Caching Dynamic Content on the
Web

By

Wenzhong Chen

A thesis submitted to the
School of Computing
in conformity with the requirements

for the degree of Master of Science

Queen’s University
Kingston, Ontario, Canada

June 2003

Copyright © Wenzhong Chen, 2003

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

0-612-81052-6

Canadi

395, rue Wellington
Ottawa ON K1A ON4

Bibliothéque nationale

services bibliographiques

Your filo Votre rélérence

Our file Nolre référence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’ auteur conserve la propriété du
droit d’auteur qui protége cette these.
Ni la thése mi des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

Abstract

Caching dynamic content is an important issue due to the growing number of non-
cachable dynamic Web documents. Previous research has focused on server-side
dynamic caching techniques, which are beneficial in reducing server resource demands.
Proxy-side caching of dynamic content, on the other hand, reduces bandwidth

consumption and download latency and increases hit ratio.

This thesis proposes a scheme to efficiently cache dynamic content at the proxy side. The
scheme identifies two kinds of dynamic pages, called eager-update pages and lazy-update
pages, and uses different strategies to deal with each type. For eager-update pages, the
web server always “pushes” the newest data to the proxy after updates to the dynamic
page content. For lazy-update pages, proxies always “pull” the newest data from the web
server when clients request it. We decrease the data transferred on the web by using

class-based delta-encoding to transfer data from the web server to the proxy.

A extensive simulation model has been developed to study the performance of our
proposed scheme. We compare our scheme with delta-encoding and LRU. We have
tested a variety of traffic conditions and measurement parameter settings in the
simulation. Our results show that our scheme can achieve a higher hit ratio and improve

the network latency.

Acknowledgements

I would like to express my gratitude to my supervisors Professor Patrick Martin and

Professor Hossam Hassanein, for their excellent guidance, great advices and support.

I would like to thank to Wendy Powley, Wenhu Tian, Xilin Cui and all the other
members in the Database System Laboratory at Queen’s University for their suggestions,

assistance, comments and friendship.

Finally, I would also like to thank the School of Computing at Queen’s University for
offering me such an invaluable opportunity to pursue my Master’s Degree. The financial
support provided by Communications and Information Technology Ontario (CITO) is

appreciated.

i

Table of Contents

| R 0115 (0T L1167 5 10 D R 1
2. Related WOTKooiiiiiiiii et e e 7
2.1 Static content caching models and schemesccccceeeivereeenen. 7

2.2 Dynamic content caching techniques..........ccoveeniiiiieeeiiniiennnnnn 11

2.3 Dynamic content caching schemes............cccoeveciiniiiiiceiinnnnnns 18

A BN 11101111 oy O 21

3. Eager-update Page Dynamic Caching schemeccccovvveviniceninnnen. 23
3.1 Dynamic page classificationccceceveceriiienicniinniincniciecnenns 25

3.2 HTTP @XIENSION ..ueeeieiiiiiieirnereeteseneetesreressneeessenneesesneessaeaenens 29
3.2.1 Fager-update page cOmMmUNICationcooeevveennuneesnnecnnenen 31

3.2.2 Lazy-update page COMMUNICAIONcrevereensieerrrinersreereneeees 34

3.3 Class-based delta-encoding techniquec.cccoereevivimicireiiceeeennns 37
3.3.1 Grouping Documents into Classesc.cccvrvverrccrceecinnnnne, 39

3.3.2 Choosing a Base-file.....c.ccoceveviieeiiiineiiiecreenieee e 41

3.4 Extended LRU Algorithm........ccceeviviiiiniiinicnniiinnie s 41

3.5 SUMMATY .eeiieiiiiiee ettt s e e e e e e e e eeeee 44

4. Performance Evaluation........ccccoccereviiinninnceienenieincers e 45
4.1 Simulation Modelccooiiiieiiiiniiiie e 45
4.1.1 Network Modelcoeoiiioiiiiiiiiieeceeece e 45

4.1.2 Workload generation.........ccceeerieeeeeirinneeeerincnnneeesenecresseeeens 47

4.1.3 Simulation Parameter Settingscoccvvvveiririniriniinenscncnniennns 50

4.2 Simulation Resultsc.ccccoieriiiiiniiieecee et 51
4.2.1 HTTP request rate and response time.......c..ccevevevvereinresenennne 51

4.2.2 Network link delay and response timeccoocveveerrcceeninnen. 54

4.2.3 Changing workload and Response Time........c.ccccceevvereennnee 57

4.2.4 Eager Page HIT and Response Time..........ccceveeerieerceeennnnee. 60

4.2.5 Hit RAtiO...ccoiieiiiiieeien et 63

4.2.6 Web server Cost analysis......ccocerveevieeenncernnieeresieseneesenenens 64

4.3 SUIIMATY «eeevtiinieieieie et seesrer et sebeessve e s e sseneenreennesneene 65

S. CONCIUSION w.ovevieeiecieeiieieeee ettt et st st sare e sre e s e neesanes 68
6. REfEIeNCES...coviiieiiiiiecie et e 72

- i1 -

Appendix A. Delta-encoding Algorithms.......ccccccvvveveneieciniinneieiiinneeenee 79

Appendix B. HTTP EXIENSIONSovvvvereeeirieriieneeeietcneinenerescreeneeseren e 89
Appendix C. The Flow Charts, Simulation Software Structure and

Pseudo-Code of EPDC.......cccoooiiiiiiecreeccen st 93
Appendix D. Confidence Intervalscccoceevieciveeriirinceninincencnns 103
VLA it re e ee et a e st e sb e n e st e eba e et e bt e sr e e enbe e e e neene e e 105

-1V -

List of Figures

Figure2. 1 Hierarchical Architecture for Web Caching........ccoccoeviiiinniiniiciiiee 8
Figure2. 2 Distributed Architecture for Web Caching.......c..ccoceonimeceninincniiiinin 9
Figure2. 3 Transparent Proxy Web Caching with Redirection..........ccoccovnciviiiinnnnnn. 10
Figure2. 4 A simple dynamic PAZEcccccviereirriireeecreeeeeee et e e e 12
Figure2. 5 A dynamic page with a 100D ... 13
Figure2. 6 Template/bindings encoding for the page from Figure 2.4cccccoovrvrviveennnns 16
Figure2. 7 Template and bindings encoding for a search-engine responsec.ccceuee. 17
Figure3. 1 network model........coooiiiiiiiiiiiiiiiii e 24
Figure3. 2 HTTP IMS request for the not modified page.........cccoccnmnciniiciniiiiinncns 27
Figure3. 3 Proxy side algorithm to process client TeqQUESESccovvverrrvcciiciiiiciiiieciinnnns 28

Figure3. 4 Eager-update page HTTP request from proxy to Web server for

CLASSITICALION ..ivveiiciieiieiiie ettt st e e s s ebesen s 32
Figure3. 5 Eager-update page HTTP request from Web client to Web server................. 34
Figure3. 6 lazy-update page HTTP request from Web client to Web server................... 36
Figure3. 7 Using delta-encoding for Web-documents.........oceeevereecereencennieennineienneees 38
Figure3. 8 Add page function of the Extended LRU algorithmcccooceiiiiiiiiiiininn, 43
Figured. I Network MOdel......cc.oooiiiiiiiiiiiiecieeeeecee st 46
Figure4. 2 Zipf-like Distribution[39].......ccccoiiiiiiiici e 48

Figure4. 3 Average response time at link delay =90 ms.........ccococciiiiii 53

Figure4. 4 Average response time at link delay = 180 mS......ccooeviiiiiiinini 53
Figure4. 5 Average response time at link delay =360 ms.........ccocceiiininniiiiiiiins 54
Figure4. 6 Page arrival rate = 30 messages/min at PrOXY .c.covveereeiveerrniieroreeseererennnsnnnnns 56
Figure4. 7 Workload changing pointc..coeiiieiiriceinienereceeseireeseeser e seeens 58
Figure4. 8 Response Time Difference ... 58
Figure4. 9 Workload Changing Point and Response Time Differencec..cccceeeeeie. 59
Figure4. 10 Eager Page HIT Response Time........coovviiiiiiinciiiiinicc s 61
Figure4. 11 Eager Page HIT Response Time.....c..cooeveiivmiicininiiniiicnis et 62
Figure4. 12 Hit RatiO ...oociiiiiiiiiiiiceccte e 63
Figure C. 1 HTTP GET request in EPDC scheme........ccccooveiviiiiiiiiiiiiin 94
Figure C. 2 HTTP GET request in Delta-encoding schemec.cccoocoiniinnnns 96
Figure C. 3 HTTP GET request in LRU scheme ... 97
Figure C. 4 The algorithm for proxy receiving a message from Webserver 100
Figure C. 5 The algorithm for Web server receiving an HITP-message ... 101
Figure C. 6 The algorithm for Delta server receiving an HTTP message 102

- Vi -

List of Tables

Table 3. 1 Notation and Parametersccoeceeiiiiieneinnmieieiieee e e eneeseeens 26
Table 3. 2 URL-parts for differently organized Web-Sites........c.cceeveerreiienecercnnnenn. 40
Table 4. 1 Simulation parametersccoveriecieiiineiiriicrcr e 51
Table 4. 2: Average response time for different link delays..........ccccvviiivinninins 55

- Vii -

List of Acronyms

CARP
CGl
CSS
bUP
EPDC
HTTP

ICP

LB-L5
LRU
MRT
QoE
RCS
RTT
SCCS
SSH
TCP

TTL

WWW

Cache Array Routing Protocol
Common Gateway Interface
Content SmartSwitch

Data Update Propagation
Eager-update Page Dynamic Caching
Hypertext Transfer Protocol
Internet Cache Protocol

If Modified Since

Load Balance Layer 5

Least Recently Used
Minimum Response Time
Quality of Experience
Revision Control System
Round Trip Time

Source Code Control System
Secure Shell

Transmission Control Protocol
Time to Live

Uniform Resource Locator

World Wide Web

- viii -

Chapter 1. Introduction

Chapter 1

Introduction

The World Wide Web has evolved into the most widespread infrastructure for
Internet-based information systems in the last decade. As with traditional information
systems, the response time for individual interactions becomes critical in providing
the fight Quality of Experience (QoE) for a Web user. Many WWW clients are faced
with congested networks and long propagation delays when they try to access
content. Techniques have been developed that reduce the bandwidth consumption and

improve the latency for this environment.

Web servers provide two types of data: static data from files stored at a server and
dynamic data, which are constructed by programs that execute at the time a request is
made. Responses from search engines or stock-quote sites provide typical examples
of dynamic data. The use of Web-caches for reducing bandwidth consumption and
download latency has been quite successful in the past. However, traditional Web
caching is applicable only to static documents, or to documents that change in large
timescales. Since the proportion of dynamic versus static documents is increasing day
by day, current caching solutions have reached a point where they cannot offer

significant performance improvements unless they incorporate a mechanism to

Chapter 1. Introduction

“cache” dynamic documents. In particular, no matter what the replacement algorithms
are, the cache size and the user population serviced by the cache, proxY—cache hit
rates are usually around 40% [38]. However, if proxy-caches are equipped with
mechanisms that exploit redundancy from all documents, static and dynamic, hit rates

could be up to 80% [38].

Previous research on caching dynamic content mostly concerns server-side caching
techniques. Caching dynamic pages at server sites can reduce server computing
resource demands and simplify page invalidation. A major problem with caching
dynamic content is to ensure that strong consistency is maintained between cached
pages and underlying data objects. Vahdat et al. [36] and Holmedhl et al. [41] have
proposed invalidation techniques using file operation interception or TTL for a class
of applications. Iyengar et al [24], [30] propose a fine-grain dependence-based
approach that allows applications to explicitly issue invalidation messages to a cache.
Zhu at al [40] propose a complementary solution for applications that require coarse-
grain cache management. They design and implement a caching system that
integrates the above techniques, with standard Web servers, which adds dynamic
page caching capability to the Web server. Thus, it can offload servers from

computing dynamic documents on the fly and reduce user latency as well.

Proxy-side caching of dynamic content reduces bandwidth consumption, and
download latency and increases hit ratio. The Active Cache scheme [16], by Cao et

al, allows servers to supply cache applets to be attached with documents, and requires

Chapter 1. Introduction

proxies to invoke cache applets upon cache hits to furnish the necessary processing
without contacting the server. Even though this approach is efficient for tasks like
rotating advertisements, it is not efficient as a general mechanism that fully exploits
temporal correlation in dynamic traffic. It does not address invalidation of dynamic
pages and the cost is high because it requires starting up a new Java process for every

request.

A variety of methods to exploit the redundancy of dynamic traffic have been
proposed recently. Delta-encoding was introduced by Banga et al. [28], and |
independently in a more restricted context by Housel and Lindquist [16]. The idea is
that both ends of a slow link store the same snapshot of a Web-document, called a
base-file, upon a request for that document. The server end gets the current snapshot
of the document from the Web-server, computes the difference between the current
and the stored snapshot, called the delta, and then sends the delta over the slow link.
When the client receives the delta it reconstructs the current snapshot by combining

the delta and the stored snapshot and it sends the response to the client.

Mogul et al. [37] use dynamic traces and show that delta-encoding can provide
remarkable improvements in response size and response delay for an important subset
of HTTP content types. Delta-encoding can provide an efficient solution to the
problem of exploiting temporal correlation in dynamic traffic; however, it cannot
solve the scalability problems at the server side. The storage requirements at the

server-side grow enormously due to the increasing number of dynamic documents.

Chapter 1. Introduction

This problem becomes even more intense due to personalized Web-documents, since
delta-encoding stores each personalized version of a dynamic document. Psounis et
al. [12] introduce class-based delta-encoding, a scalable scheme to perform delta-
encoding on dynamic Web traffic. The idea is to group documents into classes, and
store one document per class on the server-side. The proposed scheme exploits both
temporal correlation in a dynamically evolving document, and spatial correlation

among different documents.

With caching, a dynamic page must be generated by the Web server for each client
request. The dynamic page generation on the Web server is a time consuming
process. Most existing dynamic content caching schemes are concermed with
offloading the Web server cost. In this thesis we propose a scheme called Eager-
update Page Dynamic Caching (EPDC) that efficiently caches dynamic content on the
Web. EPDC not only offloads the Web server cost but also decreases the client
response time. The scheme identifies two kinds of dynamic pages, called eager-
update pages and lazy-update pages, and uses different strategies to deal with each
type. An eager-update page is defined as a page whose request rate is faster than its
update rate. A lazy-update page is defined as a page whose request rate is slower than
its update rate. By identifying these two kinds of pages, we can decrease the number
of times an eager-update page must be generated, which reduces the Web server cost
and reduces the download response time. We decrease the data transferred on the

Web by using delta-encoding to transfer data from the Web server to the proxy.

