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Abstract—Non-recurrent events (e.g. football events or evacua-
tion in case of natural disasters) pose great challenges to vehicle
routing and traffic management in Intelligent Transportation
Systems (ITSs). The high traffic demand during such events,
combined with the road network resource constraints, bring
forward the need for efficient and smart management techniques
that better utilize the network facilities while maintaining a
certain performance level. Vehicular Ad-hoc Networks (VANETS)
and the advancement in information technology bring new
opportunities to address such problems. This paper utilizes
VANETSs to build a vehicular crowd management system that
utilizes system-optimum stochastic routing. The objective is to
clear the network in a shorter time by better utilizing the
available network resources. To build this system, vehicles are
used as sensors that communicate the network state information
to the Traffic Management Center (TMC) in real time. A linear
programming model is developed to minimize the network-wide
travel time constrained by the road link capacities based on
the collected information. The results show that the proposed
system decreases the network-wide travel time and is successful
in clearing the network earlier by up to 38% compared to
deterministic user-equilibrium traffic assignment.

Index Terms—VANET-based Navigation, Stochastic Routing,
Constrained Routing.

I. INTRODUCTION

Merging advanced Information and Communication Tech-
nology (ICT) into Intelligent Transportation Systems (ITSs)
has shown significant improvements in both vehicle mobility
and safety by reducing travel time [1], fuel/energy consump-
tion [2], [3], crash probability, and accidents severity [4].

As ICT becomes an integral part of ITS, significant research
efforts are being allotted to utilize such technologies in more
advanced ways. Vehicular navigation systems based on real
time information is an important research direction showing
potential benefits which include reducing travel time [5], [6],
and energy/fuel saving [7].

Despite the ability of such navigation techniques to effi-
ciently route vehicles and save travel time and energy, most
of them fail when there are heavy vehicular crowds in the
case of special large events such as large public gatherings at
a sporting event or emergency evacuation, in case of natural
disasters. One reason for this limitation is that, as these events
are non-recurrent, the road networks are not designed to
support this high traffic volume during such events, where
higher road capacities [8] and special traffic control [9] are
needed. The second reason is that many of these techniques
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are based on the minimum path algorithms, and thus produce
the user-optimum traffic assignment solution. The best path
routing techniques do not account for other parameters such
as road capacities, traffic volume, or underutilized alternative
routes. Moreover, at any given time, shortest path navigation
techniques provide the same guidance for all vehicles on the
road based on the destination, causing the shortest path to
collapse, while other longer paths are empty. It also results in
route oscillations and unstable global traffic behavior [10].

The high traffic demand during large events or in evac-
uation scenarios, combined with the road network resource
constraints (including the road link capacities, traffic signals,
turn/link/lane prohibitions), raise the need for efficient and
smart route planing techniques. Such techniques would better
utilize the network facilities, while maintaining a certain
performance level that satisfies the driver’s expectations.

Because of the importance of the crowd management [11],
this paper focuses on utilizing the advancements in vehicular
communication [12], to efficiently route vehicular crowds
to minimize the network-wide travel time and to clear the
network faster. The proposed system uses vehicles as network
sensors and utilizes VANETSs as an infrastructure to collect
road state-conditions (traffic volume and travel time on each
road segment) in real-time. The collected information is used
along with historical information to optimize the network-
wide vehicular traffic-assignment using linear programming
[13]. In the optimization problem, the road capacity and
its current traffic load are used to constrain the network
congestion. The main idea behind the proposed model is to
efficiently utilize all the network resources, allowing vehicles
traveling from the same origin to the same destination, at
the same time to be assigned different routes. Consequently,
in order to minimize congestion and improve the network-
wide mobility, some vehicles may be subjected to longer travel
times.

To test our proposed model, we use the FIFA World Cup
2022, which will be held in Qatar, as a case study. The
Doha road network in Qatar, is implemented and used to
compare our proposed system to the dynamic time-dependant
incremental user-optimum traffic assignment which is typical
real-time navigation systems that are currently in use.

