proposed navigation system to
the communication reliability stands as a potential extension.
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