Chapter 1. Introduction

For eager-update pages, the Web server always “pushes” the newest data to the proxy
after updates to the dynamic page content. The proxy always has the newest snapshot
of an eager-update page as the base-file. The Web server only sends the delta when

the dynamic page content is updated.

For lazy-update pages, proxies always “pull” the newest data from the Web server
when clients request it. The proxy adopts the class-based delta-encoding that has a
base file that groups different pages with the same URL pattern so that several
dynamic pages share the same base file. Each time the proxy passes the request to the
Web server, the Web server sends the delta, which differs between the page and the

sharing base file, to the proxy.

The EPDC scheme has advantages of both server side and proxy side dynamic
caching. Not only does EPDC improve the user response time, cache hit ratio, and
reduce network bandwidth and network latency, but it also offloads the Web server

processing time.

In this thesis, we propose and study the performance of EPDC. First, we identify two
kinds of pages by their request and update rate (Eager and Lazy pages). Second, we
extend the HTTP protocol to efficiently exchange page class information between
proxies and Web servers. Third, we extend the LRU replacement algorithm to handle

our page classes. Finally, we design and implement a simulation that integrates the

Chapter 1. Introduction

above techniques and evaluates EPDC performance. The results show our scheme

outperforms the delta-encoding and LRU schemes.

The rest of the thesis is organized as follows. In Chapter 2 we provide a review of
related static and dynamic content caching technologies. Chapter 3 presents an
overview of the proposed Eager-Page Dynamic Caching scheme followed by a
discuséion of the design decisions. A performance evaluation of EPDC is presented in
Chapter 4. The adopted simulation model is described. Simulation experiments are
conducted in order to study the effect of network link delay and HTTP request rate on
the performance of EPDC. Results show that our scheme can achieve higher hit ratios
and improves network latency in comparison with the delta-encoding and the LRU
schemes. Chapter 5 concludes the thesis, and provides some suggestions for further

research.

Chapter 2. Related Work

Chapter 2

Related Work

In this chapter we provide an overview of various Web caching techniques. Section
2.1 briefly introduces static content caching models and algorithms. Section 2.2
introduces two dynamic content caching techniques: based-instance caching and
template caching. Section 2.3 introduces server side and proxy side schemes for

caching dynamic content. Section 2.4 gives a summary of this chapter.

2.1 Static content caching models and schemes

Three popular caching schemes used for Web caching are hierarchical, distributed
and switch-based transparent Web caching systems. Traditional hierarchical cache
server architectures such as Squid [12] have two levels. Leaf proxies represent
organizational proxies. Second-level proxies are connected to a backbone. A leaf may
form sibling relations with some other leaves and child-parent relations with multiple
rdots, as shown in Figure 2.1. When a child cache does not satisfy a request, the
request is redirected to a sibling cache. If the document is not found at the siblings,
the request is then forwarded to the parent level. This process goes upwards until the
data is located or the root cache server fetches the data from the Web server. The
cache servers then send the data down the hierarchy and each cache along the path
stores the data. Hierarchical Web caching was first proposed in the Harvest project

[36]. Other examples of hierarchical caching include Adaptive Web caching [24] and

-7 -

Chapter 2. Related Work

Access Driven cache [26]. The hierarchical architecture can save bandwidth, but its

multiple levels introduce additional delays and redundant copies of documents.

Figure2. 1 Hierarchical Architecture for Web Caching

In distributed Web caching systems, no intermediate caches are set up and there are
no parent-child relationships between the proxies. There is only a group of cache
servers cooperating with each other, serving each other’s misses. In order to decide
from which cache server to retrieve a document, cooperating cache servers keep
metadata information about the content of every other cache. The structure of the

distributed caching model is shown in Figure 2.2.

Chapter 2. Related Work

i,
.»«"‘”WM ~ e,
o] - A”W %%w ;
== Web et Web |

f Server ; Internet -

'4 Server |
Cache o
.. | SETVET orsmmins
) S X

Device Device Device Device

EDHED e

Figure2. 2 Distributed Architecture for Web Caching

There are several approaches to distributed caching. The Harvest [36] group designed
the Internet Cache Protocol (ICP), which supports discovery and retrieval of
documents from neighbour caches and parent caches. Another approach to distributed
caching is the Cache Array Routing Protocol (CARP)[37], which divides the URL-
space among an array of loosely-coupled caches and lets each cache store only the
Web objects whose URLSs are mapped to it. Distributed Web caching systems rely on
replicated objects and services to improve performance and reliability. All cache
servers are employed at the same level so distributed Web caching systems overcome
the drawbacks of hierarchical Web caching systems. Moreover, they have better fault
tolerance, distribution of server loads and client performance since they bring cache

servers closer to Web clients.

Chapter 2. Related Work

In the switch-based transparent Web caching system, a switch sits in the data path
between the Web clients and the server cluster. It intercepts the Web traffic and

transparently redirects the HTTP requests to different cache servers or to the Web

server. The structure of the switch-based Web caching model is shown in Figure 2.3.

¥ ¥
i

Cache Server

Cache Server

Client

Figure2. 3 Transparent Proxy Web Caching with Redirection

Transparent Web caching makes the configuration of the caching system easier.
Switches can rapidly process and forward the packets. This switching-based
transparent Web caching technique can use content-aware Layer 5 switches in a
distributed Web caching system with enhanced cache cooperation [1] [22]. The
switches perform content checking based on Layer 5 header information of the HTTP
request packets. A HTTP request is redirected by switches to the cache server that

can best service the request. One example is the Arrowpoint Content SmartSwitch

-10 -

Chapter 2. Related Work

(CSS) [3]. On the client side CSS can be configured to redirect static HTTP requests
to a cache server cluster since it can distinguish among different “higher-level”
protocols, like HTTP [20] and The Secure SHell (SSH) remote login protocol [32],
and divert them to the appropriate server or group of servers that service the type of

requested content.

Liang [22] proposed a fully distributed Web caching scheme that extends the
capabilities of Layer 5 switching to improve the response time and balance cache
server workload. In LB_L5, a Layer 5 switch selects the best server based on cache
content, cache server workload, network load and the HTTP header information.
LB_L5 does not guarantee the minimum response time so Zhou [39] proposed the
Minimum Response Time (MRT) switching-based Web caching scheme to reduce the
HTTP request response time and balance the workload among the caches based on a
combination of request content, cache server content, network latency and server

workload.

2.2 Dynamic content caching techniques

Dynamic objects are generated by programs that run on servers every time the
corresponding objects are accessed. Responses from search engines or stock-quote
sites provide typical examples of dynamic objects. It turns out that not all information
in a dynamic page is different for each access. Frequently, a large portion of the page
is devoted to formatting specifications, headers and footers, and other information
that does not change across accesses. A cache-friendly encapsulating implementation

creates embedded objects containing the dynamic variables so that the dynamic page

-11 -

Chapter 2. Related Work

itself is cacheable and only the embedded objects have to be downloaded on every
access. Although encapsulating dynamic portions of a page into embedded objects is
a useful technique in many situations, it falls short for two kinds of pages. The first
includes pages with multiple bits and pieces of dynamic data scattered around the

page. A typical example is shown in Figure 2.4.

<HEAD>
<TITLE>Michael Chang<TITLE>

<BODY>

This page has been active for 35 days. It has been accessed 44 times. Avg. times
accessed per day: 1.27

</BODY>

Figure2. 4 A simple dynamic page

This page contains three dynamic items. Including all dynamic items into a single
embedded object would make this object encompass most of the page, defeating the
purpose of the technique. On the other hand, encapsulating each dynamic item into a
separate object entails multiple downloads of small objects from the server, which

increases the server load.
The second kind of page that is unsuitable for encapsulation is represented by

responses from search engines. Figure 2.5 shows the structure of a typical search

engine response.

-12 -

Chapter 2. Related Work

Header

...URL]1...
formatting. ..
relevance = 0.99

Answer 1

...URLnR.. .
formatting. ..
relevance = 0.88

Answer n

Figure2. 5 A dynamic page with a loop

In this figure, the dynamic page starts with a header that typically identifies the search
engine, then lists a number of answers and concludes with a footer. Each answer
includes the URL of a page that the search engine believes is relevant to the query
and a measure of the page relevance. Dynamic answers typically take up most of the

content on these dynamic pages. The encapsulation technique would require

-13-

Chapter 2. Related Work

including all answers in a dynamic object, which would cover most of the information

in the page, which defeats the purpose of encapsulation.

From the above examples we find that page fragments corresponding to each dynamic
variable contain, to a large extent, static information. There are two main techniques
allowing caching of static page portions: base-instance caching and template caching.
Consider a Web server sending a dynamic page to a client. If both share the same
instance of the page, the server could use delta encoding [1][36] to reduce the amount
of data it needs to send. Assume that the client previously performed the query “tall
green trees” on a search engine. If it now wants to perform the query “caching
dynamic objects,” it can send the engine an indication that it already has the result of
the “tall green trees” query. The search engine could now send just the delta between

the first and second query results to the client.

Unfértunately, delta-encoding requires the server to store instances of the pages it
previously sent to each client. Given the number of clients accessing popular servers
and the load on these servers, this approach is clearly impractical. Base-Instance
caching means the server can designate a certain base instance of the dynamic page
and arrange that every client has the same base page instance. The server then needs

to store only one base instance to be able to delta-encode future responses.

The Web Express product from IBM [16] implements base-instance caching. For

example, let the server designate an instance of the dynamic page to be base instance

- 14 -

Chapter 2. Related Work

B that is the result of the query “tall green trees”. When a client sends its first request
Q1 to the server, which is the query of “caching dynamic objects”, the server sends it
three pieces of information:

e the instance B of the dynamic page, together with its Etag (Entity tag, a

unique identifier for a particular instance of an object);

e the indication that B is the base instance; and

e the delta of the page instance generated for request Q1 over the base instance.
When the client receives this response, it reconstructs the page instance Q1 by
applying the delta to base instance B and caches the base instance. For subsequent
accesses, the client includes the identity of its cached base instance. If the server still
has B as the base instance, it will send only the deltas back. If the base instance at the
server has changed, the server will have to send both the new base version and the
delta again. Consider the examples in Figures 2.4 and 2.5. In both examples, if the
client already caches the base file, it obtains a small delta of the current over the base
version on each access, and it does so in a single access to the server. For the example
in Figure 2.5, if the current version of the page has a greater number of answers, the
delta will contain the extra answers in their entirety. In practice, some delta-encoding

algorithms produce deltas that are compressed [24].

Template caching [23] separates dynamic and static portions of the page explicitly.
The static portion is augmented with macro-instructions for inserting dynamic
information. The static portion together with these instructions is called the page

template. Macro-instructions use macro-variables to refer to dynamic information.

-15 -

Chapter 2. Related Work

The dynamic portion contains the bindings of macro-variables to strings specific to
the given access. Before rendering the page, the client expands the template according
to the macro-instructions and using the bindings that are downloaded from the server
for each access. The rationale behind template caching is that the client caches the
template and downloads only the bindings for every access instead of the entire page.
Let us consider the two examples in Figures 2.4 and 2.5 again. The template and

bindings encoding for these pages are shown in Figures 2.6 and 2.7, respectively:

<HEAD>
<TITLE>Michael Chang</TITLE>
<BODY>
<HTML>

This page has been active <TEMPLATE HREF="query.hpp”>

For <VAR daysactive> days. <BODY>
It has been accessed <VAR count> daysactive = 35;
Times.

Avg. times accessed per day: count = 44;
<VAR count/daysactive> </BODY>
</BODY> </HTML>
(a) The template (b) The bindings

Figure2. 6 Template/bindings encoding for the page from Figure 2.4

-16 -

Chapter 2. Related Work

Template
Bindings
Header
<loop> <loop>
URL = “URL1”, “URL2",...;

...<VAR URL>... Relevance = 0.99,0.35, ...;
formatting. .. </loop>
relevance = <VAR Relevance>

</loop>
Footer

Figure2. 7 Template and bindings encoding for a search-engine response

The binding encoding groups all dynamic items in a single object that allows the
client to obtain all dynamic items in a single download. The dynamic items are
scattered throughout the page according to template macro-instructions (such as VAR

tags in Figure 2.6a).

The template in Figure 2.7 uses a single loop macro-instruction to describe all
answers in the response. The corresponding loop construct in the bindings contains a
list of values for every macro-variable in the loop, one value per answer. When the
actual page is constructed, the macro preprocessor expands the loop body as many

times as the number of values assigned to macro-variables.

Template caching is similar to various mechanisms used on the server side such as
Java Server Page or Active Server Page, which provide complex languages for

expanding the page template prior to sending it to the client. The differences are that

-17 -

Chapter 2. Related Work

template caching expands templates at the client rather than the server, and it obtains
all dynamic information in one download to keep the number of interactions with the
Web server to a minimum. Several companies now implement template caching at
surrogate servers, so that surrogates reconstruct the actual pages. Akamai refers to
template caching by surrogates as edge-side includes [23] and leads a group of

companies in defining a new template language for this purpose.

The big advantage of base-instance caching is that it is transparent to Web developers
who create content. Only underlying server and client platforms must be extended.
The benefit of template caching is that the template need not be generated at the time
of access. Instead, it can be pre-computed and possibly pre-compressed once. Both
base-instance and template caching techniques are based on delta encoding. Base-
instance caching adds the overhead of computing the delta to the critical path of the
request processing. The delta-encoding algorithms ask the server to compute the page
instance, then compute the delta. This prevents the server from pipelining the page to

the client as it is being produced, which may increase latency.

2.3 Dynamic content caching schemes

Server side dynamic caching schemes are concerned with the situation where the
bottleneck is the server’s CPU. The most popular scheme is to set up a cache server at
the éerver side. Tt can cache the newest snapshots of dynamic pages so the major
problem is how to ensure that consistency be maintained between cached pages and

underlying data objects. Challenger et al [30] developed and implemented an

- 18 -

Chapter 2. Related Work

algorithm called Data Update Propagation (DUP) that maintains data dependence
information between cached objects and the underlying data in the form of a graph.
When the system becomes aware of a change to underlying data, graph traversal
algorithms are applied to determine what cached objects are affected by the change.
Cached objects that are found to be obsolete are either invalidated or updated. They
used this technique at the official Web site for the 1998 Olympic Winter Games and
achieved great performance and high availability. This approach has two drawbacks.
First, it requires that the server application be rewritten to take advantage of the
cache, and this can be a nontrivial task. Second, for every dynamic request, the Web
server still must start the application, even if only to return a cache hit. The operating

system overhead for this call is significant.

