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Abstract—The IoT industry involves a wide diversity of sensing
and control transducers, each using a different type of interfacing
and operation technology. Such diversity creates a wide range
of challenges to large-scale IoT development and deployment.
Despite the numerous research efforts in current literature that
aim to provide solutions for IoT transducer interfacing, there
remains a massive lack of critical features that enable the
broad adoption for large-scale applications. In this paper, we
introduce a dynamic transducer interface, WhiteBus, that has the
simplicity of bare-metal interfacing for IoT developers yet offers
low-cost transducer integration flexibility for the manufacturers.
WhiteBus exposes multiple peripherals from an IoT device to the
connected transducers using a compact bus interface, mapping
only the peripherals required by each transducer. Thus allowing
manufacturers to reduce the time to market and reach a larger
adoption audience without the need for integrating complex
interfacing controllers, instead, only adding a memory unit to the
transducer. We illustrate WhiteBus architecture and operational
flow while outlining how it simplifies the integration and improves
the cost-effectiveness for both IoT transducer manufacturers and
platform developers. We then qualitatively compare WhiteBus
with selected interfacing efforts for IoT, illustrating their essential
differences and noting WhiteBus applicability in the IoT industry.

Index Terms—IoT; PnP; Smart Sensors; Physical Bus; Config-
urable Interface; Multiport Interface; I/0 Peripherals; Periph-
erals Multiplexing; USB; IEEE 1451;

I. INTRODUCTION

Thousands of companies are increasingly interested in the
IoT industry every year, causing an expected growth of around
20 billion IoT devices come 2020 [1]. The current IoT
market is monopolized by IoT manufacturers that develop
solutions, prototypes, and proprietary Software Development
Kits (SDKs) [2], creating an increased lack of interoperability
between the different platforms. Such disconnect throttles the
advancement of IoT and in turn delays the realization of the
fourth industrial revolution known as Industry 4.0 (I14.0) [3].

In 1996, the Universal Serial Bus (USB) revolutionized
the interfacing between personal computers and peripheral
devices. The self-configuration feature reduced the users in-
volvement to get a peripheral device up and running, making
it the industry standard used by most peripheral and computer
manufacturers [4]. Another feature that proved lucrative for
users was Hot Plugging, where a USB device does not require
a system reboot after being plugged or unplugged [5].

Unfortunately, USB is very resource demanding, making
it impractical for transducer manufacturers [6]. Therefore,
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manufacturers often use a lower rate, simpler interface bus.
Some of the popular choices among manufacturers are 1°C,
SPI, UART, Analogue and Digital are some of the popular
choices among manufacturers [7]-[10]. Using one of these
interfaces, manufacturers are restricting an IoT system devel-
oper with their choice of communication bus for transducer
interfacing. Hence, complicating the development of a new
IoT system, reducing the flexibility of using different sensors
post-production and intensifying the risk of investment for
shareholders. Therefore, having the ability to seamlessly plug
and unplug a transducer without the need to reconstruct the
system architecture and re-interface with the IoT devices
microcontroller unit (MCU) would reduce the development
time and stakeholders risk significantly. Due to the diversity
of interfaces and transducer manufacturers, a gap between
plug-and-play (PnP) functionality and IoT applicability exists.
However, PnP capability is essential for IoT as it will pro-
vide researchers with a simple prototyping mechanism, thus
accelerating the research and development of 10T to realize
the vision of Industry 4.0.

In response to this gap, we introduce a PHY layer interface
bus (WhiteBus) that provides PnP capability tailored for IoT
transducers. Our bus combines multiple interfaces into a single
multiplexed interface that is compatible with a vast range of
transducers both digital and analogue. WhiteBus initially in-
troduces four primary modes of operation for ease of adoption
in the industry namely, red, yellow, magenta, and orange. Each
of these modes supports one or more of the standard interfaces,
making WhiteBus easily backwards compatible with current
transducers. Our research also enables PnP capability through
the ability to identify sensors once they are connected using
an onboard memory unity. Finally, the ability to dynamically
multiplex the interfaces on-demand maximizes the utilization
of all the IoT device MCUs peripherals, improving the flexi-
bility and scalability of an IoT system.

The remainder of this paper is organized as follows. Section
IT outlines a few standards and efforts on implementing a
PnP interface. Section III introduces WhiteBus outlining its
architecture and operational flow while illustrating its benefits
to both sensor manufacturers and IoT system designers. Sec-
tion IV qualitatively compares WhiteBus against selected PnP
and interfacing efforts in the literature. Section V outlines the
challenges and open concepts. Finally, Section VI concludes
the paper and provides an outline of future directions.
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II. BACKGROUND

Developers and system designers use a heterogeneous va-
riety of tools and sensors to create their IoT systems. Such
diversity reduces the flexibility of substituting or upgrading
sensors connected to an IoT system. Therefore, a need for a
PnP solution that is optimized for IoT is born [11]. In the
quest towards finding a PnP solution that simplifies the design
efforts of both the manufacturers and IoT platform designers,
we review the efforts put forth in the literature regarding
the overhead incurred on the designing and manufacturing
processes.

