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Abstract—Large sport and entertainment events such as soccer
games or concerts attract an immense number of fans, most
of whom use personal vehicles to get to the event. Such a
large number of cars presents a “vehicular crowd” that needs
to leave in an organized, timely, and safe manner after the
event. Combining vehicular crowds with a constrained road
networks raises the need for efficient techniques for vehicular
crowd management which is a fundamental building block in
smart cities. We introduce a novel Vehicle Departure Control
(VDC) and navigation system to clear the network in a shorter
time and reduce network congestion and system-wide travel
time. The proposed system collects network information from
a variety of sensory devices: connected vehicles, smartphones,
and traffic cameras. Then, it fuses this data to compute the
current state conditions of each road link. Based on these
parameters, the VDC module determines the allowable vehicle
departure rates, and the navigation module computes the system-
optimum routes for drivers to take. The proposed system is
implemented in a microscopic simulator. The FIFA World Cup
2022 is used as a case study. We compare the proposed system to
the Sup-population Dynamic Time-dependent Incremental Traffic
Assignment (SFDTIA) which is a typical real-time navigation
system that is currently in use by commercial systems. The results
show that our optimum navigation and departure control reduced
the network clearance time on average by 16%, and by 37% in
certain extreme conditions.

Index Terms—IoT-based Navigation, Vehicle Departure Con-
trol, Stochastic Routing, Crowd Management

I. INTRODUCTION

Sports and entertainment events at stadiums are examples
where vehicular crowds occur in a limited area. The majority
of attendees use personal vehicles to attend the event. There-
fore thousands of vehicles (i.e., vehicular crowd) need to leave
after the event, which may cause congestion if not smartly and
efficiently managed.

Most cities are not designed to support this kind of high
traffic volume which, in such cases, often exceeds the road
network capacity [1], [2]. The massive traffic volume results
in higher vehicle density on the roads. Consequently, and
according to the fundamental relationship between speed and
density [3], a lower average travelling speed and longer travel
times are inevitable results. Additionally, the high traffic
volume produces longer queues at signalized intersections,
which increases the travel time. Moreover, in complex road
networks, this may result in network grid-locks. These prob-

lems, which have been neglected so far in the research of smart
transportation systems [4], raise the need for efficient and
smart vehicular crowd management system, with traffic control
and route planning capabilities to utilize the network facilities
in a better way while maintaining certain performance levels.

The Internet of Things technology (IoT) [5] introduces
new opportunities to improve vehicle mobility and remedy
congestion problems in smart cities. IoT utilizes the advance-
ment in communications, control, information processing, and
computing systems to build integrated systems that collect,
process, and analyze information from different sensors to
assist in making better informed decisions.

By utilizing IoT, this paper introduces a novel vehicular
crowd management system that integrates departure control
and smart navigation, to better manage vehicular crowds after
large gathering events. The objectives of the proposed system
are to clear the network faster and to decrease the average
travel time by reducing the network congestion.

A deeper look at these objectives shows that they contradict
one another. Clearing the network faster means allowing
vehicles to depart early after the event, while early departures
may result in higher traffic rates, more substantial congestion,
and longer travel time. On the other hand, reducing congestion
means reducing vehicle departure rates (i.e., increasing the
inter departure intervals), which results in longer clearance
time.

The main idea of the proposed system is to compromise
between the two contradicting objectives; the maximum allow-
able departure rates and minimum travel times. So, the system
allows vehicles to depart as early as possible after the event,
in such a way that does not increase the network congestion
or negatively impact the network-wide average travel time.

To achieve this goal, the proposed framework collects data
from three types of IoT sensors: connected vehicles, smart-
phones, and cameras installed at traffic lights. The collected
information is fused to compute the network state information
(travel time and traffic load on each road segment). Combining
the network state information with traffic demand levels, en-
ables the system to run its two main functions; 1) the Vehicle
Departure Control (VDC) which computes the allowable
vehicle departure rates based on the current network condition,
and 2) the stochastic system-optimum navigation that aims
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to minimize the network travel time by simultaneously routing
vehicles (going to the same destination) through multiple
alternative routes. These two functions are integrated to avoid
contradiction between them. The paper’s contributions are:

• To propose a VDC system for vehicular crowds. This
system is responsible for controlling vehicle departures
to allow vehicles to leave as early as possible, while
maintaining minimal congestion levels and minimum
system-wide travel time. The VDC achieves this objective
by computing the maximum allowable vehicle departure
rates, based on the current road network state conditions
and considering the capacities of the road links.