Holmdahl et al [41] developed a distributed Web server called Swala, in which the
nodes cooperatively cache the results of CGI requests. They use a two-level cache
table consistency protocol and a replicated global cache directory to maximize the

system performance and minimize overhead in responding to dynamic Web requests.

Iyengar et al [24][30] propose a fine-grained dependency-based approach that allows
applications to explicitly issue invalidation messages to a cache. It needs to rely on
maintaining a fine-grain graph that specifies dependence among individual Web
pages and underlying data sets. This kind of graph will grow enormously and will be

hard to maintain when the sites host arbitrarily large numbers of dynamic pages.

-19-

Chapter 2. Related Work

Zhu et al [40] propose a complementary solution for applications that require coarse-
grained cache management. The key idea is to partition dynamic pages into classes
based on URL patterns so that an application can specify page identification and data
dependence, and invoke invalidation for a class of dynamic pages. To make this
scheme time-efficient with respect to space requirements, lazy invalidation is used to
minimize slow disk accesses when Ids of dynamic pages are stored in memory with a
digest format. Selective precomputing is further proposed to refresh stale pages and
smooth load peaks. A trie data structure is developed for efficient URL class
searching during lazy or eager invalidation. This paper presents the design and
implementation of a caching system called Cachuma that integrates the above
techniques, runs in tandem with standard Web servers, and allows Web sites to add

dynamic page caching capability with minimal changes.

Proxy-side caching dynamic content reduces bandwidth consumption, network
latency and increases the hit ratio. Smith at al [30] propose a new protocol to allow
individual content-generating applications to exploit query semantics and specify how
their results should be cached and delivered. Applications may declare a dynamic
request to be identical, equivalent, or partially equivalent. In the first two cases
cached results are up to date, while in the third case content can be immediately
delivered as an approximate solution while actual content is generated and delivered.
This is not a complete solution to the problem of exploiting temporal correlation in
dynamic traffic in that there exist dynamic documents that share data, yet their

redundancy cannot be exploited with this simple scheme.

-20 -

Chapter 2. Related Work

The Active Cache scheme [16] allows servers to supply cache applets to be attached
with documents, and requires proxies to invoke cache applets upon cache hits to
furnish the necessary processing without contacting the server. Even though this
approach is efficient for tasks like rotating advertisements, it is not efficient as a
general mechanism that fully exploits temporal correlation in dynamic traffic. It does
not specifically address invalidation of dynamic pages and the cost is high since it

requires starting up a new Java process for every request.

Douglis et al. [23] separate the static and dynamic portions of a document. They
cache static parts as usual, while dynamic parts are obtained on each access from the
server. They extend HTML to support this scheme. From their simulations, the size of
network transfers is typically 2 to 8 times smaller than the original sizes. Compared to

delta-encoding, this idea is simpler but less adaptable.
2.4 Summary

In this chapter, we reviewed static and dynamic Web caching techniques. In Section
2.1, we described the hierarchical, distributed and switch-based Web caching models
and their advantages and disadvantages. In Section 2.2, we described two basic
dynamic caching techniques: base-instance and template caching. Base-instance
caching allows dynamic content to benefit from caching when instances of the
content do not differ drastically from one another. Template caching also addresses

the cacheability of dynamic content and allows a content provider to explicitly

221 -

Chapter 2. Related Work

separate truly dynamic data from static page templates. In Section 2.3, we introduce
various dynamic content caching schemes at server side and proxy side. The server
side dynamic caching schemes are concerned with the situation in which the
bottleneck is the server’s CPU. They do not care about the network latency and
bandwidth. The proxy side dynamic caching schemes reduce bandwidth consumption,
network latency and increase hit ratio. A major problem with dynamic caching is to
ensure that strong consistency is maintained between cached pages and underlying
data objects. How to deal with consistency at the proxy side is an interesting topic and
we propose our Eager Page Dynamic Content caching scheme in the following

chapter.

222

Chapter 3. Easer-update Page Dynamic Caching scheme

Chapter 3

Eager-update Page Dynamic Caching
scheme

A dynamic page is generated by a Web server for each client request. The dynamic
page generation on the Web server is a time consuming process. For decreasing the
number of times a dynamic page is generated, Eager-update Page Dynamic Caching
(EPDC) scheme dynamically identifies two kinds of pages: eager-update pages and
lazy-update pages. It keeps strong consistency of eager-update pages between cached
pages and underlying data objects. For eager-update pages, the Web server always
“pushes” the newest data to the proxy after updates to the dynamic page content. For
lazy-update pages, proxies always “pull” the newest data from the Web server when
clients request it. EPDC extends HTTP, the most popular Web protocol, to support
communication between cache servers and Web servers. EPDC also uses class-based

delta-encoding [26] to reduce network bandwidth and latency.

The EPDC scheme has advantages over both server side and proxy side dynamic
caching. Not only does EDPC improve the user response time, cache hit ratio, and
reduce network bandwidth and latency, but it also offloads the Web server processing

time. The network model for EPDC is shown in Figure 3.1.

-23-

Chapter 3. Eager-update Page Dynamic Caching scheme

Web server
(application server)

Delta server

Client cluster Client cluster

Figure3. 1 network model

Proxy cache servers accept HI'TP requests from a cluster of clients and send HTTP
requests to the Web server. The Web server (application server) generates new pages
and passes them to the delta server to generate deltas then returns responses to

proxies.

We first introduce dynamic page classification, which identifies two kinds of pages:
eager-update pages and lazy-update pages. We next describe our HTTP extensions
and explain how to use the extended HTTP to communicate between cache servers

and the Web server. We then introduce class-based delta-encoding technique used by

-4 -

Chapter 3. Eager-update Page Dynamic Caching scheme

EPDC. Finally, we describe an extended LRU algorithm used with EPDC and give a

summary of this chapter.

3.1 Dynamic page classification

To classify eager-update and lazy-update pages, the proxy cache server counts two
numbers for each page in the cache: the number of requests and the number of
updates. When the first client request arrives, the proxy passes the request to the Web
server and gets the object back. The proxy then sends the object to the client and
saves a cache copy of the object. When the client’s request for thev same page comes
again, the proxy passes the request with IMS (IF_MODIFIED_SINCE) header to
the Web server. If the page has been updated then the Web server sends the new
object back, otherwise it sends ‘304 Not Modified” message back. Figure 3.2
describes the HT'TP IMS request for the not modified page and gives an equation for
the total time of a client request getting the response from the Web server. All

notations used in this chapter are defined in Table 3.1.

-25.

Chapter 3. Eager-update Page Dynamic Caching scheme

Parameter

Meaning

Connect ,,

The elapsed time from where a proxy cache sends TCP_SYN to a Web server to the proxy

receiving TCP_SYN_ACK from the Web server

Connect,,, .

The elapsed time from where a Web client sends TCP_SYN to a proxy cache server to the

client recetving TCP_SYN_ACK from the cache server

DiskAccess e The time it takes a proxy cache server to retrieve a cache object from disk to memory

Processin g, The time between a Web server receiving a dynamic page request and returning the first
byte of the requested object

Processin € Timeout The time it takes a proxy server to abort an outgoing HTTP connection setup request for a
Web server

Relay e The time it takes a proxy cache server to relay a response to the request party

Renl The time it takes a proxy cache server to reply an object in memory to the request party

EPLY 4o

Reply pe_304

The time it takes a proxy cache server to reply a “304:not modified” message

Reply " The time it takes a Web server to reply an object in memory to the requesting party
RTT oo s The round trip time between a proxy cache server a Web server

RTT, e The round trip time between a Web client and a proxy cache server

Search pc The time it takes a proxy cache server to search for an object in its cache

Table 3. 1 Notation and Parameters

~926 -

Chapter 3. Eager-update Page Dynamic Caching scheme

Total response time for HTTP IMS request = Connect . pe ¥ RTT . pel2 *2 + Connect pe_ws *2 +

N . .
RIT 2 + Processing . + Processing pe

pe_ws/2

Web Client Proxy Cache Web Server Delta Server

Connect

we _ pc

Connect .,
RTT

pc_ws/2

ed Processing

Mﬂﬂ/ Reply ,,
W{ essing . RTT pe_ws/2
/ RTT we_ pel2

Figure3. 2 HTTP IMS request for the not modified page

The proxy increments the request count for a page for each client request and
increments the update count for each response containing a new updated page. Here

f PP datecount . If a< 1, then the page update rate is

we use ¢ as the ratio o
pagerequestcount

slower than the page request rate, and the page is classified as an eager-update page;
otherwise, the page is classified as a lazy-update page. This process is performed for
each request so the sets of eager and lazy pages always change based on the above

ratio. We choose threshold 1 here to evaluate the page request rate and page update

=27 -

Chapter 3. Eager-update Page Dvnamic Caching scheme

rate. If the @ = 1, that means page update rate is equal to page request rate. The

reason we choose 1 1s that we hope to generate the eager-update page only once when

update occurs at the Web server back-end system. The dynamic page generation is a

time consuming process and we need to extensively decrease the Web server

processing time. For example, if we choose 2 as the threshold which means the page

update rate is faster than page request rate, even if no client request for that page, we

still need to generate the page when update occurs. Thus wastes the Web server

processing time. The proxy side algorithm to process a client request is shown in the

Figure 3.3.

Process ReceiveMessageFromClient(msg: HTTPMessage)

/To check if the request URL is in local cache
if (msg.requestURL.getFromCache())
cspage = CachedPage;
break;
endif

switch (msg.OPCode)

case HTTP_GET_REQUEST:

if (cspage.isEagerpage)
add the page request number;
LRUCache.findPage(msg.requestURL);
Send that page’s cache copy to the client;

else
add the page request number;
send IMS request to the Web server;

endif

endswitch
end

Figure3. 3 Proxy side algorithm to process client requests

-8 -

Chapter 3. Eager-update Pase Dvnamic Caching scheme

3.2 HTTP extension

To support the interaction between proxies and the Web server in EPDC, the HTTP
Cache-Control header field can be extended through the use of one or more cache-
extension tokens, each with an optional assigned value (the HTTP extension
specification is given in Appendix B). Informational extensions (those that do not
require a change in cache behavior) may be added without changing the semantics of
other directives. Behavioral extensions are designed to work by acting as modifiers to
the existing base of cache directives. Both the new directives and the standard
directive are supplied such that applications that do not understand the new directive
default to the behavior specified by the standard directive, and those that understand
the new directive recognize it as modifying the requirements associated with the
standard directive. In this way, extensions to the Cache-Control directives can be

made without requiring changes to the basic protocol.

We can therefore use the cache-extension mechanism to transfer page class
information. Our extension is as follows:
cache-extension = class
class =
“eager”
| “base”
| “delta”

| “from cache”

-29 .

Chapter 3. Eager-update Page Dynamic Caching scheme

The Option Codes of the cache control header are as follows (new option codes are
marked):

HTTP_GET_REQUEST: used by clients to send a GET request to the Web

server.

HTTP_GET_IMM_REQUEST (new): used by proxies to send eager-update
class information in the header of GET request to the Web server. It will add
“class = eager” to the cache control header of the HTTP GET request.
HTTP_GET_IMS_REQUEST: used by proxies to send if-modified-since
information in the GET request header to the Web server.

HTTP_FROM_CACHE_REQUEST (new): used by delta cache server to send a
GET request to the Web server. It will add “class = from cache” to the cache
control header of the HTTP GET request.

HTTP_200_RESPONSE: used by any server to respond a HIT'TP 200 OK to a
GET request indicating that the request was successfully received.
HTTP_304_RESPONSE: used by any server to respond a HTTP 304 Not
Modified to a GET request indicating that the document has not been modified.
HTTP_BASE_RESPONSE (new): used by the delta server. When the proxy
sends the eager-update page information to the Web server, the delta server adds
“class = base” in cache control header of a HT'TP response to indicate that this is

base file.

-30 -

Chapter 3. Eager-update Page Dynamic Caching scheme

HTTP_PUT_BASE_REQUEST (new): used by the delta server to broadcast the
base file to all registered proxies. It adds “class = base” in the cache control
header of a HT'TP PUT request.

HTTP_PUT_DELTA_REQUEST (new): used by the delta server to broadcast
the delta file to all registered proxies. It adds ‘“class = delta” in the cache control

header of HTTP PUT request.

3.2.1 Eager-update page communication

When a client initiates a request for a page, if the proxy identifies it as an eager-
update page, the proxy passes that GET HTTP request to the Web server. In the

general header field it has:

Cache-Control: class = “eager”

which means that the proxy classifies the page as an “eager-update” page. For each
eager-update page, the Web server keeps a list of proxies. When the Web server
receives this information it knows the page’s class and registers this proxy to the
client list. It then asks the application server to construct the dynamic page. The
application server sends the page to the delta server. The delta server classifies it as
an eager—update page, saves it as a base file and broadcasts it to all proxies in the
page list with the cache-control extension of “ class = base”. The proxy sends it to

the client and saves a copy as a base file (Figure 3.4).

-31-

Chapter 3. Bager-update Page Dynamic Caching scheme

Total response time for HTTP request for eager page classification = Connect,,, .. +
RIT . ,.12*2 + Connect , . + RIT , . %2 + Processing , + Processing ; + Reply , +
Processing e

Web Client Proxy Cache Web Server Delta Server

Connect

we _ pe

> Connect ,,

RTT

pc_ws/2

Prpcessing

ds

Rgply ,, / P N
W
R?Immﬂ/mw/

P

RTT

we__pel2

Figure3. 4 Eager-update page HTTP request from proxy to Web server for classification

Each time an eager page is updated, the Web server automatically notifies the delta
server to calculate the delta between the new page and the base file. In our

performance model, we have a delta server to send a HT'TP GET request to the Web

-32-

Chapter 3. Eager-update Page Dynamic Caching scheme

server if the page is stale. The delta server then adds Cache-Control: class = “from
cache” to the general header and sends the delta using a HT'TP PUT request to all
proxies that are in the page’s proxy list. It then saves the new update page as the base

file.

When the proxy server receives HT'TP PUT request with cache control extension of
“class = delta”, it recognizes the request URL matches it with a cached base file and
combines the base file with the delta to construct a new page. It then saves the new
page as the base file and sends a 200(OK) response to the Web server. When a new
client request for that page arrives, the proxy directly returns the cached page to the

client without validating the page (Figure 3.5).

-33 -

Chapter 3. Eager-update Pase Dynamic Caching scheme

Total response time for HTTP request for eager page = Connect pe ¥ RIT . pel2 *2 +

Processing . + Reply .

Web Client Proxy Cache Web Server Delta Server

Cpnnect A

po_ds /
R TT pe_ds/2 HT]T_PUT_,RBQ

Processing .