A. Universal Serial Bus

USB has been the standard for PnP functionality since its
introduction in the early 1990s [4]. However, such technology
did not spread into the IoT and embedded system realms due
to its impracticality on such resource-limited platforms [12].
USB requires a dedicated chip/microcontroller on the sensor
to be connected with the IoT system, introducing a higher
level of complexity for both the manufacturer and the system
designer [13]. Moreover, such a requirement increases the cost
and energy consumption of using USB interface. In order for
a system designer to integrate USB interfacing, a driver must
be developed for each separate sensor, given that the MCU on
the IoT system supports USB natively [13].

B. IEEE 1451

In an effort to standardize a PnP solution for analogue
transducers, the IEEE 1451 standard was introduced at the
beginning of the new millennia [14]. The standard proposed a
unified bus for connecting analogue transducers by requiring
a memory unit to be attached to each transducer. The memory
unit holds a Transducer Electronic Data Sheet (TEDS) that is
responsible for identifying the transducer as well as providing
the Network Capable Application Processor (NCAP) with
specific parameters to be used in calculating the sensed data.
Although being still active, the standard was only adopted by
a handful of sensor manufacturers. A key reason is that the
initial design was aimed at analogue transducers, which only
a handful of manufacturers support. The standard required all
transducer manufacturers to integrate a memory unit loaded
with a TEDS file along each of their transducers. Not only
was this expensive at the time, but it was also impractical
given that memory units had far less capacity and were not
as miniaturized as they are today. The NCAP is developed by
a system designer, and out of the scope of the sensor manu-
facturer, hence the signal conditioning and processing are not
implemented by the manufacturers. This standard intensifies
the necessary development from the system designers side
while preventing the manufacturers from ensuring the intended
implementation of their sensors [15].

C. mikroBUS

As an alternative to USB interface for embedded sys-
tems, researchers at MikroElektronika proposed a standard
(mikroBUS) for add-on boards. The standard describes a pin

configuration layout to be used by add-on board manufactur-
ers, consisting of 2x8 female headers. MikroBUS is now a
popular choice among manufacturers in order to support add-
on functionality on embedded systems. However, in order to
comply with the standard, sensor manufacturers are required
to use the full 2x8 headers in the add-on board even if not
all pins are required. Such requirement increases the cost and
size of the sensors, as well as adds a considerable overhead
on the manufacturers. From the system designers perspective,
using mikroBUS either limits the design options to platforms
that support the interface or requires the designer to integrate
the standard interface as part of the design process. Not only
do complicate the design procedure, but they also require the
designer to write code for each board to be connected.

D. Other Efforts

Efforts that aim to provide PnP functionality for IoT devices
and embedded systems require the use of an extra microcon-
troller to implement the communication protocol. In [16], the
authors propose a modular PnP architecture technology that is
similar to USB but optimized for embedded systems. In their
research, they require each sensor or actuator to include a
dedicated driver chip (microcontroller) in order to implement
the communication protocol for the proposed interface bus.
Their effort has the benefit of improvement over USB for
embedded systems and IoT devices. However, the overhead
incurred on the sensor manufacturers remains an issue.

The reviewed efforts, seem to implement a partial solution
towards PnP functionality that is optimized for IoT platforms.
However, a significant burden is incurred on both the system
designer and the sensor manufacturers in order to implement
the proposed solutions. Nonetheless, the efforts that seem
to offer a full PnP capability are not optimized for IoT or
embedded system applications. WhiteBus aims to expose the
current standard interfaces to the sensors through a unified
bus, significantly reducing the burden on the designers and
manufacturers. Such property combines the simplicity of op-
eration in USB with the simplicity and flexibility of design in
bare-metal interfacing.

III. WHITEBUS

WhiteBus is a dynamic interface bus that combines different
popular interface buses into a single dynamically modifiable
bus. Such flexibility enables PnP functionality that is op-
timized and targeted at IoT applications while maintaining
platform independence.

Our interface bus aims to minimize the burden on system
developers and maximize the return on investment for the
companies; this is possible due to the ability to develop a
genuinely generic IoT device that can be customizable during
runtime by connecting different sensors. Developers can use
any sensor on the market from any manufacturer and connect
it to their IoT device with minimal configuration.

There are three main parts to WhiteBus, the dynamic
WhiteBus Universal Serial Interface (WBUSI), the WhiteBus
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Fig. 1. Illustration of the WhiteBus Architecture Concept.

Module (WBM), and the WhiteBus Master Serial Interface
(WBMSI). Each part is discussed further below.