• The VDC system is integrated with the system-optimum
navigation [6], [7] to minimize the network congestion
by optimizing the use of the available capacities.

• The proposed system is developed within a microscopic
simulator. Then, it is tested on a real road network with
real calibrated traffic. As a case study, we use the FIFA
World Cup 2022, to be held in Doha, Qatar. The Doha
road network is implemented and used to compare our
proposed system to the un-controlled cases.

The remainder of the paper is organized as follows. Section
II explains the network model and its objectives. Section III
describes the proposed system and its components. Section IV
presents our case study on the Doha network, and its results
before the conclusions in Section V.

II. NETWORK MODEL AND OBJECTIVE

To describe the system’s mathematical model, this section
presents the network model and defines our objective.

A. Network Model

In our proposed model the road network is represented by
a directed graph G(N ,L, C), that has a sGet N = {i : i =
1, 2, ..., n} of n nodes and a set L = {Li,j : i, j ∈ N} of l
directed links (road segment), where Li,j is the road segment
from node i to node j. Each road segment is characterized by a
capacity Ci,j ∈ C which is the maximum traffic flow rate that
can enter this link without causing congestion in this segment.
Each segment has a variable travel time Ti,j that depends on
the traffic conditions in each segment. Additionally, each road
link has a time-varying traffic load ζi,j which represents the
average vehicle rate passing it. Thus, the available capacity on
each road segment can be computed as Ci,j − ζi,j .

In Fig. 1, the vehicular crowd is represented by the red area.
In our case study, this red area represents a stadium where
matches are to be held. The stadium parking area has a set of
gated exit points. Vehicles leaving this area towards different
destinations distributed across the network. These vehicles are
grouped into a set of Origin-Destination (OD) demand pairs
based on their destinations (this traffic information is collected
using smartphones as described later in Subsection III-A4 ).
Each OD pair is a traffic flow from the stadium to a destination,
shown by yellow arrows in Fig. 1.

Therefore, there is a set F of f O-D flows, each flow is
identified by k ∈ {1, 2, ..., f}, and each has Vk vehicles that

Fig. 1: The Network Model

need to leave within a time interval τ . Thus, each flow k ∈ F
has a traffic rate qk = Vk/τ (in vehicles per hour veh/h), this
rate is calculated based on the information collected from the
drivers and used as initial vehicle departure rate. Subsequently,
and periodically, the vehicle departure rate will be updated by
the VDC based on the network status.

By utilizing the smartphones or the vehicle’s on-board com-
munication systems, the Traffic Management Center (TMC)
sends two types of control information to vehicles: 1) depar-
ture information from the VDC and 2) routing information
from the navigation system. We call these traffic flows in
F the Controlled Traffic (CT). In addition to CT, there is a
Background Traffic (BT) which is the regular traffic traversing
the network. Vehicles in the BT use the dynamic time-
dependent best path routing.
B. Objective

Our objective is to clear the network as early as possible by
using two techniques based on the current network conditions

The first technique is the Vehicle Departure Control (VDC)
that computes the CT vehicles maximum allowable departure
rates to avoid network congestion. The vehicle departure rates
should not exceed the network maximum flow [8]; otherwise,
it will cause longer travel time and network clearance time.
Therefore, in the case of high traffic demand rates, the VDC
will request some drivers to delay their departures by sending
them notifications on their smartphones through the mobile
application. Those drivers are selected based on their previ-
ously shown willingness to be delayed in the furtherance of
the overall system performance.

The second technique is the stochastic system-optimum
navigation that utilizes the network resources better by routing
CT vehicles (going to the same destination) though multiple
alternative routes at the same time in such a way that mini-
mizes the network-wide travel time. Moreover, this optimized
stochastic navigation contributes to reducing congestion be-
cause it balances the traffic across multiple routes.

Combining these two techniques allows vehicles to depart
as early as possible (after the event), while minimizing net-
work congestion, resulting in reasonably high average vehicle
speeds, and clearing the network in a shorter time.