 Emrmwens D"
RICT - =

pe_dsi2

Connect

we _pe

RTT we _pcl2
Processing

Reply e
RTT

we_pcl2

Figure3. 5 Eager-update page HTTP request from Web client to Web server

3.2.2 Lazy-update page communication

For Lazy-update pages, a proxy sends a GET HTTP request to the Web server. In the

13

general header field with cache control extension of “ if-modified-since”, which
means that the proxy classifies this page as a “lazy-update” page. When the Web

server receives this information, it registers the proxy to the proxies list. If the page is

not stale, the Web server sends “304 Not Modified” response back to the proxy,

-34 -

Chapter 3. Eager-update Page Dynamic Caching scheme

otherwise, the Web server sends the request to the application server to generate the
page. The page is then sent to the delta server, which saves the page and sends it to
the proxy cache server. The delta server uses class-based delta-encoding [26] for

lazy-update pages.

When the delta server chooses the base file, it broadcasts the base file to all registered
proxy caches using a HT'TP PUT request with the cache control extension of “ class
= base”. The proxy cache saves the base file and responds with 200 “OK”. When the
proxy cache server receives the next request from the client, if there is a cached copy,
the proxy will still send a HTTP GET request with IMS to the Web server. If the Web
server finds the page is still valid, it responds with 304 “Not Modified” to the proxy
cache. If an update has occurred, the application server generates the page and sends
it to the delta server. The delta server recognizes the page’s group and calculates the
delta between the base file and the page. It then sends the delta to the proxy cache
server. The proxy combines the base file and delta to generate the page, which it

sends to the client (Figure 3.6).

- 35 -

Chapter 3. Eager-update Page Dynamic Caching scheme

Total response time for HTTP request for lazy page = Connect + RIT *2 +

we __ pe we_pcl2

Processing e T Connect + RTT

") .
pe_ws pe_wsi2 2 + Processing . + Processing ,. + Reply , +

Processing ,. + Relay .

Web Client Proxy Cache Web Server Delta Server
Cpnnect;, K/W KW,

RIT . 42 < o

Processing ,, Reply .

RTT pe_dsi?2

Connect,,

RTT,, ../

Processing .
Connect ,,_,,
RTT .
Processing

Processing W
e L
RICT

Relay
- RTT

Reply ,

we _pel?

Figure3. 6 lazy-update page HTTP request from Web client to Web server

-36 -

Chapter 3. Eager-update Page Dynamic Caching scheme

3.3 Class-based delta-encoding technique

Delta-encoding is the process of generating a difference file, called a delta, between
two files with the following two properties: (1) the combination of the delta and one
of the files, called the base-file, suffices to reproduce the other file, and (2) the size of
the delta is as small as possible. A detailed discussion of delta-encoding is given in

Appendix A.

In the context of HTTP, delta-encoding can be used to exploit temporal correlations
between consecutive snapshots of a dynamic Web-document. As shown in Figure 3.7,
the client and the server share a common base-file, which is a snapshot of the
dynamic document at some point in time. Whenever the client requests the document
from the server, the server computes the delta between the current snapshot of the
document and the base-file, and sends the delta to the client. Upon receipt of the
delta, the client computes the current snapshot of the document by combining the

delta and the locally stored base-file.

-37 -

Chapter 3. Eager-update Page Dynamic Cachine scheme

client server

client

client

bhase-files

Figure3. 7 Using delta-encoding for Web-documents

In the following two sections we introduce the class-based delta-encoding mechanism
[26] used in EPDC. EPDC adopts class-based delta-encoding mechanism to

extensively decrease network traffic and reduce response time.

-38-

Chapter 3. Eager-update Page Dvnamic Caching scheme

3.3.1 Grouping Documents into Classes

The mechanism aims to quickly identify a good class for each lazy-update page. A
class is good if the size, in bytes, of the delta between the base-file of the class and

the document is small.

All requests are processed by the delta-server after they are forwarded by the Web-
server. Initially, there are no classes formed in the delta-server. Whenever an
ungrouped URL-request arrives at the delta-server, the scheme groups it into an

existing class, or creates a new class.

We partition the URLSs in three segments (parts), the server-part, the hint-part, and the
rest. The server-part is the string from the beginning of the URL till the first slash, as
usual. The portion of the URL that is used as the hint-part differs among Web servers
and depends on how the Web server organizes its content. For example, let

www.computersell.com be a Web site that sells computers, laptops and desktops.

Assume that documents corresponding to laptops are similar, while they differ from
documents corresponding to desktops. Table 3.2 shows the URL-partitioning for three
different cases. Depending on the Web site, the administrator describes to the
grouping mechanism how to partition URLSs into parts using regular expressions.

Then, the mechanism uses these parts to expedite the grouping process.

-39 .

Chapter 3. Easer-update Page Dynamic Caching scheme

URL Hint-part rest
www.computersell.com/laptops?id=100 laptops 1d=100
www.computersell.com/?dept=laptops&id=100 | dept=laptops 1d=100
www.computersell.com/laptops/100 laptops 100

Table 3. 2 URL-parts for differently organized Web-sites

We now describe the grouping mechanism. A match occurs if the delta between the
requested document and the base-file of the class is smaller than a threshold. A new
class is created in case there are no classes with members whose server-part is the
same with the request’s server-part. Else, some heuristics are used to tradeoff between

search-time and matching-quality:

e If some classes have members whose hint-parts are the same with the
request’s hint-part, the mechanism only considers those as potential classes to
group the request.

e The mechanism never considers more than N existing classes as potential
classes
to group a request. If no match is found after N tries, a new class is created.

e The mechanism first attempts to group the request into classes with many
members, and then into less popular classes. In particular, the first a*N tries
consist of the most popular classes, and the last (I-a)*N consist of random

selections among the rest of the eligible classes.

- 40 -

Chapter 3. Eager-update Page Dynamic Caching scheme

3.3.2 Choosing a Base-file

Once a class is formed, it is necessary to identify a good base-file. The following
scheme is proposed:
a) Sample each request with probability p, i.e., consider the corresponding
document as a base-file candidate and store it in memory.
b) Use as a base-file the best of the stored documents, i.e. the document that
minimizes the sum of deltas between itself and all other stored documents.
¢) Store up to K documents. Thus, after acquiring K samples, whenever a new

sample is drawn, evict the document that maximizes the sum of deltas.

By design, the algorithm stores good base-file candidates and uses the best out of
those as a base-file. Let a rebase be the process of changing a base-file. After a
rebase, the new base-file should be distributed to all proxies before they can benefit
from delta-encoding. To control the number of rebases, a rebase takes place if both a
better base-file candidate exists, and a rebase-timeout, since the previous rebase, has

expired.

3.4 Extended LRU Algorithm

The Least Recently Used (LRU) algorithm [29] is the most popular replacement
algorithm in Web Caching systems. It sorts cached documents by the latest access

time. When a cache hit occurs the access time of the requested document is updated

-41 -

Chapter 3. Eager-update Page Dynamic Caching scheme

and it is moved to the head of the list. The least recently used document (located at

the tail of the list) is the next to be replaced.

Since LRU drops the page that has not been accessed for the longest time when a new
cache space is needed, it limits itself to only considering the time of last reference.
Specifically, LRU does not discriminate well between frequently and infrequently
referenced pages until the system has possibly wasted a lot of resources keeping
infrequently referenced pages in the cache for an extended period. Many extended
LRU algorithms, such as LRU-K [41], have been proposed to improve the LRU

algorithm.

EDPC uses LRU but always gives priority to eager-update pages. When a request for
an eager-update page is received, the cache server sends a request for that page to the
Web server and gets the newest object back. If the cache server has no space left, the
victim chosen is the least recently used lazy-update page in the cache server. When a
request for a lazy-update page comes, it can only replace the least recently used lazy-
update page in the cache server too. On the other hand, if the proxy cache server
classifies an eager-update page turning into a lazy-update page when receiving the
request for that page, that eager page is marked as lazy-update page then added to the
header of the lazy-update pages queue in the cache. Finally it is replaced by the
newest requested lazy-update page from the cache if it is not requested for a

sufficiently long time. The detailed algorithm is described in the Figure 3.8.

-42.

Chapter 3. Eager-update Page Dynamic Caching scheme

Process LRUaddToCache(URL: le)
private long MaxCacheSize;
private long CacheUsed;

private CacheDB eager_cacheDB;
private CacheDB lazy_cacheDB;

/if it is in cacheDB, can’t be added

if (eager_cacheDB!=null or lazy_cacheDB !=null)
return false;

endif

llcheck cache size

if (le.size>MaxCacheSize)
return false;

endif

CacheEntry celLazyTailer = lazy_cacheDB.getTailerEntry();
While ((le.size + CacheUsed) > MaxCacheSize)

if(ceLazyTailer == null)
return false;
discard(ceLazyTailer);
endwhile

/fadd the new entry to the header of lazy_cacheDB
CacheEntry ceNew = new CacheEntry();
ceNew.setPrev(0);

if(Jazy_cacheDB.getHeaderEntry()!=null)
‘ CacheEntry ceHeader = lazy_cacheDB.getHeaderEntry();
ceNew.setNext(ceHeader);
ceHeader.setPrev(ceNew);
lazy_cacheDB.updateEntry(ceHeader);
endif

lazy_cacheDB.addEntry(ceNew);
CacheUsed += ceNew.size;
return true;

end

Figure3. 8 Add page function of the Extended LRU algorithm

-43 -

Chapter 3. Eager-update Page Dynamic Caching scheme

3.5 Summary

In this chapter, we introduced the Eager-update Page Dynamic Caching scheme.
EPDC dynamically identifies two kinds of pages: eager-update pages and lazy-update
pages. It keeps strong consistency of eager-pages between cached copies and the
underlying data objects. Using an instant pre-computing strategy, EPDC only
computes eager-update pages once per update in order to save the Web server cost.
EPDC also computes lazy-update pages only when requests come, so it also reduces

computing resource contention.

For eager-update pages, the Web server always “pushes” the newest data to the proxy
after updates to the dynamic page content. EPDC also extends HTTP to support
communication between cache servers and Web servers. It not only reduces the
critical response time but also improves the hit ratio by extending the LRU algorithm
to give priority to eager-update pages in the cache. EPDC also uses class-based delta

encoding to reduce network bandwidth and latency.

-44 -

Chapter 4. Performance Evaluation

Chapter 4

Performance Evaluation

In this chapter, we evaluate the performance of our proposed EPDC scheme. The
results are compared with those of Delta Encoding and LRU. Section 4.1 explains the
simulation model produced in this research, which includes a network model and a
workload model. The effects of network link delay and HTTP request arrival rate on
the performance of the Web dynamic caching schemes are reported in Section 4.2.
Section 4.3 analyses the Web server cost and Section 4.4 provides a summary of the

results obtained in the simulation study.

4.1 Simulation Model

We first describe the simulation model, including the network model and the Zipf-
like distribution used to generate HT TP request traffic. The simulation of the EPDC
schemes is then described, followed by the necessary parameter settings and the

simulation software structure.

4.1.1 Network Model

To evaluate the performance of the EPDC scheme, we developed a simulator that
models the behavior of a proxy cache server and allows us to observe and measure
the performance of EPDC, Delta-encoding and LRU schemes under a variety of

conditions. We compare EPDC with Delta-encoding because Delta-encoding is a

- 45 -

Chapter 4. Performance Evaluation

popular dynamic caching technique used in Akamai [24] and SpiderCache [31]. We
compare EPDC with LRU because it is used mostly in general Web caching
environments.

In this study, a dynamic caching architecture is simulated. The network model for the

three simulated dynamic caching schemes is shown in Figure 4.1.

Delta server

.........

Client cluster Client cluster

Figured. 1 Network Model

In EPDC, the cache server accepts HI'TP requests from a cluster of clients and sends
HTTP requests to the Web server. The Web server generates new pages and the Delta
server generates deltas. In Delta-Encoding, the only difference from EPDC scheme is
that every page request needs to be sent to the Web server and then a delta is returned

back if any update has occurred for that page. In LRU, there is no delta server on the

-~ 46 -

Chapter 4. Performance Evaluation

Web server side. Each page request needs to be sent to the Web server for the newest

page.

4.1.2 Workload generation

We cannot use publicly available proxy traces as input to our simulation due to
privacy concerns, which force the deletion of data necessary for classification for
these traces. For example, most dynamic pages contain private information such as
credit card numbers or passwords. Therefore, a Zipf-like distribution [38][5] has
been used to accurately model Web access patterns and is used here. There have been
many studies on page request distribution, that is, the relative frequency with which
Web pages are requested [29], which indicate that a Zipf-like distribution is a good
approximation for Web accesses. Zipf’s law predicts that the relative frequency of
access for an object is a function of its popularity, that is, the i-th most popular object
will be accessed with a frequency proportional to 1/i“ [38], where the exponent varies
from trace to trace and the concentration of Web accesses to “hot” documents

depends on ¢ .

Previous work has shown that a simple model of independent requests with a Zipf-
like distribution of object popularity can be used to accurately model access skews
observed at Web proxies [38]. Figure 4.2 depicts the cumulative access probability of
objects as a function of the fraction of objects accessed for a Zipf-like distribution
with different values of &, where & =]-« . It can be seen that, for the access skew
with @ = 0, about 70% of the accesses are restricted to 20% of the objects, which is a

70-20 skew. As & decreases, popular documents receive a greater fraction of

- 47 -

Chapter 4. Performance Evaluation

requests, so a Zipf-like distribution yields high access skews at low values of 8, and

tends to become more uniform at larger values of 4.

Ziptun Distribution

pu b

Ly = theta (.0 -— —
= theta 6.1 —+--
= R theta 0.2 -EF--
2 wir theta 0.3 -~ 7
= theta 1.4 &
= theta .5 -
w= o {LG -
‘?
I 1.5 | -~
E 04k -1

1.3 - .

02 -

0] |] 1 ! L 1 1 1 !

0 {1 0.2 0.3 04 0.5 0.6 0.7 0.8 4.9 !

Fraction of Files

Figured. 2 Zipf-like Distribution[39]

We create a workload of page references based on a Zipf-like distribution of
reference probabilities. For each distinct object in the set of objects used by clients,
we can compute the access probability for the object given its popularity rank, the
total number of objects in the set, and the Zipf parameter ¢ . We assume that the least
popular gets one access. Since the number of accesses to the i-th most popular object
n(i) = P(i) * n, where P(i) is the access probability of the objeét and » is the total

number of accesses to all objects, we can further deduce »n from the access probability

- 48 -

Chapter 4. Performance Evaluation

of the least popular object, and the number of accesses to each of the other objects

can be easily calculated.