The remainder of the paper is organized as follows. Section
IT explores the related work. Section IV describes the proposed
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system and its components. Section V describes our case
study on Doha network in Qatar and the results. The final
conclusions are presented in VI.

II. PREVIOUS WORKS

Online services, such as Google Maps and Waze, provide
online dynamic navigation guidance based on the estimated
travel time information collected from vehicles or mobile de-
vices. Other online services, such as INRIX [14], provide real-
time traffic information to assist driver and autonomous vehi-
cles selecting routes. Some research efforts [5], [6] propose
a mobile crowd sensing that use both current and historical
information to predict the traffic condition and traveling speed.
The objective is to enable dynamic routing of drivers wishing
to avoid congestion. All these guidance systems utilize the
shortest path techniques (which are user equilibrium models)
or at most provide alternative routes without considering the
system-wide performance or trying to minimize network-wide
congestion.

Some researches consider balancing the traffic across al-
ternative routes. For instance, the authors of [10] propose
a heuristic approach "Entropy Balanced k Shortest Paths"
to assign vehicles to different routes randomly based on
the vehicle’s remaining travel time and the route popularity.
Compared to this algorithm, our proposed model is a step
up because we utilize optimization to assign routes instead
of assigning routes randomly. Moreover, our proposed model
accounts for the current network-wide states in assigning the
traffic (i.e. the current traffic load on each road segment).

The authors in [15] present an evacuation route planning
model by computing the relationship between the clearance
time, number of evacuation paths, and congestion probability
during an evacuation. The model in [15] does not utilize ve-
hicular networks and does not account for the current network
conditions. Instead, it focuses on road capacity uncertainty. In
our work, we collect the road information, based on which,
we can estimate the available road capacities. Consequently,
a portion of the traffic can be assigned to these underutilized
routes. In [16], the authors developed a system-optimum eco-
routing model to minimize the fuel consumption. By utilizing
multiple routes they were able to reduce the traffic congestion,
consequently, reduce the fuel consumption. Compared to [16],
our proposed model focuses on the objective of clearing the
network faster by enabling vehicles to use alternative routes
at the same time.

III. NETWORK MODEL AND PROBLEM DEFINITION

Fig. 1 shows the network model being studied in this
paper. The road network is represented by a directed graph
GN,L,C), where N = {i : i = 1,2,...,n} is a set of n
nodes and L is a set of [ directed links (road segment), i.e.,
L=A{L;;:1i,j € N}, where L; ; is the road segment from
node ¢ to node j. Each road segment has a capacity C; ; which
is the maximum traffic flow rate that can exit this link. And
each segment has a variable travel time T; ; that depends on
the traffic conditions on each segment.

In the network, we assume that there is a vehicular crowd,

Fig. 1: The Network Model

represented by the red area in Fig. 1. In our case study, this
red area represents a stadium where some matches will be
held. The destinations of these vehicles are distributed across
the network. Consequently, these vehicles are grouped into a
set of Origin-Destination (OD) demand pairs based on their
destinations. Each OD pair is a traffic flow from the stadium
to a destination, as shown by the yellow arrows in Fig. 1.

Thus, we assume that there is a set F of f concurrent flows,
each flow is identified by k& € {1,2,..., f}, and each has V}
cars that need to leave within a time interval 7. Therefore, each
flow k € F has a traffic rate ¢* (in vehicles per hour veh/h),
where ¢* = Vj./7. We assume these vehicles are connected
and follow the route recommendations they receive from the
Traffic Management Center (TMC). So, we call these flows
the controlled traffic (CT).

In addition to CT, we assume that there is a background
traffic (BT) that is traversing the network. Vehicles in the BT
use the dynamic time-dependent best path routing.

Our objective is to assign routes to the CT vehicles in
such a way that minimizes the network-wide travel time,
consequently, clear the network faster.

IV. VEHICULAR CROWD MANAGEMENT FRAMEWORK

This section describes the proposed framework and its
components, including the data collection and processing, the
optimization problem formulation and its constraints, and the
stochastic route construction algorithm.