III. IOT-BASED CROWD MANAGEMENT FRAMEWORK

IoT enables the integration of several technologies and com-
munications paradigms including identification and tracking
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technologies, wired and wireless sensor and actuator networks,
communication protocols, and smart devices [9]. Our proposed
system utilizes IoT by integrating different sensors (connected
cars, smartphones, and traffic cameras) and actuators (human
drivers and autonomous vehicles) to enable better management
of vehicular crowds.

The proposed framework and its components, including
the data collection and processing, the optimization module,
the departure control module, and the navigation module are
described in this section.

The system architecture includes a front end and back-end
subsystems. The front-end of the system is an application
that can be installed on either the on-board computer or
driver’s smartphones. The car application is responsible for
computing travel time that the car experiences on each road
segment, and communicating this information to the TMC.
Additionally, requests routes from the TMC. The smartphone
mobile application has the same functionalities in addition
to an interface to the departure control system. Through this
interface, the user can set her/his destination and receives the
departure control information as will be shown in Subsection
III-D2. The back-end of the system is the TMC that has the
components shown in Fig 2, which are described below.

A. Data Collection and Processing Module

In smart cities, the communication network enables the
TMC to communicate with different network sensors/actuators
to collect or disseminate information.

In our system, the TMC collects information from different
sources, i.e., traffic information from connected vehicles and
traffic cameras, and users’ information from smartphones.
These data are used to compute the network parameters re-
quired to manage and control the traffic. The proposed system
needs to compute two parameters for each road segment
Li,j ; the current travel time Ti,j and the current traffic load
ζi,j . These parameters are integrated with the network graph
information, such as the link capacities Ci,j , to optimize the
vehicle departure rates and traffic navigation.

1) Data Collection and Privacy Preferences: In our system,
all the CT vehicles will receive control information from the
TMC (departure control and navigation). Due to privacy or
other user preferences (such as network usage), some drivers

Fig. 2: System Components

may be reluctant to share their information with the TMC. The
system front end application should allow each user to select
her/his own privacy and preferences settings. To cope with this
privacy preference of the drivers in our system, we assume
that only some vehicles communicate their information to the
TMC. We call those vehicles who share their information
connected cars, while the others are non-connected cars. But,
both of them receive navigation information from the TMC.

2) Traffic Information from Vehicles: Data collected from
connected vehicles are used, along with other data sources,
to continuously update the network state-conditions; Ti,j and
ζi,j . To compute these parameters and in addition to vehicle
connectivity, we utilize the vehicle Global Positioning System
(GPS) (in connected vehicles and smartphones) through which
a vehicle (or a smartphone) can identify which link it is
traversing. Thus, whenever, a vehicle finishes a road segment,
it computes the travel time it experienced on this segment
T̂i,j . Then, it builds a message with this information along
with the current time as well as the next road segment
(”Next LinkID”) it will take. The vehicle then sends this
message to the TMC. It can use V2I or V2V (i.e., car A and B
in Fig. 2, respectively). If the car does not have a connection
(such as car C in Fig. 2), it will store the message for a given
time interval. If it reached a covered area it will try to send
the message, otherwise the message will be dropped upon the
expiry of the queuing interval.

Upon receiving a message, the TMC uses the information
in the unexpired messages (based on the message timestamp)
to update the link travel time information. It fuses the new
information with the link history using exponential smoothing
(we use an exponential smoothing factor α = 0.2), as:

T t
i,j = α T̂i,j + (1− α) T t−1

i,j (1)

To estimate the total traffic load ζi,j on each road link, the
TMC first computes the traffic load of the connected cars ζci,j
and then fuses it with the information received from cameras.

To compute ζci,j , the system uses the ”Next LinkID” field
in the received messages to count the number of connected
cars entering a road segment. Then, it periodically computes
the traffic volume of the connected cars on each segment, and
smooths this rate with the link history.

3) Traffic Information from Cameras: To compute the
traffic load ζi,j on each road segment, the connected car
information is not sufficient because it counts only the con-
nected vehicles while we need the total load ζi,j = ζci,j + ζni,j
(connected vehicles load + non-connected vehicles load).