Given the list of all the distinct pages ranked in terms of their popularity order and the
number of accesses to each page, we can proceed to generate the input workload to
our simulation model. The input is implemented as a text file, where each entry in the
file stores all the attributes that identify a particular request. We identify four
attributes for each entry:

Page ID: a unique number representing the URL of the requested object.

Client ID: a number representing the client IP address.

Timestamp: the time at which the client socket is closed. The format is “Unix
time”’(seconds since January 1, 1970) with millisecond resolution.

Size: the number of bytes transferred from the proxy to the client.

In our experiments, we use a Poisson distribution to model the request arrivals input
workload. We assume there are 1000 dynamic pages available at the Web server.
There are 10 news groups and each group has 100 pages. We also assume that
dynamic pages are invalidated at 30-second intervals. We assume four different
request rates (30,75,150,200 per minute) and generate four 24 hours Web traffic log
files as input workload for our experiments. The ratio of eager-update to lazy-update

pages is a parameter that is varied in the simulations.

- 49 -

Chapter 4. Performance Evaluation

4.1.3 Simulation Parameter Settings

The parameters used in the simulation are based on data measured by Chiang [11] and

Rousskov [28]. These parameters are summarized in Table 4.1.

Parameter Meaning Nominal Source

Value

Connect s The elapsed time from where a proxy cache sends | 35(0ms [28,11]

TCP_SYN to a Web server to the proxy receiving

TCP_SYN_ACK from the Web server

The elapsed time from where a Web client sends TCP_SYN —~

Connect,,, . 0~30ms | [28,11]
to a proxy cache server to the client receiving
TCP_SYN_ACK from the cache server

: The time it tak h to retri h ’

DiskAccess e e time it takes a proxy cache server to retrieve a cache | 100ms [28’11]

object from disk to memory
: The time between a Web server receiving a dynamic page
Processing g a dynamic page | 500ms [40]

request and returning the first byte of the requested object

; The time it takes a proxy server to abort an outgoing HTTP
Processing . rimeour 15000ms | [11]

connection setup request for a Web server

Processin 8 e v The time between a Web server receiving a GIMS request | 250mg [1 1]

and returning the first byte of the requested object

Relay e The time it takes a proxy cache server to relay a response to 50ms [11]
the request party

Reply . The time it takes a proxy cache server to reply an objectin | 150ms - [1 1]
memory to the request party

Reply ne_304 The time it takes a proxy cache server to reply a “304mot | §()mg [28,1 1]

modified” message

The time it tak Web t 1§ bject
Reply " e time it takes a Web server to reply an object in memory | 15(0mg [1 1]

to the requesting party

RTIT The round trip time between a proxy cache server a Web | 30(Oms [11]

pe__ws
server

-50-

Chapter 4. Performance Evaluation

RTT v pe The round trip time between a Web client and a proxy cache 0~20ms [1 1]
server

Search pc The time it takes a proxy cache server to search for an object | 250ms [1 1]
in its cache

Table 4. 1 Simulation parameters

4.2 Simulation Results

The details of the simulation software are presented in Appendix C. In this section,
we describe and analyze our simulation experiments. In the experiments, network link
delay (including propagation delay, packet transmission delay and network access
delay) and the page arrival rate at the proxy are two main variable parameters used to
evaluate the dynamic caching schemes. We also examine how the number of hits on
eager pages per unit time (HIT) and changing workload influence the client response

time.

4.2.1 HTTP request rate and response time

The number of HTTP requests received by a proxy determines the workload of the
proxy. The response time of a proxy cache server should follow the HTTP request
rate. So with a Poisson distribution to generate request inter-arrival time we expect

that schemes should have flat response time curves.

The average response times under different link delays and page arrival rates are
shown in Figure 4.3-4.5. EPDC outperforms the other two schemes in all cases.

Under a specific link delay (90 milliseconds), as shown in Figure 4.3, when the

-51-

Chapter 4. Performance Evaluation

arrival rate is low (30/min), EPDC outperforms Delta-encoding by 4.5% on average,
and LRU by 11.7% on average. When the arrival rate increases to 75, 150, 200 and
500 messages per minute, EPDC outperforms the Delta-encoding by 7.3%, 10.2%,
11.9% and 18.5%, respectively. It also outperforms LRU by 14.3%, 16.6%, 17.4%
and 22%, respectively. There are more requests for the eager pages when the arrival
rate increases so EPDC saves the connection time between proxy cache servers and

Web servers.

The interesting thing we can find from Figure 4.3 is that under the same link delay,
when arrival rate is big enough such as 200 messages per minute we can see the
response time goes up. The reason is that once the number of arrival messages goes
up, they are congesting in the waiting queue at the proxy cache server. We can see
when arrival rate = 150 per minute we can achieve the best response time. We also
can see EPDC outperforms Delta-encoding and LRU schemes more when arrival rate
is bigger than 150 messages per minute. The response time in EPDC does not
increase as much as that of Delta-encoding and LRU when the arrival rate increases
(arrival rate > 150 messages). The reason is that when the arrival rate is higher, EPDC

save more connection time between proxy cache servers and Web servers.

-52-

Chapter 4. Performance Evaluation

Response Time(ms)

Arrival rate vs. Response Time(link delay = 90ms)

1280 v

1200

}188 -4 ‘ L . o

... . , . - ¢

1040 i

1000 -
960
920 P .

30 75 150 200 500

Arrival rate

—a— Delta-encoding
LRU

Figured. 3 Average response time at link delay = 90 ms

Response Time(ms)

Arrival rate vs. Response Time(link delay= 180ms)

—e—EPDC
- Delta-encoding
LRU

Arrival rate

Figure4. 4 Average response time at link delay = 180 ms

-53 -

Chapter 4. Performance Evaluation

Arrival rate vs. response time(link delay=360ms)

2300

2200 1 wes o . e
st00 40 i e
2000 }g

2400 {m‘,mm,,wY.(.W»Ww..mm,m,.m“W,,.mmwww.wwﬁwm

—e—EPDC

—a-— Delta-encoding
1900 LRU
1800

e @@

Response Time(ms)

H

FBO0 st]
30 75 150 200 500

Arrival rate

Figured. 5 Average response time at link delay = 360 ms

4.2.2 Network link delay and response time

Figure 4.6 shows that under different network link delays, EPDC effectively
outperforms the Delta-encoding and LRU schemes. Under large link delays and the
same arrival rate, EPDC’s performance is even better. As shown in Figure 4.6, EPDC
outperforms Delta-encoding by 4.5%, 6.6% and 8.7% when link delays are 90ms,
180ms and 360ms, respectively. Similarly, EPDC outperforms LRU by 11.7%, 12%
and 12.3% on average. Table 4.2 shows that when arrival rates are 30, 75, 150, 200
and 500 messages per minute, the larger the network link delay, the more EPDC
outperforms Delta-encoding and LRU schemes. This is because EPDC decreases the

communications between the proxy cache server and the Web server.

- 54 -

Chapter 4. Performance Evaluation

trival Rate

Scheme _ 30/min | 75/min | 150/min | 200/min | 500/min
Link Delay
90ms 1063ms | 969ms 917ms 930ms 958ms
EPDC 180ms 1376ms | 1266ms | 1193ms | 1201ms | 1229ms

360ms 2003ms | 1860ms | 1746ms | 1762ms | 1789ms

90ms 1113ms | 1045ms | 1021ms | 1056ms | 1176ms

Delta- 180ms 1473ms | 1405ms | 1381Ims | 1416ms | 1536ms

encoding
360ms 2193ms | 2125ms | 210Ims | 2136ms | 2256ms

90ms 1204ms | 1131ms | 1099ms | 1126ms | 1228ms

LRU 180ms 1564ms | 1491ms | 1459ms | 1486ms | 1588ms

360ms 2284ms | 2211ms | 2179ms | 2205ms | 2308ms

Table 4. 2: Average response time for different link delays

- 55 -

Chapter 4. Performance Evaluation

Responsetime(ms)

Response Time

[— EPDC
— DeltaEncoding
LRU

delay=90ms
arrival rate=30/min

1000 L
S S _FP PP AP P PSP PP P PP DD PP

P S S A S S E A SRR A R S, 2 S

Time

(a)Average response time at link delay = 90ms

Responsetime(ms)

Response Time

s ey

— EPDC
- DeltaEncoding
LRU

i
|
o
|
L
!

|

o

WWMW&

delay=180ms
arrival rate=30/min

(b) Average response time at link delay = 180ms

Responsetime(ms)

Response Time

— EPDC
- DeltaEncoding

2260 - = - LRU

. " delay=360ms
% |arrival rate=30/min

1200 - ¢

Q@N@W@@QP&&%@%&\cp‘b&qfbf\fwfﬁfhfb@iﬁﬁ\(%xfﬁ%%%ﬁb&

Time

(c) Average response time at link delay = 360ms

Figured. 6 Page arrival rate = 30 messages/min at proxy

256 -

Chapter 4. Performance Evaluation

4.2.3 Changing workload and Response Time

To test the EPDC scheme’s adaptability, we alter the pattern of page accesses by
changing the page rankings. We partition the 24-hour access trace into 6 parts. We
conduct successive four-hour experiments continuously based on different Zipf-like
distributions to examine how EPDC reacts to the workload changes. In Figure 4.7,
we examine the 40 minutes surrounding the changing workload point time = 4am
(3:40 to 4:20). From the X-axis of Figure 4.6, we find from x = 2/ (4:01), when the
access changes, the response time changes gradually from 920ms up to 1160ms. This
indicates that the cached eager pages are no longer useful. The response time begins
to decrease at x = 36 (4:16), which means that EPDC has loaded the cache with the

new popular pages that are now marked as eager.

Figure 4.8 shows response time difference between EPDC and Delta-encoding
schemes for the whole 24-hour period. We can see at each access change point, the
response time difference goes down a little then goes up rapidly. This reflects the
quick recovery of the EPDC response time regaining the response time difference
between EPDC and Delta-encoding. The main reason is that when page accessibility
changes, EPDC identifies more eager-update pages in very short time period. Then
after dynamic pages’ updates occur a lot lately, more eager-update pages turn into
lazy-update pages so that the response time goes up again. Such fluctuations only last
a few minutes and are hence indicative of the adaptability of EPDC to changes in

page request patterns. Figure 4.9 shows the workload pattern changing point and

-57-

Chapter 4. Performance Evaluation

response time difference between EPDC and Delta-encoding for different arrival

rates.
Workload Changing Point
1200 — 4:00am
1160
@ 1120
£ 1080
£ 1040 delay = 180ms
5 1000 4 - - arrival rate = 150/min
o 960 -
S 920
@
¢ 880
@ 840 |
800,r ,”,.,rn”WWWWWM
1 3 56 7.9 11131517 1921 23 25 27 28 31 33 35 37 30 41
Time(40 mins)
Figured. 7 Workload changing point
Response Time Difference
220 2W,,W“WWWW,w,,u_qummwmm*MWWV,ﬂwmm»wﬂwwmwwz
aQ it ‘, §
I; E’; 190 42 L Aka R - s?'n WA ! 4
g % 180 4 Ylafi delay: 180 ms
§"§ 170 B g arrival rate = 150/min
2 5 160
140 l"’""‘l LN AR A Mt A A AR A St B | ‘T‘“‘T‘“T““T“T“‘"T‘““T"T‘”‘T“"r""% x erkloadChanglngtlme
U SRy
SRUBRGHA -%%@%W(\g;\% o Qgﬁ?b
Time

Figure4. 8 Response Time Difference

-58 -

Chapter 4. Performance Evaluation

Workioad Changing Point Resporse Time Difierence

)

£

o
- —4:00am 8
£ ' £ — Respanse Time
3 5 Difference
£ £
E Q f
P | 2 |

: | i =

8 | |delay= 18ms e o ::?/yal r;flméom
2 ' |arival rate = 200/min g o
] : i
T 5 !

[=}

0

]

o

V26400800 PPHA DS P B SOOI I0LELL0LEI0000e

) g i
Time(40 mins) Time

(a.l) (a. 2)

Workload Changing Point Response Time Difference

S ST

—— Response Time
Difference

- 4am

delay =180ms
arrival rate = 75/min

delay = 180ms
arrival rate = 75/min

Response Time

V20400080 2PPR) PR PHE PP

(b.1) (b.2)

Figured. 9 Workload Changing Point and Response Time Difference

-59.

Chapter 4. Performance Evaluation

4.2.4 Eager Page HIT and Response Time

We collect the average number of cache hits during a 10-minute period for each
eager-update page (HIT). We also collect the response time for each period. We plot
the average response time versus HIT in Figure 4.10 and see that when HIT increases
the response time drops accordingly. We also can see that under the same link delay,
the higher the page arrival rate is, the lower the response time. Figure 4.11 shows the
relation between HIT and the response time under different link delays and page
arrival rates. The eager-update pages have the cache priority in the proxy cache
server. When the client request for an eager-update page arrives, it always gets the
newest cache copy from the proxy cache server without going to the Web server. So it
reduces the response time significantly. The greater the number of requests for eager-

update pages, the greater the savings in client response times.

- 60 -

Chapter 4. Performance Evaluation

Eager Page HIT Response Time

1110
1100
1090
1080
1070
1060
1050 - -
1040 ’ .
1030 - ¥

0 20 40 60 80 100

Eager Page HIT number

o Eager Page HIT
Response Time
delay = 80ms
arrival rate = 30/min

P\MW
o
.