In contrast to deterministic shortest path routing, the pro-
posed system applies stochastic system-optimum routing. The
main goal is to utilize all the available network resources
by routing vehicles (going to the same destination) simul-
taneously through alternative routes while maintaining traffic
load on each road segment within its capacity. To achieve
these objectives, the system uses vehicles as sensors to collect
network-state information in real-time. The collected data
is processed and fused with historical data, and then used
to optimize the traffic-assignment. By traffic-assignment we
simply mean the portion of each flow k that will be assigned
to each road segment (described in detail in subsection I'V-B).

After computing the optimized traffic-assignment, the TMC
constructs stochastic routes for vehicles upon receiving rout-
ing requests. Fig. 2 shows the three components of the system.
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Fig. 2: System Components

A. Data Collection and Processing

Vehicular network is an integral part in our system. We
assume that there is a set of Road Side Units (RSUs) installed
in the network through which vehicles can communicate to
the TMC. Because the RSU deployment cost, they can not
cover the whole network. Thus vehicles can communicate
to the TMC using either vehicle-to-infrastructure (V2I) or
Vehicle-to-Vehicle (V2V) multi-hop connections. The RSUs
are connected to TMC as shown in Fig. 2. In addition to
vehicle connectivity, we assume that each vehicle is equipped
with a Global Positioning System (GPS), so a vehicle can
identify which link it is traversing. These facilities are used to
communicate the information needed by the TMC to compute
two parameters for each road link L; ;: the travel time T; ;
and the current traffic load ¢; ;.

Whenever, a vehicle enters a new road segment, it initializes
the travel time to the current time, and when it exits this
road segment, it computes its travel time on this segment.
Subsequently, it builds a message with this information along
with the current time as well as the next link to be traversed.
The message format is shown in Fig. 3. The vehicle then tries
to send this message to the TMC using either V2I (such as
car A in Fig. 2) or V2V (such as car B in Fig. 2). If the car
does not have a connection (car C in Fig. 2), it will store the
message until reaching an area covered by the network, or
finding a vehicle-to-vehicle path to the TMC.

When the TMC receives a message, it finds whether it is
expired by comparing the current time to the message time
stamp. The message expiry interval is assumed to be 180
seconds. The unexpired messages are used to update the link
travel times. The TMC fuses the new travel with the historical
data using exponential smoothing (in our case we used an
exponential factor o = 0.2), as shown in Eq. 1.

0 8 16 24 32 40 48 56
Code |

Seq Num VehicleID

LinkID Link Travel Time

Currnt Time Next LinkID

Fig. 3: The Link-State Message Format

! =a T+ (1-a) Ty (1)
where T}, Tfj_l , and T; ; are the new travel time of link
L; ; , the old value, and the received update, respectively.

To compute the currant traffic load on each road link,
the system uses the " Next LinkID” field in the received
messages. It maintains a linked-list for each road segment that
stores the times at which vehicles enter this link in the last 180
seconds (which is the same as the expiry time). Periodically,
the system computes the average inter-arrival interval and the
traffic volume on each segment. Then, it fuses this new rate
with the link history in the same manner as the travel time.
The importance of maintaining a linked-list for each segment
is to enable the system to consider the delayed packets within
the last 180 seconds interval.

The link-state information is then used by the traffic as-
signment optimization
B. Traffic Assignment Optimization

The optimization problem is formulated to allow vehicles
from same traffic flow k to use different paths at the same
time. Consequently, allows load-balancing the traffic among
different alternative routes.

An Illustrative Example

To understand how to optimize the traffic assignment, we
give this illustrative example in Fig. 4, where there is a stretch
of highway (HW) and an alternative arterial road (AR) which
has longer travel time. The HW has a reduction of lanes (at
point A) from 3 lanes to 2 lanes. If the steady state traffic rate
entering the HW is low, all the cars will take the HW since
its capacity is sufficient. However, if the steady state traffic
rate increases, congestion will take place at point A and will
spill back creating a queue on the HW, while leaving the AR
underutilized. Using the shortest path routing, this congestion
will continue, and will lead to increasing the travel time of
the HW until it becomes longer than that of the AR. At this
point, cars will start switching to the AR causing congestion
on it (because of the high traffic rate). So, the congestion will
switch between the HW and the AR.