By applying image processing techniques on the videos
from cameras, installed on some traffic lights, we can find
the traffic load on road segments under surveillance by these
cameras. However, these cameras do not cover all road links
because there are many intersections without traffic lights,
moreover, there are some traffic lights without cameras. So,
the network is partially covered by cameras.

Thus, we use the data from both sources, connected cars
and cameras, to overcome the shortcoming of both. We use
a simple method to compute the total penetration ratio P as
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follows. Let L̂ be the set of observed links. For each observed
links Li,j ∈ L̂, we compute its total traffic load ζi,j based
on the image processing to count cars entering these links.
Therefore, we can compute the average market penetration
ratio of the connected vehicles P as:

P =

∑
Li,j∈L̂

ζci,j

∑
Li,j∈L̂

ζni,j +
∑

Li,j∈L̂
ζci,j

(2)

Then, we use P to compute the total traffic load on the
non-observed links as:

ζi,j =
ζci,j
P

(3)

4) Driver Destination Information and Traffic Loads: The
distribution of driver destinations is the main information
needed to compute the vehicle departure rates. This can be
collected using the system front-end application (installed on
smartphones or car’s on-board computer system) that drivers
use to set their destinations. Drivers also can indicate how
long they are willing to wait after the event before leaving. To
incentivize drivers to delay their departure after the event, the
system can offer free or discounted tickets to future events
based on the time they will wait. Other types of incentives
include taking pictures with the event’s public figures or signed
simple gifts.

These two pieces of information (driver destinations and
waiting time after the event) are used by the system to
estimate the initial demand rates and then optimize the traffic
assignment and departure rates.

B. The Optimization Module

The optimization module is a major part of the proposed
system that controls both the vehicle departure rate and
the navigation. The optimization module utilizes the linear
problem described in our previous work [6], [7] to compute
the traffic assignment and departure rates. For the sake of
completeness, we will briefly describe the linear problem in
this section.

1) The Optimization Problem and Constraints: The main
idea behind the developed optimization model is to achieve
the best utilization of the resources (road capacities) by using
the under-utilized links in such a way that minimizes the
network-wide travel time. For instance, if there is a flow
of rate qk = 100 veh/h between an origin and destination,
and there are two alternative routes R1 and R2. Assuming
the available capacities and the current travel times on these
routes are 70 veh/h and 10minutes for R1 and 50 veh/h and
8minutes for R2. Then, instead of using only the best route
(R2 in this case) and overloading it with twice its available
capacity (which will results in congestion and increases its
travel time), the model will divide the traffic across the two
routes in such a way that minimizes the total travel time,
meanwhile avoiding the congestion on both routes. Thus,
in case of high traffic demand, the model inherently tries

to achieve the maximum flow rate in a multi-origin multi-
destination network, while maintaining the network-travel time
minimal.

The linear problem minimizes the network-wide travel time
by computing the link-flow assignment parameters qki,j for
each link-flow pair. Vehicles in the kth flow whose rate is qk

can be assigned different routes at the same time. The link-
flow assignment qki,j is the portion of the kth traffic flow that
should go through Li,j . The general idea of the linear program
is to divide each flow rate across a set of alternative routes by
computing qki,j that minimizes the network-wide travel time,
while respecting the road capacities. The optimization problem
is formulated as:

minimize
qki,j

n∑
i=1

n∑
j=1

Ti,j

f∑
k=1

qki,j

subject to :
n∑

d=1

qki,d −
n∑

s=1

qks,i = 0, if i is an intermediate node

n∑
d=1

qki,d − qk = 0, if i is the source of the kth flow

qk −
n∑

d=1

qks,i = 0, if i is the destination of the kth flow

ζi,j +

f∑
k=1

qki,j � Ci,j ∀ Li,j ∈ L,
qki,j ≥ 0.

(4)
where i, s, d ∈ N such that Li,d is a link exiting node i, and
Ls,i is a links entering node i.

The linear program has three sets of constraints: route
continuity, link capacity, and positive assignment constraints.