Response Time(ms)

Eager Page HIT Response Time

¢ Eager Page HIT
Response Time

delay = 90ms
arrival rate = 75/min

Response Time(ms)

Eager Page HIT number

(a) page request rate = 30/min

(b) page request rate = 75/min

Eager Page HIT Response Time

_ B0 ~prmsmemms e ey e ey . Eager Page A
g 940 Response Time
5 i
g 9304
920 ; . [deay=50ms
b | val rate = .
g 910 1 | arrival rate = 150/min
3 |
Q QOOl \ .
4 |

890 b

0 100 200 300 400

1‘ Eager Page HIT number

Eager Page HIT Response Time

©
8
i

- 1 | eEager Page HIT
£ o0 - | | Responsa Time,
H |
= 300 A * . . . ‘ i delay = 80ms
§ 890 +4 . . . 4 artival rate = 200/min
2 , .
g 880 G Lami G i*
& e :

ST0 bl

o

200 400 600 800
Eager Page HIT number

(c) page request rate = 150/min

(d) page request rate = 200/min

Figured. 10 Eager Page HIT Response Time

E EagerPage HIT Response Time

o EagerPage HIT
Response Time

delay = 180ms
arrival rate = 3¢/min

Response Time(ms)

Eager Page HIT number

(a.1)

-6l -

EagerPage HIT Response Time
1320
» EagerPage HIT
%71300 Response Time
}Eﬂzso
F delay = 180 ms
Zr 1260 ; arrival rate = 75/min
21240
]
[
1220
1200 4 . .
0 50 100 150 200 250
Eager Page HIT Number
(a.2)

Chapter 4. Performance Evaluation

Response Time(ms)

EagerPage HIT Response Time

a1

¢ EagerPage HIT
Response Time

. [detay = 180 ms
| |arrival rate = 150/min

0 100 200 300 400
Eager Page HIT Number

500

(a.3)
Eager Page HIT Response Time
2080
& 2080 } % . | @ Eager Page HIT
% 2040 :I ®. J; Response Time
'g 2020 4 8!
2 2000 -+ ‘j delay = 360ms
c 1980 i arrval rate = 30/min
§ 1960 : L !
£ 1940 £ . L
| 1820 4 « : e i
([¢] 20 40 60 80 100
E Eager Page HIT number
(b.1)
r
Eager Page HIT Response Time
1840 T 1 e Eager Page HIT
i ’ET 1820 - Response Time
| 5 1800
E 1780
~
P 1760 4+ delay = 360ms
5 1740 j ; arrival rate = 150/min
2 1720 |
}
& 1700 4
1680 : : -
0 100 200 300 400
Eager Page HIT number
(b.3)

EagerPage HIT Response Time

_ 1190 & EagerPage HIT
g 1180 Response Time
5 1170
E 1160
F 11504 arrival rate = 200/ms
g 1140 link delay = 180ms
2 1130
& 1120

1110

0 100 200 300 400 500 600 700 800
Eager Page HIT number
(a.4)
Eager Page HIT Response Time

e 1940 + Eager Page HIT
@ 1920 Response Time
£ 19004
E 18804
E 1860 1 delay = 360ms
£ 1840 arrival rate = 75/min
§- 1820
o 1800

1780

Eager Page HIT number
(b.2)
Eager Page HIT Response Time
o Eager Page HIT
TEn‘ Response Time
k)
£
™
a delay = 360ms
c arrival rate = 200/min
2
H
@x
Eager Page HIT number

(b.4)

Figured. 11 Eager Page HIT Response Time

- 62 -

Chapter 4. Performance Evaluation

4.2.5 Hit Ratio

The cache hit rates of the two schemes under different page request rates are shown in
Figure 4.12. The LRU scheme adopts the same replacement algorithm as the Delta-
encoding scheme so they have the same hit ratio. Comparing the EPDC to the Delta-
encoding scheme, we find EPDC achieves a higher hit rate. The average hit rates for
EPDC are 2% to 3% higher than Delta-encoding. The reason is that we extend the
LRU replacement algorithm for EPDC. In EPDC, eager-update pages have priority to
lazy-update pages in the proxy cache server. Every time client requests for eager-
update pages always get hit in the cache server. The Delta-encoding scheme adopts
the normal LRU replacement algorithm that indiscriminately treats eager-update
pages and lazy-update pages. The client requests for eager-update pages sometimes
could not get the hit in the cache server because those cached copies are already
deleted from the cache server. Comparing with the hit rate of non-dynamic content

caching (40%), the hit rate of EPDC is very significant.

Hit Ratio(zipf rate=0.7)

0.86 e

0.85 i
0.84
0.83
0.82

0.81 j
0.8

g EagerPageScheme
@ DeltaEncodeScheme

Hit Ratio(%)

%
é

30 75 150 200

arrival rate

Figured. 12 Hit Ratio

-63 -

Chapter 4. Performance Evaluation

4.2.6 Web server cost analysis

Pre-computing [30] a dynamic page occurs whenever the page becomes stale. This is
called instant pre-computing. Instant pre-computing is effective for a Web site in
which each dynamic page is frequently accessed. In EPDC, we adopt instant pre-
computing for eager-update pages. If a Web server knows that a page is an eager-
update page, it pre-computes the new page when an update occurs and has the delta
server calculate the delta between new and old versions of the page and send the delta
to the proxy cache. Lazy-update pages, which are a large portion of dynamic pages of
the Web server, are not accessed frequently and so demand on the server computing
resource is limited. Delaying pre-computing of these pages can reduce resource
contention.
By using this strategy, EPDC reduces the Web server cost. Let d be the average CPU
time to compute a dynamic page on a machine, r be the total number of page requests
and T be the total CPU time to compute all requested pages. The Web server cost
without EPDC is:

T=r*d (1)
Under EPDC, let ¢ be the total number of updates to eager-update pages at the Web
server, er be the total number of requests for eager-update pages, {r be the total
number of requests for lazy-update pages and 77 be the total CPU time to compute all
requested pages with EPDC. We have:

Tl =e*d+1Ir*d (2)

-64 -

Chapter 4. Performance Evaluation

Let T2 be the total CPU time saved by computing all request pages with EPDC. We
have:
T2=er*d-e*d (3)
From (2) and (3) we get:
Tl +T2=e*d+Ir*d+er*d-e*d=Ilr*d+er*d=(Ir+er)*d=T

The rationale behind the above equation is that for frequently accessed Web pages,
the Web server only generates the newest snapshot of the page once no matter how
many requests for these pages come to the proxy cache. It also reduces resource
contention while the lazy-update pages only are pre-computed only when clients’
requests come. The space cost for the eager-update pages is proportional to the
number of cached eager-update pages in the delta server. The space cost for the lazy-
update pages is proportional to the number of URL lazy-update base files. Their space

costs are small.

4.3 Summary

In this chapter we evaluated the performance of the proposed EPDC scheme. The
performance of EPDC was compared to that of Delta-encoding and LRU via
simulation. In addition, the adopted network model, simulation experiment settings,
and simulation software implementation were described. The event-driven simulation
experiment was conducted to investigate the effects of network link delay, HTTP
request rate and changing workload on the performance of the Web dynamic caching

schemes.

- 65 -

Chapter 4. Performance Evaluation

Simulation experiments show that EPDC outperforms the Delta-encoding and LRU
schemes, with respect to HTTP request response time under various page request
rates. Regardless of the network link delay, the response time of EPDC decreases
faster than that of Delta-encoding and LRU schemes when the page request rate
increases because the number of the more requests for eager-update pages also

increases.

The results obtained from the experiments conducted on the effect of the network link
delays showed that EPDC outperforms Delta-encoding and LRU for all values of link
delay. When the link delay is large, EPDC saves more response time than Delta-
encoding and LRU because there are more requests for the eager-update pages, which
can be serviced without communication between the proxy cache server and the Web

SCTVer.

EPDC can also to adapt to a workload in which the access probabilities to individual
pages changes. EPDC dynamically identifies eager-update pages and lazy-update
pages and it can stabilize the average response time automatically. Adopting the
extended LRU replacement algorithm, EPDC also outperforms the Delta-encoding
and LRU schemes in hit rates due to the requests for eager-update pages always get

hit in the proxy cache server.

EPDC offloads the Web server’s cost by using the pre-compute technique. For

frequently accessed Web pages, the Web server only generates the newest snapshot of

- 66 -

Chapter 4. Performance Evaluation

the page once no matter how many requests for these pages come to the proxy cache.
It also reduces resource contention while the lazy-update pages are pre-computed

only when clients’ requests come.

-67 -

Chapter 5. Conclusion

Chapter 5

Conclusion

Traditional Web caching techniques are applicable only to static documents, or to
documents that change in large timescales. Current caching solutions have reached a
point where their performance cannot be significantly improved unless they
incorporate a mechanism to “cache” dynamic documents. Dynamic caching schemes

such as Delta-encoding can save network bandwidth and latency.

Our proposed Eager-update Page Dynamic Caching (EPDC) scheme combines
advantages of both proxy side and server side caching. It not only improves critical
response time and hit rate but also reduces the Web server processing time. EPDC
uses the class-based delta-encoding technique to reduce network bandwidth and
latency. Class-based delta-encoding means the server can designate a certain base
instance of the dynamic page and arrange that every client have the same base page
instance. The server needs to store only one base instance to be able to delta-encode
future responses. The big advantage of base-instance caching is that it is transparent

to Web developers who create content.

EPDC extends the HTTP protocol and the LRU replacement algorithm. Extended

HTTP transfers eager-update and lazy-update pages class information between the

- 68 -

Chapter 5. Conclusion

Web server and the proxy server. Although it adds the overhead to the HTTP header,
it does not influence the communication between the proxy and the client. The
extended LRU algorithm gives eager-update pages caching priority and improves the
hit rate. Combining both techniques EPDC not only saves response time but also

offloads the Web server processing time.

As a proxy side dynamic content caching scheme, EPDC provides the following
benefits:

1. Reduced Network bandwidth and latency. In EPDC, the cache server
saves base files and only retrieves deltas from the Web server.

2. Reduced response time. When the client sends a request for an eager page,
the cache server always returns a cached copy to the client without
connecting with the Web server.

3. Keep consistency between cached pages and underlying data objects. For
eager pages, when the underlying data objects are updated in the back-end
system, the Web server broadcasts the change to all registered cache servers
using delta-encoding.

4. Decreased Web server cost. The Web server only needs to generate eager
pages once when the underlying data objects change. This saves Web server
processing time.

5. Improved cache hit ratio. In cache servers, eager pages always have

priority so requests for eager pages have a higher cache hit.

- 69 -

Chapter 5. Conclusion

A detailed simulation model was developed to study the performance of EPDC.
EPDC was compared with two Web caching schemes, namely, Delta-encoding and
LRU. Simulation results show that EPDC outperforms Delta-encoding and LRU with
respect to HTTP request response time under various page request rates. Regardless
of the network link delay, the response time of EPDC decreases faster than that of
Delta-encoding and LRU when the page request rate increases. Regardless of the
arrival rate, EPDC saves more response time than Delta-encoding and LRU when the

link delay is large.

EPDC can also to adapt to a workload in which the access probabilities to individual
pages changes and stabilize the average response time automatically. Adopting the
extended LRU replacement algorithm, EPDC also outperforms the Delta-encoding

and LRU schemes with respect to hit rates.

EPDC offloads the Web server’s cost by using the pre-compute technique. For
frequently accessed Web pages, the Web server only generates the newest snapshot of
the page once no matter how many requests for these pages come to the proxy cache.
It also reduces resource contention while the lazy-update pages are pre-computed

only when clients’ requests come.
Although EPDC outperforms existing Delta-encoding and LRU schemes, it still has

some disadvantages. EPDC adds overhead to the HTTP header to communicate

between proxies and Web servers. It also needs the Web server to maintain a list of

-70 -

Chapter 5. Conclusion

proxy cache servers in order to transfer deltas. With EPDC, the proxy server returns a
cached copy of eager-update pages to the client directly without contacting the Web
server, which can create stale pages when race contention occurs. Under the CDN
(content delivery network) system, there are many Web servers and Cache servers. If
some pages are eager-update pages in some cache servers and lazy-update pages in

other cache servers, we need to adjust the EPDC scheme to deal with it.

-71-

References

References

[1] ACE director “Load Balancing - Technical Specifications”. Available at:

hitp://www.verio.com/products/dedicated/infocenter/managed/specs.cfm

[2] Akamai Company, “Turbo-Charging Dynamic Web Sites with Akamai

EdgeSuite”, http://www.akamai.com/en/resources/pdf/Turbocharging WP.pdf

[3] ArrowPoint Communications, “Content Smart Cache Switching”,

hitp://www.westcon.com/prodinfo/vertical/verticalesp/arrowpoint/appnotes/s

mart_caching.html

4] G. Banga, F. Douglis and M. Rabinovich, “Optimistic Deltas for WWW

Latency Reduction”, in Proceedings of USENIX Technical Conference, ’97.

[5] P. Barford and M. E. Crovella, “Generating Representative Web Workloads
for Network and Server Performance Evaluation,” in Proceedings of ACM

SIGMETRICS 98, 1998.

[6] C. Bowman, P. Danzig, D. Hardy, U. Manber, and M. Schwartz, “The Harvest

information discovery and access system”, in Proceedings of the Second

International World Wide Web Conference, October 1994.

-72 -

References

[7] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “On the Implications of
Zipf’s Law for Web Caching”, in Technical Report 1371, University of

Wisconsin, April 1998.

8] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, “Web Caching and
Zipf- like Distributions: Evidence and Implications”, in Proceedings of IEEE

Infocom’99, Mar. 1999.

9] P. Cao, J. Zhang, and K. Beach, “Active Cache: Caching Dynamic Contents
on the Web,” in Proceedings of IFIP International Conference on Distributed
Systems Platforms and Open Distributed Processing (Middleware ’98), Mar.

1998.

[10] J. Challenger, A. Iyengar, and P. Dantzig, “A Scalable system for
ConsistentlyCaching Dynamic Web Data,” in Proceedings of the IEEE

INFOCOM’99, Mar. 1999.
[11] C.Chiang, M. Ueno, M. Liu and M. Muller, “Modeling Web Caching
Hierarchy Schemes”, Technical Report, Ohio State University, OSU-

CISRC-6/99-TR17, 1999.

[12] K. Claffy and D.Wessels, “ICP and the Squid Web Cache”, in IEEE Journal

on Selected Areas in Communication, April 1998.

-73 -

References

[13] F. Douglis, A. Haro, and M. Rabinovich, “HPP:HTML macropreprocessing to

[14]

[15]

[16]

[17]

support dynamic document caching”, in Proceedings of the USENIX

Symposium on Internet Technologies and Systems, pp. 83-94.

Edge(2001). Edge Side Includes-http://www.esi.org/.

V. Holmedahl, B. Smith, and T. Yang, “Cooperative Caching of Dynamic
Content on a Distributed Web Server,” in Proceedings of the Severth IEEE
International Symposium on High Performance Distributed Computing, July

1998.

B. Housel and D. Lindquist, “WebExpress: A System for Optimizing Web
Brows-ing in a Wireless Environment”, in Proceedings of the ACM/IEEE 2™
Annual International Conference on Mobile computing and networking,

MOBICOM, November *96.

J. Hunt, K. Vo and W. Tichy, “Delta Algorithms: An Empirical Analysis”,

ACM Transactions on Software Engineering and Methodology, April *98.

[18] J. W. Hunt and M. D. Mcillroy. “An algorithm for differential file comparison”,

Technical Report Computing Science Technical Report 41, Bell Laboratories,

June 1976.

-74 -

References

[19]

[20]

[21]

[22]

[23]

[24]

J. W. Hunt and T. G. Szymanski. “A fast algorithm for computing longest
common subsequences”, Communications of the ACM, 20(5):350-353, May

1977.