A. Architecture Overview

In order to add WhiteBus support to current sensors and
sensor nodes, a WBM needs to be used. Fig. 1 illustrates
how a WBM facilitates interfacing between a generic MCU
and multiple sensors through WBUSI and WBMSI. One of
the motivations behind developing WhiteBus is to facilitate
PnP functionality. Therefore, sensor identification is a crucial
requirement. A concept similar to the TEDS from the IEEE
1451 standard is to be used in a sensor in order to be supported
by a WBM, in which a memory chip attached to the sensor
contains a descriptor file (written by the sensor manufacturer).
The descriptor file is used by WhiteBus to identify the type
of sensor, manufacturer, interface, as well as other metrics to
be used by the MCU. Such information is useful to be able to
map and address the correct interfaces to the connected sensor.

A WhiteBus Universal Sensor Interface (WBUSI) consists
of nine lines, illustrated in Fig. 2. Since each sensor houses
a memory chip, it is essential that all memory chips use a
I2C interface, hence the SDA and SCL lines are fixed for
all sensors and are used to identify the connected sensor. The
LifeLine is used to detect connection and disconnection of the
sensors, while four WhiteBus Lines (WBL) are used to support
the different modes of operation. Common power supply lines
are included in operating the sensor.

The WhiteBus Module (WBM) consists of three modules:
address translation, interface mapping, and sensor mapping.
Fig. 3 illustrates the internal architecture of a WBM. The
function and operation of each module is described as follows:

o Address Translation: The address translator receives
serial data from the master and converts it into parallel
data that is fed to the interface mapper and sensor mapper.
The translation operation divides the received address into
different parts and uses a lookup table to match each part
to its appropriate function.

« Interface Mapping: The interface mapper receives mul-
tiple different interfaces from the master in order to
be connected with the appropriate sensors, as well as
an interface map code from the address translator. The
interface mapper then selects the appropriate interfaces
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Fig. 2. Details of a White Bus Interface.

[ WHITEBUS LINE

based on four distinct interfacing modes, magenta, or-
ange, yellow, and red. Each of these modes involves a
combination of the input interfaces to be connected to
the input of the sensor mapper.

Red Mode: I°C and LifeLine

Yellow Mode: SPI, I°C and LifeLine

Magenta Mode: UART, I2C and LifeLine

Orange Mode: A/D, I°C and LifeLine

Sensor Mapping: The sensor mapper receives a single
white bus interface from the interface mapper and outputs
multiple white bus interfaces, each to be connected to a
different sensor. A sensor map code received from the
address translator is used to activate one of the sensors
white bus interfaces with the input white bus interface.

Finally, the WhiteBus Master Serial Interface (WBMSI) con-
sists of 15 lines. The interface connects the WBM with the
common serial interfaces on an IoT device in order to connect
the IoT device to any sensor. The interfaces supported by a
WBM are 12C, SPI, UART, analogue and digital input/output.
WBMSI allows unconnected interfaces such that if an IoT
device does not have one of the interfaces mentioned earlier,
it is still able to utilize the benefits of WhiteBus.

B. Operation Concept

An IoT system that uses WhiteBus would connect an IoT
sensor node with multiple sensor elements using a WBM. A
WhiteBus system is based on a star topology with a master
initiating and controlling all communications with the slaves.
In an IoT application, the sensor node and sensor elements
are the master and slaves respectively. The master schedules
the communication with all the current connected sensors and
ensures that the time slot each sensor receives is fair.

Any PnP system requires three features, the ability to
detect connection and disconnection, the ability to identify
the connected sensor, and driver support for possible sensors
to be connected [17]. Current IoT sensor nodes have driver
implementations for the supported sensors, but no method
to easily plug and unplug these sensors without significant
reprogramming. Therefore, WhiteBus provides a solution to
support the other features.

The master keeps a list of all currently connected sensors
and schedules the communication with each of them. To
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initiate the connection with one of the sensors, the master
requests the connection from the WBM which in turn maps
the correct interfaces to the requested sensor, providing the
master with a direct connection to the sensor. Afterwards, in
order to detect connection or disconnection, the master polls
the LifeLine connected to the sensor in question.

In order to identify the connected sensor, the master com-
municates with the memory embedded on the sensor using
the I2C interface of WhiteBus and reads the descriptor file
preloaded by the manufacturer. The descriptor file, similar to
TEDS, contains information about the sensor manufacturer,
the type of sensor, the interface required, the type of data the
sensor provides, and a description of any required calculations
to be performed on the sensor readings. Once the descriptor
file is read, the master allows the sensor driver to communicate
directly with the sensor, making the WBM transparent to
the sensor driver. Fig. 4 illustrates the operation flow of a
WhiteBus system.