The Route Continuity constraints, represented by the first
three constraints in Eq. 4, ensure that the computed traffic-
flow assignment results in a connected route for each flow k
from its origin to its destination. This is achieved by enforcing
the individual flow balance at each node, which means that
at every intermediate node, for each individual flow k ∈ F ,
the summation of the vehicles (belonging to k) entering that
node equals to the summation of the vehicles (belonging to
k) exiting this node. For each source or destination node, we
add or subtract the total flow rate qk respectively.

The Link Capacity constraints avoid overloading any road
segment more than its capacity. If the traffic demand rates
exceed the network capacity, this constraint will not be sat-
isfied. So, in this problem, it inherently tries to achieve the
maximum flow rate in a multi-origin multi-destination network
while maintaining the network-travel time minimal. Therefore,
this constraint plays a major role in computing the maximum
allowable vehicle departure rate for each flow.

The last constraint, Positive Assignment constraints, allows
only positive values for qki,j , to make it consistent with the
directed links.
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C. Navigation Module

The optimized link-flow assignment qki,j is used to build
routes for vehicles upon request. When a vehicle requests a
route or a route update the navigation system uses the car’s
flow number k and its current location to assign it a route
stochastically. From the car’s location the system identifies its
current road segment whose end node is used a current node i
for this car. Then, for each link Li,j going out of this node i,
the system computes the probability to select this link as the
next link in the route as:

pj = qki,j/
∑

Li,d∈L

qi,d (5)

Based on Pj , the navigation module randomly selects one
link as the next link. Then, it uses j as the current node i, and
repeats the process until the vehicle’s destination is reached.

D. Departure Control Module

The main objective of the VDC is to regulate the traffic
leaving the event and entering the network to avoid network
congestion. It does not allow vehicles to enter the network
at rates higher than the maximum available network capacity.
VDC play an important role when the traffic demand rates
exceed the available network maximum flow rate. In such
cases, the optimization module fails to find a solution for the
LP problem. In order to find a solution for traffic assignment,
the VDC needs to compute the maximum allowable traffic
rates q̂k ≤ qk, and, accordingly, adjust the vehicle departure
times. These are the two main functions of the VDC.

1) Computing the Maximum Allowable Traffic Rates: A
straight forward solution to compute the allowable traffic
rates is to use a multi-origin multi-destination maximum flow
algorithms, such as [10], and apply it to the network using
the current link traffic loads. However, this solution has two
main drawbacks. First, it can result in a complete blockage of
some traffic flows (i.e., setting q̂k = 0 for some flows) which
violates the fairness among the traffic demands. Secondly, the
computed traffic rates do not necessarily minimize the travel
time since the maximum flow algorithms do not consider other
metrics other than the capacities.

To maintain fairness and minimize travel time, the VDC
aims to estimate the network maximum flow by reducing all
the traffic demand rates by the same ratio, and then find if there
is a feasible solution for the LP problem using these rates. It
uses the optimization failure as an indication for high traffic
demand. Consequently, bidirectional communication is estab-
lished between the VDC and the optimization modules. When
the optimization module fails to find a solution to the problem,
it notifies the VDC, which decreases the demand rates by
multiplying them by r = 0.9 and requests re-optimization
using these reduced rates. This process is repeated until a
solution is found. This solution satisfies the two objectives,
fairness and minimum travel time. It is also less than or
equal to the available network capacity. An advantage of
this technique is that it is consolidated with the navigation
system by using the same optimization problem, once we find

a solution, its arguments are directly used by the navigation
module to minimize the system-wide travel time.

2) Controlling Vehicle Departures: Once the VDC com-
puted the allowable rate for each traffic demand, it adjusts
vehicle departure times to match the new rates. The VDC uses
a token-based model to control the departure of vehicles. So, if
the departure time of vehicle v is computed to be Dv , the VDC
sends it a token at time Dv−Tp, where Tp is the time needed
by the driver to go to her car, to leave the parking lot and go
to the gate at designated exit points (i.e., G1, G2, .. G5 in Fig.
2). When reaching the gate, the vehicle sends its token to the
gate. The gates at exit points regulate the traffic heading to
the roads based on the computed traffic rates. The importance
of the gating is that drivers can reach the gates faster than
expected. In this case the gate will not allow vehicles to exit
until their departure times based on the token they have.