Hypertext Transfer Protocol -- HTTP/1.1. Available at:

http://www.cis.ohio-state. edu/hthin/rfc/rfc2068.html

A. Iyengar and J. Challenger, “Improving Web Server Performance by
Caching Dynamic Data”, in Proceedings of USENIX Symposium on Internet

Technologies and Systems, Dec. 1997.

Z. Liang, H Hassanein and P.Martin “Transparent Distributed Web Caching”,
in Proceedings of the IEEE Local Computer Network Conference, Nov

2001, pp.225-233.

E. McCreight. “A space economical suffix tree construction algorithm”,

Journal of the ACM, 1976.

J. C. Mogul, F. Douglis, A. Feldmann and B. Krishnamurthy, “Potential
benefits of delta encoding and data compression for HT'TP”, in Proceedings of

SIGCOMM, 1997.

-75 -

References

[25] E. O’Neil, P. O’Neil, G. Weikum. “The LRU-K Page Replacement Algorithm
For Database Disk Buffering”, in Proceedings of ACM SIGMOD

International Conference on Management of Data, New York, 1993.

[26] K. Psounis, “Class-based Delta-encoding: A Scalable Scheme for Caching
Dynamic Web Content,” in IEEE International Conference on Distributed

Computing Systems Workshops, Vienna, Austria, July 2002.

[27] M. J. Rochkind. “The source code control system”, IEEE Transactions on

Software Engineering, December 1975.

[28] A.Rousskov and V. Soloviev, “A performance study of the squid proxy on

http/1.0”, in World Wide Web, January 1999.

[29] A. Silberschataz, J. Peterson, and P. Galvin, “Operating System Concepts”,

Addison Wesley, 1992.

[30] B. Smith, A. Acharya, T. Yang, and H. Zhu, “Exploiting Result Equivalence

in Caching Dynamic Web Content”, in Proceedings of Second USENIX

Symposium on Internet Technologies and Systems(USITS99), Oct. 1999.

-6 -

References

[31] SpiderCache Company, “SpiderCache Enterprise 2.0: Dynamic Content

Delivered Faster”,

http://'www . spidersoftware.com/Documents/WhitePaperSpiderCache20Ev 1 .pdf

{321 SSH Protocol. Available at: http://www.snailbook.com/protocols.html

{33] R. Tewari, H. Vin, A. Dan, and D. Sitaram, “Resource-Based Caching for Web
Servers”, in Proceedings of SPIE/ACM Conference on Multimedia Computing

and Networking, San Jose, CA, Jan. 1998, pp. 191-204.

[34] W. F. Tichy. “RCS-a system for version control”, Software-Practice and

Experience, 15(7):637-654, July 1985.

[35] W. F. Tichy. “The string-to-string correction problem with block moves”, ACM

Transactions on Computer Systems, 2(4):309-321, November 1984.

[36] A. Vahdat and T. Anderson, “Transparent Result Caching”, in Proceedings of

1998 USENIX Technical Conference, 1998.

[37] V. Valloppillil and K. Ross, “Cache Array Routing Protocol v1.0”. Interet

Draft, draft-vinod-carp-v1-03.txt , February 1998.

-77 -

References

[38] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Karlin and H. Leny, “On
the scale and performance of cooperative Web proxy caching”, in

Proceedings of ACM Symposium on Operating Systems Principles, 99.

[39] Q. Zhou, H. Hassanein and P.Martin “Transparent Web Caching with
Minimum Response Time”, in Proceedings of the 22" International

Performance, Computing and Communications Conference(IPCCC 2003),

Phoenix, May 2003.

[40] H. Zhu and T. Yang, “Class-based Cache Management for Dynamic Web

Content”, in Proceedings of IEEE INFOCOM, "01.

[41] J. Ziv and A. Lempel. “Compression of individual sequences via. variable-rate
coding”, IEEE Trans. on Information Theory, 1T-24(5):5306, September

1978.

-78 -

Appendix

Appendix A

Delta-encoding Algorithms

The following introduction of Delta-encoding algorithms is directly taken from J.

Hunt, K. Vo and W. Tichys’ “Delta Algorithms: An empirical analysis”[17].

Delta algorithms, i.e. algorithms that compute differences between two files or
strings, have a number of uses when multiple versions of data objects must be stored,
transmitted, or processed. The major early application of delta algorithms occurred in
revision control systems such as SCCS and RCS [27,34]. By storing deltas relative to
a base version, these systems save substantial amounts of disk space compared with
storing every revision in its entirety. Much less information needs to be stored for
each revision because changes from one revision to the next are typically small. Other
well known applications are the display of differences between files and the merging

together of the changes in two different files relative to a common base.

The classic program for generating deltas is Unix diff [18,19]. Both SCCS and RCS
use it for storage and display of differences; RCS also uses it for merging. Since diff
is limited to text files, so are SCCS and RCS. However, users wish to place binary
code under revision control as well, not just source text. A simple technique is to map
the binary code into text and then apply diff. While this works reliably and is widely

used in practice, the deltas produced are typically larger than the originals! Newer

-79 -

Appendix

algorithms such as bdiff|35] and vdelta[35] do not exhibit this problem. Unlike diff,
these algorithms are applicable to any byte stream. They exploit reordering of blocks
to produce short differences.

Bdiff and vdelta offer additional compression on the resultant delta. For this reason,
diff coupled with gzip post processing is included in the study as well. All algorithms

run enough faster than a byte-level LCS computation to have practical applications.

Both bdiff and vdelta are comparable in utility to diff. Not only do they produce deltas
suitable for compression and 3-way file-merging, but their output can also be used to
display differences. Since bdiff and vdelta break lines apart, minor postprocessing of
the deltas is needed to produce output identical to diff’s. Other human-readable output
that takes advantage of the finer granularity of the output of these algorithms can be
produced using color coding techniques. In addition, both bdiff and vdelta can
compress a single file with itself. We introduce both bdiff and vdelta as follows:

A. BDIFF

Bdiff is a modification of W. F. Tichy’s block-move algorithm[35]. It uses a two

stage approach. First it computes the difference between the two files. Then it

uses a second step to compress the resulting difference description. These two

parts run concurrently in that the first stage calls the second each time it generates

output.

In the first phase, bdiff builds an index, called a suffix tree, for the first file. This

tree is used to look up blocks, i.e. every possible match is examined to ensure that

the longest possible match is found. The output from this phase is a sequence of

- 80 -

Appendix

copy blocks and character insertions that encode the second file in terms of the
first. It can be shown that the algorithm produces the smallest number of blocks
and runs in linear time. It also discovers crossing blocks, i.e. blocks whose order

were permuted in the second file.

The second phase efficiently encodes the output of the first. A block is
represented as a length and an offset into the first file. Characters and block
lengths are encoded in the same space by adding 253(256 minus the three unused
lengths) to lengths before encoding. Blocks of lengths less than four bytes are
converted to character insertions. Characters and lengths are then encoded using a
common splay tree. The splay tree is used to generate a character encoding that
ensures that frequently encoded characters are shorter than uncommon characters.
Splay trees dynamically adapt to the statistics of the source without requiring an

extra pass. A separate splay tree encodes the offsets.

Bdiff actually uses a sliding window of 64 Kbytes on the first file, moving it in 16
Kbytes increments. This means that the first phase actually builds four suffix trees
that index 16 Kbytes each of the first file. The window is shifted forward
whenever the encoding of the second file crosses a 16 Kbytes boundary, but in
such a fashion that the top window position in the first file is always at least 16
Kbytes ahead of the current encoding position in the second file. Whenever the
window is shifted, the oldest of the four suffix trees is discarded and a new one

built in its space. The decoder has to track the window shifts, but does not need to

-81 -

Appendix

build the suffix trees. Position information is given as an offset from the

beginning of the window.

B. VDELTA

Vdelta is a new technique that combines both data compression and data
differencing. It is a refinement of W. F. Tichy’s block-move algorithm[35], in
that, instead of a suffix tree, vdelta uses a hash table approach inspired by the data
parsing scheme in the 1978 Ziv-Lempel compression technique[41]. Like block-
move, the Ziv-Lempel technique is also based on a greedy approach in which the
input string is parsed by longest matches to previously seen data. Both Ziv-
Lempel and block-move techniques have linear-time implementations[23].
However, implementations of both of these algorithms can be memory intensive
and, without careful consideration, they can also be slow because the work
required at each iteration 1s large. Vdelta generalizes Ziv-Lempel and block-move
by allowing for string matching to be done both within the target data and
between a source data and a target data. For efficiency, vdelta relaxes the greedy
parsing fule so that matching prefixes are not always maximally long. This
modification allows the construction of a simple string matching technique that

runs efficiently and requires minimal main memory.
B.1 Building Difference

For encoding, data differencing can be thought of as compression, where the

compression algorithm is run over both sequences but output is only generated for

-82-

Appendix

the second sequence. The idea is to construct a hash table with enough indexes
into the four bytes starting at that position. In order to break a sequence into
fragments and construct the necessary hash table, the sequence is processed from
start to end; at each step the hash table is searched to find a match. Processing
continues at each step as follows:
(1) if there is no match,

(a) insert an index for the current position into the hash table,

(b) move the current position forward by 1, and

(c) generate an insert when in output mode; or
(2) if there is a match,

(a) insert into the hash table indexes for the last 3 positions of the matched

portion,

(b) move the current position forward by the length of the match, and

(c) generate a copy block when in output mode.
Each comparison is done by looking at the last three bytes of the current match
plus one unmatched byte and checking to see if there is an index in the hash table
that corresponds to a match. The new match candidate is checked backward to
make sure that it is a real match before matching forward to extend the matched
sequence. If there is no current match, i.e. just starting a new match, use the 4

bytes starting at the current position.

As an example, assume the sequence below with the beginning state as indicated

(the U indicates the current position):

-83-

Appendix

U

0123456789 1011 12 13 14 15 16 17 18 19

bcdeabcdaboc d a b c d e f g h
The algorithm starts at position 0. At this point the rest of the sequence is the
entire sequence so there is no possible match to the left. Case 1 requires position O
to be entered into the hash table (indicated with a * under it) then to advance the
current position by 1.

U

01 23 45 6 7 8 91011 12 13 14 15 16 17 18 19
b cdeaboc dabc d a b c d e f g h
*
This process continues until position 8 is reached. At that time, we have this

configuration:

U

01 23 45 6 78 91011 12 13 14 15 16 17 18 19
b cde aboc da bc d a b c d e f g h
* ox % &k ok k%

Now the rest of the sequence is “abcdabcdedfg”. The longest possible match to
some part previously processed is “abcdabcd” which starts at location 4. Case 2
dictates entering the last 3 positions of the match (i.e. 13, 14, 15) into the hash
table, then moving the current position forward by the length of the match. Thus

the current position becomes 16 in this example.

-84 -

Appendix

01 23 456 7 8 91011 12 13 14 15 16 17 18 19
bc¢cde abc dabc d ab c d e f g h
¥ ok ok ok %k % k% * % %
The final step is to match “efgh” and that fails so the last mark is on position 16.
The current position moves to position 17 which now does not have enough data
left for the next hash code so the algorithm stops after outputting the last three

characters.

U

01 23 456 7 8 910 11 12 13 14 15 16 17 18 19

b cdeaboc daboc d a b c d e f g h
Note that the above matching algorithm will actually find the longest match if
indexes are kept for every location in the string. The skip in step 2b prevents the
algorithm from being able to always find the longest prefix; however, this rule
saves considerable processing time and memory space. In fact, it is easy to see
from the above construction rules that the space requirement is directly
proportional to the output. The more compressible a target data set is, the faster it

is to compress it.

B.2 Difference Encoding
In order to minimize the output genereated, the block-move list generated above
must be encoded. The output of vdelta consists of two types of instructions: add

and copy. The add instruction has the length of the data followed by the data

-85 -

Appendix

itself. The copy instruction has the size of the data followed by its address. Two
caches are maintained as references to minimize the space required to store this

address information.

Each instruction is coded starting with a control byte. Eight bits of the control byte
are divided into two parts. The first 4 bits represent numbers from 0 to 15, each of
which defines a type of instruction and a coding of some auxiliary information.
Below is an enumeration of the first 10 values of the first 4 bits:

0: an add instruction,
1,2,3: a copy instruction with position in the QUICK cache,
4: a copy instruction with position coded as an absolute offset from the
beginning of the file,
5: a copy instruction with position coded as an offset from current location, and
6,7,8,9: a copy instruction with position in the RECENT cache.

For the add instruction and the copy instructions above, the second 4 bits of the

control byte, if not zero, code the size of the data involved. If these bits are 0, the

respective size is coded as a subsequent sequence of bytes.

The above mentioned caches-QUICK and RECENT-enable more compact
coding of file positions. The QUICK cache is an array of size 768 (3* 256). Each
index of this array contains the value p of the position of a recent copy instruction
such that p modulo 768 is the array index. This cache is updated after each copy

instruction is output (during coding) or processed (during decoding). A copy

- 86 -

Apbendix

instruction of type 1, 2, or 3 will be immediately followed by a byte whose value
is from O to 255 that must be added to 0, 256 or 512 respectively to compute the
array index where the actual position is stored. The RECENT cache is an array
with 4 indices storing the most recent 4 copying positions. Whenever a copy
instruction is output (during coding) or processed (during decoding), its copying
position replaces the oldest position in the cache. A copy instruction of type 6,7,8,
or 9 corresponds to cache index 1, 2, 3, or 4 respectively. Its copying position is
guaranteed to be larger than the position stored in the corresponding cache index
and only the difference is coded.
It 1s a result of this encoding method that an add instruction is never followed by
another add instruction. Frequently, an add instruction has data size less than or
equal to 4 and the following copy instruction is also small. In such cases, it is
advantageous to merge the two instructions into a single control byte. The values
from 10 to 15 of the first 4 bits code such merged pairs of instructions. In such a
case, the first 2 bits of the second 4 bits in the control byte code the size of the
add instruction and the remaining 2 bits code the size of the copy instruction.
Below is an enumeration of the values from 10 to 15 of the first 4 bits:
10: a merged add/copy instruction with copy position coded as itself,

11: a merged add/copy instruction with copy position coded as difference from
the current position.

12,13,14,15: a merged add/copy instruction with copy position coded from a
RECENT cache.

In order to elucidate the overall encoding scheme, consider the following files:

-87-

Appendix

Versionl:abcdabcdabcdefgh
Version2:abcdxyxyxyxybcdef

The block-move output would be

l.copy 4 0O 01000100 O
2.add 2 “xy” which encodes to 00000010 “xy”
3.copy 6 20 (instruction in binary) 01000110 20
4.copy 5 9 01000101 9

Note that the third instruction copies from Version2. The address 20 for this
instruction is 16 + 4 where 16 is the length of Versionl. Note also that the data to
be copied is also being reconstructed. That is, vdelta knows about periodic
sequences.