In contrast, our model will divide the traffic flow between
the HW and the AR. For instance, if the traffic flow rate is
w veh/h, then S.u veh/h will take the HW and ~y.u veh/h
will take the AR, where 8 and € [0, 1], and, in this example,
B+~ = 1. Here, 3 and ~ are called the link-flow assignment.
These link-flow assignment parameters must be computed
in such a way that minimizes the network-wide travel time,
while maintaining the total flow on each road within the road
capacity.

The Optimization Problem

The linear program should be formulated in such a way

that minimizes the network-wide travel time by computing

Fig. 4: Example Scenario
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the link-flow assignment parameters for each link-flow pair.
Vehicles in the k" flow whose rate is ¢* can be assigned
different links. The link-flow assignment denoted by ql’f j
(corresponding to 3 or + in the illustrative example), is the
portion of this traffic flow % that will go through L; ;. Based
on this definition, the optimization problem can be formulated

as:
n n f
mlmkrmzeg E T4 E q,;
43, i=1 j=1 k=1
subject to :

qu’d - quz,z = 03
dil s=1

Z q'ﬁd - qk = 07

d=1

n
" - Z qf,i =0, if ¢ is the destination of the k" flow
d=1

if 7 is an intermediate node

if 3 is the source of the k' flow

f
Gij + ZQ§,j <Ci; V LijeCl,
k=1

ar; > 0.

@3
where i, s,d € N such that L, 4 is a link exiting node ¢, and
Ly ; is a links entering node 4.

The objective function of the LP problem shows that, if the
network has f flows and [ links, the linear program calculates
f portions for each of the [ links. Consequently, the total
number of variables in the program will be [.f.

In our problem there are three sets of constraints. The first
is to satisfy the route continuity. The second is to guarantee
that total flow rate on each link does not exceed its capacity,
and finally the positive traffic assignment.

The Route Continuity Constraints: This set of constraints
is represented by the first three constraints in the LP in Eq. 2.
The objective of this constraint is to ensure that the computed
traffic-flow assignment results in a connected route for each
flow k to its destination. The route continuity condition is
achieved by enforcing the individual flow balance at each
node, which can be formulated as follows.

e For each intermediate node ¢, and for each individual
flow k, the summation of the sub-flows of the k" flow
entering this ' node must be equal to the summation
of the sub-flows of the k" flow exiting this node.

o For each source or destination node, we add or subtract
the total flow rate q’“. For instance, for the source node 7
that generates the k" flow whose rate is qk, we assume
there is another fictitious source sending ¢* to it, then
node ¢ sends these vehicles to other nodes d € N. And
vice verse for the destination nodes.

This set of constraints has n X f constraints.

The Link Capacity Constraints: For each directed link
L;; € L, the total flow rate traversing it should not exceed
its capacity C; ;. The total traffic rate on the link is calculated
as the summation of its current load (; ; (computed based
on the received link-state information messages) and all the
flows/sub-flows assigned to this link.

The Positive Assignment Constraints: The last constraint

is to allow only positive values for qf ;» to make it consistent
with the directed links.

In the beginning, the system initializes the link costs based
on the maximum speed for each link. Then, it uses the latest
updated link information to periodically optimize the link-flow
assignment. This interval is called the "Updating Interval",
which is a system parameter. The link-flow assignment matrix
is used to build stochastic routes when requested by a vehicle.
C. Building Vehicle Routes

Upon receiving a route request from a vehicle, the TMC
calls the route construction algorithm, shown in Algorithm 1.
The route construction procedure takes four input parameters:
the flow number k, the start node s, the destination node
d, and the link-flow assignment qik, j for the k*" flow. The
algorithm stochastically creates a route as follows. It starts
with the vehicle’s source node s, and uses it as the current
node ¢. Then, it finds all the links going out of this node ¢,
the link set L = {L;; : L;; € L}. For each link L, ; € L,
it computes p; = qz’f j/ Z i.d» which is the probability to

L;q€L
select this link as the next link in the route. Then, based on the
computed values p;, the algorithm stochastically selects one
of these links to be the next link and adds it to the route. Then,
the algorithm uses its end node j as the current node ¢, and
repeats the process until reaching the vehicle’s destination.