IV. SIMULATION AND RESULTS

To test the proposed model, it is developed within the
INTEGRATION software [11] which is a microscopic traffic
simulation characterized by its accuracy and scalability. To
study the efficiency of the proposed framework, we compare
it to the dynamic time-based incremental traffic assignment
state-of-practice routing which uses the shortest path routing
and achieves load-balancing among routes that similar in cost.

A. Network and Traffic Setup

The FIFA World Cup 2022 to be held in Doha, Qatar
is used as a case study. The Doha network shown in Fig.
1 is implemented and used for the simulation. To build
the network, different data sources are used. The Doha city
shapefile is used to generate the network nodes and links.
OpenStreetMap data is used to extract intersection traffic
control information, including the traffic control methods (stop
signs, yield signs, or traffic signals). Google maps and ArcGIS
are utilized for validating road attributes, including the number
of lanes, one-way streets, and speed limits for each road
segment. The resulting simulation network has 169 nodes, 301
road segments, and 11 traffic signals.

In the network shown in Fig. 1, the red area is a stadium
from which CT vehicles will depart to different network
destinations (as shown by the yellow arrows). The Background
Traffic (BT) is calibrated using the technique in [12] using car
counts data from the OpenStreetMaps (OSM) website.

The BT rate in the first row (S1) in Table I is 10% of the
calibrated traffic. In this scenario S1, we assume that there
are 2800 CT cars. The rates in S1 is multiplied by scaling
factors two through five to compute the higher traffic rates
in S2 through S5. Assuming the drivers departure times are
uniformly distributed over one hour, these car counts can be
converted into traffic rates.

B. Simulation Results

Each of the five traffic scenarios was run using the SFDTIA,
Stochastic Linear Programming System-Optimum ( Stochastic
LP), and Stochastic LP with VDC. Each scenario is run 16
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TABLE I: Traffic Levels.

Scenario # Controlled Traffic Background Traffic Total

S1 2800 1603 4403
S2 5600 3383 8983
S3 8400 5245 13645
S4 11200 7127 18327
S5 14000 9085 23085

times with different seeds, and the average evaluation metrics
are computed.

1) Network Clearance Time: Network clearance time is the
time at which the last vehicle reaches its destination and the
network is completely cleared. Fig. 3 compares the network
clearance time for the three cases. It shows that for low traffic
demand levels (S1, S2), the stochastic LP has no significant
impact on the network clearance time. While when applying
the VDC, the network clearance increases by 1.3% and 2.16%
for S1 and S2, respectively. It also shows significant saving
in the clearance time for the more congested cases, which
demonstrates the importance of the model in the case of large
sporting ans entertainment events.

2) Average Vehicle Travel Time: Average vehicle travel
time is computed as the summation of all vehicles’ travel
times divided by the number of vehicles, i.e., Tav =

∑
v∈V Tv

||V || .
Fig. 4 compares the average travel time for the three cases. It
shows that for scenario S1, the Stochastic LP increases the
average travel time by approximately 14% and adding the
VDC reduced this increase to only 6.2%. The reason for this
increase is the sensitivity of the proposed system to network
congestion. If any road segment becomes more congested,
the stochastic LP navigation disperses the vehicles to longer
routes which increase the travel time for those cars. Because,
VDC tries to reduce congestion by reducing the traffic rates

Fig. 3: Network Clearance Time.

Fig. 4: Average Travel Time.

and consequently deferring the car departures, it mitigates this
problem and reduces the number of cars that use the longer
routes, thus reduce the average travel time. Finally, Fig. 4
shows the improvement achieved by the stochastic LP and
that by VDC that reached about 47% reduction in total average
travel time.

V. CONCLUSION

In this paper, IoT technology is utilized to build an efficient
vehicular crowd management system that includes an optimum
vehicle navigation and departure control schemes. The system
collects information from connected vehicles, smartphone and
cameras to compute the network parameters, which are used
to optimize the navigation and departure control. The micro-
simulation of the proposed model illustrates the significance
of the proposed model in the case of a large gathering or
in the evacuation cases, where it reduced both the network
clearance time and the average vehicle travel time in the
congested scenarios. A future extension for this work is to
study the sensitivity of this system to the penetration ratio of
the connected cars. Another extension is analysing the impact
of the controlled traffic on the background traffic, and how to
mitigate these negative impacts.
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