This output encoding is independent of the way the block-move lists are
calculated, thus bdiff could be modified to use this encoding and vdelta could be

modified to use splay coding.

- 88 -

Appendix

Appendix B

HTTP Extensions

After we classify the pages, we need to send the page class information to the Web
server. We can extend HTTP to do this job. In HTTP/1.1, the general-header field is

as follows:

General-header = Cache-Control
| Connection
| Date
| Pragma
| Transfer-Encoding
| Upgrade

| Via

The Cache-Control general-header field is used to specify directives that must be
obeyed by all caching mechanisms along the request/response chain. Cache directives
are unidirectional in that the presence of a directive in a request does not imply that
the same directive should be given in the response. The detail of Cache-Control

header is as follows:

-89 -

Appendix

Cache-Control = “Cache-Control” “:” 1#cache-directive
Cache-directive= cache-request-directive

| cache-response-directive
cache-request-directive =

“no-cache” [“=" <> l#field-name<”>]

| “no-store”

| “max-age” “=" delta-seconds

| “max-stale” [“=" delta-seconds]

| “min-fresh” “=" delta-seconds

| “only-if-cached”

| cache-extension
cache-response-directive =

“public”

| “private” [“=" <> 1#field-name <>]

| “no-cache” [“=" <> 1#field-name<">]

| “no-store”

| “no-transform”

| “must-revalidate”

| “proxy-revalidate”

| “max-age” “=" delta-seconds

| cache-extension

[T L

cache-extension = token [“=" (token | quoted-string)]

-90 -

Appendix

The Cache-Control header field can be extended through the use of one or more
cache-extension tokens, each with an optional assigned value. Informational
extensions (those which do not require a change in cache behavior) may be added
without changing the semantics of other directives. Behavioral extensions are
designed to work by acting as modifiers to the existing base of cache directives. Both
the new directive and the standard directive are supplied, such that applications which
do not understand the new directive will default to the behavior specified by the
standard directive, and those that understand the new directive will recognize it as
modifying the requirements associated with the standard directive. In this way,
extensions to the Cache-Control directives can be made without requiring changes to

the basic protocol.

So we can use the cache-extension mechanism to transfer page class information. Our

extension is as follows:

cache-extension = class
class =
“eager”
I ubase”
| “delta”

| “from cache”

-91 -

Appendix

For an eager-update page, a proxy sends a GET HTTP request to the Web server. In
the general header field it has:

Cache-Control: class = “eager”

This means after page classifying the proxy identifies this page as an “eager-update”
page. The delta server needs to save a base file and broadcast it to all proxies in the
page list with the following message in the general header:

Cache-Control: class = “base”

The delta server also needs to generate deltas between base file and the new version
of the page then send deltas to the proxy with the following message in the general
header:

Cache-Control: class = “base”

In the implementation, the delta server sends request to the Web server asking for
new version of the eager-update pages. To differentiate the request for eager-update
pages from proxies, the following message is inserted in the general header:

Cache-Control: class = “from cache”

The cache-extension mechanism helps us to only modify a little in HTTP protocol

header field to communicate between proxies and Web servers.

-92.

Appendix

Appendix C

The Flow Charts, Simulation Software
Structure and Pseudo-Code of EPDC

In this study, we evaluate the performance of EPDC, Delta-Encoding and LRU
dynamic Web caching schemes. The HTTP request processing flow charts of the
three schemes are shown in Figure C.1 to Figure C.3. These flow charts are drawn

according to the scheme descriptions in Chapter 3.

In the EPDC scheme, when a proxy cache server receives a HTTP GET request, it
searches its cache for the requested object. If the object is not a hit, the proxy
forwards it to the Web server to get a new page back. If the requested object is found
in the cache, the proxy cache server checks if it is an eager-update page or a lazy-
update page. If the page is an eager-update page, the proxy returns the object to the
requesting client. Otherwise, the proxy cache server forwards that lazy-update page to
the Web server to check if it is stale, if not, the Web server sends a “304 Not-
modified” message back to the proxy. If the page is stale, the Web server asks the

delta-server to generate the delta and returns it back to the proxy (Figure C.1).

-93.

Appendix

Begin
Request
‘Web Client
[e i e o S 1 8
i
' .
: Search Search in Cache
1 pe
i
|
i
I
|
i
t
I
i
i
: yes no
H Eager Page or Forward to Web Proxy Cache
H Lazy Page ey P Server
i
i
i
: Search pe
i Disk Access e Return
i Cached Obj C "
| Reply . onnect e g
1
1
: l RTT pc_ws/2
|
! e e m e Y e
Lo
|
: | Reply before
i i Timeout?
e
: ! no
i i
1]
! i T
]
: : Outdated? Return
: i HTTP Timeont
! : ——
1
E i 4/ yes no
H i Retwrn Return
: ' Requested Obj’s CODE 304 Web Server
' ' deltas
1]
H i RTT pe_ws/?2
i i
1 L
| i
t e e e e e o e e e 2 o 2 o T e e ot e o T 2 2 e .] ot o 2 2 7 e o L8 o S e e 7 7 ok o 4 o o
i
i i
! G . Search
H enerate page(if lazy page) pc Proxy Cache
! Rel
H Proxy Relay DiskAccess e
1
RTT we_pel2 Reply pc
‘Web Client

Figure C. 1 HTTP GET request in EPDC scheme

-94 .

Appendix

In the Delta-encoding scheme, when a proxy cache server receives a HTTP GET
request, 1t searches its cache for the requested object. If the object is not hit, the proxy
forwards it to the Web server to get a new page base file and deltas back. If the
requested object is found in the cache, the proxy cache server still needs to forwards
that page to the Web server to check if it is stale, if not, the Web server sends a “304
Not-modified” message back to the proxy. If the page is stale, the Web server asks

the delta-server to generate the delta and returns it back to the proxy (Figure C.2).

In the LRU scheme, when a proxy cache server receives a HTTP GET request, it
searches its cache for the requested object. No matter if the object is hit or not, the
proxy forwards it to the Web server to check if it is stale, if not, the Web server sends
a “304 Not-modified” message back to the proxy. If the page is stale, the Web server

returns a new page back to the proxy (Figure C.3).

-95 .

Appendix

Begin
Request
Web Client
Connect . _pe
we _pcl2

O O L O
1
i
! Search Search in Cache
i pe
i
i
| ,/
3
|
|
i
i
| yes no
I
] Forward to Web Proxy Cache
! Search e GIMS request to Server -
i . Web Server
i DiskAccess .
1 pe
1
i
: Reply pe
§
i
¢
i
5 Connect pe_ws
1
1
' RTT pc_ws/2
i
i
T S N
S, U
U
i H Reply before Reply before
| H Timeout? Timeout?
¢! no no
by es
D 4’ ~a X
(. Return yes
! ! Outdated? HTTP Timeout
1
[\
|]
1 t
: H yes ™~ no Return Requested Obj

i
E : X base file and deltas Web s

€l

! E Return Returmn £h Servet
by Requested Obj’s CODE 304
i ' deltas RTT pe_ws/2

1
0] |
I
b e e e e e e e e e e e e e
| - i _______________________
E Search pe
! Generate page and DiskAccess Proxy Cache
! Proxy Relay pe

J
T - Reply oo
Web Client

Figure C. 2 HTTP GET request in Deita-encoding scheme

- 96 -

Appendix

Begin
Request

Web Client

L R
|

! Search Search in Cache

1 pc

|

: J

]

;

1

1

I

|

i

: yes no

]

] /

S mto Web Proxy Cache

A or 0 C

H Search . GIi)\V/lergquest to Server Y

{

' DiskAccess . e server

k pe

3

j Reply e

i

i

1

i

t

i

E Connect pe_ws

{

: RTT pc_wsil2

e Y e

i

i Reply before

i Timeout?

i

i 10

! V'

i Return

! Outdated? HTTP Timeout

! > o

i yes

I

! -

| Return Return

l Requested Obj CODE 304 Web Server

[}

: RTT pc_ws/i2

I 1 |

1

t

]

1

T T e e e e e e e et e e e e e

i

i

i Proxy Cache

i Proxy Relay Reply

! /)

e e et e * ___

Web Client

Figure C. 3 HTTP GET request in LRU scheme

-97.

Appendix

The simulator used in this thesis conducts discrete event driven simulation. It is
developed using the Java programming language. The simulation software consists of
the following five major components:

e Client Cluster: responsible for simulating a cluster of clients. It generates
HTTP request traffic using the request logs from workload text files.

¢ Dynamic Proxy Cache Server: responsible for simulating a proxy cache
server. It has the following functions:

o Pass the client’s HI'TP request to Web server. Calculate the client
request number and page update number. Identity the eager-update
page and lazy-update page.

o Send HTTP GET request with page class information to the Web
server. Save the base-file and combine it with the delta to construct a
dynamic page. Send HTTP response to the client.

e Web Server: responsible for simulating a Web server. It accepts HTTP
requests, and then sends back base file and delta to the proxy cache server
through the Delta Server.

e Delta Server: responsible for simulating a delta server. It is integrated with the
Web server. When it receives the dynamic page from the Web server, it has
the following functions:

o For eager-update page, it saves it as base file and broadcast it to the

proxy cache servers registered in the page list. The next time the same

- 0§ -

Appendix

new page comes from the Web server, it will save a new page as base
file and broadcast the delta.

o For lazy-update page, it saves it and then sends it back to the proxy
cache server. The delta server will choose optimal base file uses class-
based delta encoding mechanism and broadcast it to all registered
proxy cache server. So when the request comes again, it will calculate
the delta between the base file and the newest dynamic page and then
sends it back to the proxy cache server.

e Event Manager: responsible for simulation event queuing and dispatching. All

simulation events are handled by the event manager.

The pseudo-code of algorithms of message-receiving at the proxy, the Web server

and the delta-server are described from the Figure C.4 to Figure C.6.

-99.

Appendix

Process ReceiveMessageFromWebserver(msg: HTTPMessage)

//To check if the request URL is in local cache
for i = 1 to NumOfCachedPage do
if (CachedPageArray[i].URL == msg.requestURL)
cspage = CachedPageArrayli];
break;
endif
endfor

//Receive message from Webserver
switch(msg.OPCode)
/if the request is PUT, there are two conditions
case HT'TP_PUT_BASE_REQUEST:
//if the message class is base file, save the file and response 200 OK
LRUCache.addToCache(msg.data);
sendMessage(WebserverURL, HTTP_200_RESPONSE);

/1if the message class is delta, construct the page and add to cache

case HTTP_PUT_DELTA_REQUEST:
consturctPage(msg.senderURL);
sendMessage(WebserverURL, HTTP_200_RESPONSE);
LRUCache.addToCache(msg.data);

//if the reponse is not modified message, send cached copy to client
case HTTP_304_RESPONSE:
sendMessage(clientld, HTTP_200_RESPONSE);

//if the reponse is base, add base file to cache
case HTTP_BASE_RESPONSE:
LRUCache.addToCache(msg.data);

//if the response is new object, save it and add page update no.
//then send client new document
case HT'TP_200_RESPONSE:
cspage.page_update_num-++;
LRUCache.addToCache(msg.data);
sendMessage(clinetld, HTTP_200_RESPONSE);
endswitch
end

Figure C. 4 The algorithm for proxy receiving a message from Webserver

- 100 -

Appendix

Process OnReceiveMsgAtWebserver(msg: HTTPMessage)

//Register the proxy
registerProxy(proxyld);

switch (msg.OPCode)
//The GET immediate page request from proxy
case HTTP_GET_IMM_REQUEST:
//For each immediate page, register a proxy client list
registerPageClientList(pageURL,proxyld);
generatePage(pageURL);
sendToDeltaServer(page.data);
//The GET lazy page request from proxy
case HTTP_GET_IMS_REQUEST:
if (page.isNotUpdate())
sendMessage(proxyld, HTTP_304_RESPONSE);
else
genaratePage(pageURL);
sentToDeltaServer(page.data);
endif
/The GET immediate page request from delta server
case HITP_GET_FROMCACHE_REQUEST:

generatePage(pageURL);
sendToDeltaServer(HTTP_200_RESPONSE);
endswitch
endif
end

Figure C. 5 The algorithm for Web server receiving an HTTP-message

- 101 -

Appendix

Process DeltaProcessing(message: pageData)
for i=1 to NumOfCachedPage do
if (CachedPageArray[i].URL==msg.requestURL)
cspage = CachedPageArrayl[i];
break;
endif
endfor

swich (OpCode)
case HTTP_GET_IMM_REQUEST:
saveBase(pageData);
sendMessage(proxyld, HTTP_BASE_RESPONSE);
broadcastMessage(pageClientList, HTTP_PUT_BASE_REQUEST);

case HTTP_200_RESPONSE:
saveBase(pageData);
calculateDelta(baseFile, pageData);
broadcastMessage(pageClientList, HTTP_PUT_DELTA_REQUEST),

case HTTP_GET_IMS_REQUEST:
savePage(pageData);
sendMessage(proxyld, HTTP_200_RESPONSE);
calculatelazyBase();
endswitch
end

Figure C. 6 The algorithm for Delta server receiving an HTTP message

- 102 -

Appendix

Appendix D

Confidence Intervals

Normally, confidence intervals placed on the mean values of simulation results can be
used to describe the accuracy of the simulation results. Consider the results of N

statistically independent simulation runs for the same experiment: X;, X3, ..., Xn. The

sample mean, X is given as:
N
> X,

—X—z i=1

N

The variance of the distribution of the sample values, S is:

(X, -X)?

S2=l
* N-1

X

S
The standard derivation of the sample mean is given by: .
vN

Under the assumption of independence and normality, the sample mean is distributed
in accordance to the Normal-Distribution, which means the sample mean of the
simulation runs fall in the interval +é& within the actual mean with a certain

probability drawn from the T-Distribution.

- 103 -

Appendix

where ,,, v, is the value of the T-distribution with N-1 degrees of freedom with

probability « /2.

The upper and lower limits of the confidence interval regarding the simulation results

are.

Sxta/Z,N—l

JN

Lower Limit = X -

Sxta/Z,N—l

N

Where 1,,, ,_, is the upper a /2 percentile of the t-distribution with N-1 degrees of

Upper Limit = X +

freedom.
The simulation experiments in this thesis were run with a 90% confidence level with
10% confidence intervals for each data point. The number of simulation runs has been

chosen big enough to ensure stability and tight confidence intervals.

- 104 -