V. SIMULATION AND RESULTS

The proposed model is developed within the INTEGRA-
TION software [17] which is an agent-based microscopic
traffic simulation and assignment framework.

INTEGRATION is characterized by its accuracy in esti-
mating travel time because it replicates vehicle longitudi-
nal motion using the Rakha-Pasumarthy-Adjerid (RPA) car-
following model [18] which captures vehicle steady-state car-
following behavior. It also accounts for traffic lights and their
impact on the travel time. Moreover, its microscopic nature

Algorithm 1

1: procedure BUILD A VEHICLE ROUTE(kz,qﬁj, s, d)
2 R+ ¢
3 14— S
4: while i # d do
5: R+ (R,1)
6 j;(—Li,j:LZ‘JE[,
7 for each L; ; € L do
8 compute pj
9 r < randomnumber
10: for j=1 to sizeof L do
J

11: if Zp3 < r then

j=1
12: 14 )
13: break
14: return R > Return the computed route.
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enables it to accurately model vehicle queues and congestion
which significantly affect the link travel time. The scalability
of the INTEGRATION software enabled us to model up to
23,000 vehicles in the network scenario. We use the CPLEX
Optimizer [19] to compute the the traffic assignment. To study
the efficiency of the proposed framework, we compare it to the
dynamic time-based traffic assignment which uses the shortest
path routing based on the dynamic link travel times given that
this would best reflect the state-of-practice routing.

We use the FIFA World Cup 2022 event which will be held
in Qatar as a case study. After football matches, the number
of vehicles that need to leave the stadium is huge, resulting in
a vehicle crowd surrounding the stadium area. The following
subsection describes the network and traffic demand setting.
A. Network and Traffic Setup

To achieve realistic results, we used a real network with
calibrated background vehicular traffic demands. The time-
dependent static origin-destination (O-D) demand matrices
were generated every 15 minutes using the QueensOD soft-
ware [20]. QueensOD estimates the most-likely O-D matrix
that is as close structurally as a seed matrix while at the
same time minimizes the error between the estimated and field
observed link flow counts.

The network shown in Fig. 1 is used for the simulation. It
is a part of Doha city in Qatar where the FIFA World Cup
2022 will be held.

To build the simulation network, data were collected from
different sources that include: 1) a road network Geographic
Information System (GIS) Shapefile; 2) intersection data from
OpenStreetMap (OSM); and 3) Google maps and ArcGIS. The
Doha city shapefile was used to generate the network nodes
and links. OpenStreetMap data were used to extract intersec-
tion traffic control information including the traffic control
methods (stop sign, yield sign, or traffic signals). The number
of phases for each traffic signal and traffic signal timing
information were obtained based on field observation.Google
maps and ArcGIS were utilized for validating road attributes
including number of lanes, one-way streets, and speed limits
for each road segment. The resulting simulation network has
169 nodes, 301 road segments, and 11 traffic signals.

We assume that the red area in Fig. 1 is a stadium from
which vehicles belong to the controlled traffic (CT) will
depart to different network points (as shown by the yellow
arrows). This traffic is distributed over 10 network exit points.
In regards to background traffic (BT), which represents the
regular traffic traversing the network, it was calibrated using
the technique [20] based on car counts data collected from
the OpenStreetMaps (OSM) website. The BT rate in the first
row (S1) in Table I is 10% of the calibrated traffic. In this
scenario S1, we assume that there are 2800 cars as the CT.
The rates in S1 is multiplied by scaling factors 2 through 5 to
compute the higher traffic rates in S2 though S5. We assume
that these vehicles should leave within one hour with uniform
inter-departure intervals. This way, these car counts can be
converted into traffic rates.

We tried to increase the traffic in S5, but the optimization

failed to solve the LP problem because the traffic rate becomes
higher than the network capacity.
B. Evaluation Metrics

Our main objective is to minimize the network clearance
time by minimizing network-wide travel time. So, we use the
following two metrics: (1) Network Clearance Time is the
time at which the last vehicle reached it destination and the
network is completely cleared, and (2) Average Vehicle Travel
Time is computed as the summation of all vehicles’ travel
times divided by the number of vehicles, i.e., T,, = %
The travel time for each individual vehicle T, is the time
it takes from its scheduled departure time to the moment it
reaches its destination.
C. Simulation Results

We run each of the 5 traffic levels using both the Stochastic
LP routing and the shortest path routing. To have statistically
significant results, each scenario is run 16 times with different
seeds and the average evaluation metrics are computed.
1) Network Clearance Time

Fig. 5 compares the network clearance time for both the
shortest path routing and the stochastic LP routing. It demon-
strates that: (1) at low traffic demand levels (S1, S2), there is
no significant difference between the two routing techniques
at 0.05 confidence level, (2) for the higher traffic levels (53,
S4, Sb5), the proposed model reduces the network clearance
time by (28%, 32%, 38%), respectively. These two findings
demonstrate the importance of the proposed model in the case
of large events or evacuation cases, which are the typical
scenarios for which it is proposed.
2) Average Vehicle Travel Time

We compute the average travel time for the BT and the CT
individually, as well as the combined traffic as in Fig. 6. It
is clear that for the CT, the stochastic routing is successful
in decreasing the average vehicle travel time except for the
lower traffic demand level (S1) where the CT travel time
increased by around 17% as shown in Fig. 6-(a). The reason
for this increase in the CT travel time is that for the low traffic
rates, the network is not congested. And, in order to avoid
causing congestion on the shortest paths, the stochastic LP

Table I: Traffic Levels.

Scenario #  Controlled Traffic =~ Background Traffic =~ Total
S1 2800 1603 4403
S2 5600 3383 8983
S3 8400 5245 13645
S4 11200 7127 18327
S5 14000 9085 23085
__ 12000 50
3 e = Stochastic LP 38.69
o 20000 ) Shortest Path > 40
-E 8000 ---®--- Saving % 32.03 ) .
g 28.81 @ - 30 £
& 6000 = . — : £
3 0.74 | 20 3
S 4000 - B A
2 2000 l H'OI ﬂ 10
= o S 3 o

s1 s2 S3 s4q S5

Traffic Scenario

Fig. 5: Network Clearance Time
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Fig. 6: The Average travel time

routing assigns the CT vehicles longer routes that increases the
travel time. While, in the higher traffic rates, the congestion
level becomes higher and the shortest path becomes congested
which makes the stochastic LP more beneficial.

Fig. 6-(b) shows that, applying the stochastic LP routing
for the CT has a negative impact on the BT which uses the
shortest path. The reason is that, applying the stochastic LP
routing to the CT results in higher CT vehicle density in the
network which reduces the available capacity for the other
BT traffic. However, the average travel time for the combined
traffic became better except for the lowest traffic demand level
as shown in Fig. 6-(c).

VI. CONCLUSION
In this paper, we utilize the vehicular communication net-
work to propose a new framework for vehicle navigation in the
case of large gathering events or evacuation cases. Vehicles are
employed as sensors, and VANET is used as infrastructure to
collect the network-state conditions in real-time. Then, linear
programming is used to compute the link-flow assignment
in order to minimize the network-wide travel time. Based
on link-flow assignment, the routes can be stochastically
assigned to vehicles. The micro-simulation of the proposed
model shows that by the virtue of VANET communication, the
proposed navigation system outperforms the regular shortest
path navigation techniques in the case of high traffic demands.
A future extension for this work is to consider the com-
munication network load and to study the communication
requirements for such system to work efficiently. A second
extension is to study the sensitivity of the proposed navigation

system to the communication reliability.
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