IV. SYSTEM ASSESSMENT

In order to ensure the applicability of WhiteBus, we use four
key properties to compare it with selected PnP and interfacing
efforts qualitatively as shown in Table 1. We focus on key dif-
ferences such as the cost/complexity to integrate, the impact on
the IoT node energy consumption, the integration/development
process, the sensor scalability, and PnP support.

A. Energy Impact

One of the major considerations for any IoT device is the
energy consumption and lifetime of the device. Therefore,
it is crucial to ensure that the benefits brought by using
WhiteBus will not impact the overall lifetime of the device.
We discuss the primary sources of energy consumption when
using an interface bus, and evaluate the expected impact of
using WhiteBus.
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Fig. 4. Operation Flow of WhiteBus.

When a developer decides not to use a bus system, each
sensor is connected to the IoT device directly through one
of the interfaces provided by the MCU of the device. Such
a bare-metal method entails the design of the circuitry used
for each interface to be implemented by the developer. Hence,
energy impact of interfacing a specific sensor relies on the
developers hardware design. For our research, we assume
that the developers hardware design is optimized and does
not involve current leakage issues. We use this method as a
benchmark for comparison with other interface bus systems.

MikroBuss energy impact results from the manufacturers
hardware design of the sensor board. A best-case scenario
would be equivalent to the bare-metal method in which the
MikroBus sensor board is optimized regarding hardware de-
sign.

In order to use USB on an IoT device, a microcontroller
is required on the sensors side, which entails a higher energy
impact. USB also uses a 5v level instead of the common 3.3v
used in IoT and embedded systems.

Since the authors in [16] do not measure the energy impact
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TABLE I
QUALITATIVE ASSESSMENT OF SELECTED BUSES

Bare-Metal USB WhiteBus  mikroBUS
Energy Impact LOW HIGH MEDIUM LOW
Cost & Complexity Manufacture_r LOW HIGH MEDIUM MEDIUM
System Designer | HIGH HIGH MEDIUM MEDIUM
Sensor Scalability LIMITED HIGH HIGH LIMITED
PnP Support! NO YES YES NO

of their proposed research, we assume that the use of an FPGA
device would drastically elevate the energy consumption.
With WhiteBus, energy consumption in a best-case scenario
is equivalent to that of the regular bare-metal implementation,
along with the additional energy consumption incurred by the
presence of the WBM. Such an impact on energy consumption,
however, remains marginally less than that of USB, because
WhiteBus does not require any extra microcontrollers.

B. Cost and Complexity

The complexity sustained from an interfacing method di-
rectly affects the cost of implementation for both sensor
manufacturers and system designers. Therefore, it is essential
to design an interface bus with reduced complexity in mind.
We discuss the complexity of each interfacing method to
evaluate the complexity of WhiteBus qualitatively.

A bare-metal interfacing method has the lowest complexity
for sensor manufacturers, in which a manufacturer can design
a sensor using any interfacing system and delegate all the
development complexity solely on the developer. However,
this results in a daunting list of tasks on the system design-
ers side, significantly shifting the complexity and cost away
from the manufacturer towards the designer. Such a task list
usually involves the design of the circuitry required for each
type of interface. By requiring a specific bus interface on
both the sensor and IoT system, mikroBUS and USB divide
the complexity and cost between the system designers and
the sensor manufacturers. However, mikroBUS provides a
combined bus interface that includes dedicated pins of the
common peripherals, while USB uses a standardized bus
along with sensor drivers to provide a universal abstraction
of data/control regardless of the sensors native peripherals.
Therefore, mikroBUS requires large pin-out footprint while
USB requires a microcontroller capable of its protocol on both
the sensors side and the IoT systems side.

WhiteBus requires an EEPROM for identification purposes
to be integrated on the sensor, hence, shifting most of the
burden on the IoT system designers side. Such design choice
provides flexibility to the sensor manufacturers while main-
taining the same level of control on the designers side.
WhiteBus also reduces the burden on the designer with the use
of the WBM, in which the peripheral mapping is abstracted
from the system designer and handled by the WBM. Another
benefit of using a WBM is the reduction of pins compared to
that of mikroBUS.

IPnP capabilities for both USB (Section II) and WhiteBus (Section III)
have been discussed earlier.

C. Sensor Scalability

One of the significant benefits of using an interface bus is
the ability to connect a greater number of peripherals than
what the system hardware is capable of supporting. This is
one of the key reasons behind the popularity of USB [4].

A bare-metal approach limits the sensor scalability of an
IoT device to the hardware interface capabilities. Therefore,
the use of a bus system increases the number of sensors the
IoT device can interact.

The mikroBUS standard enforces the use of standardized
pin-mapped headers on the sensor and the IoT device. In
some cases, some of the peripherals are not shared between
sensor boards (i.e. I2C), therefore, in a best-case scenario,
the mikroBUS scalability is equivalent to that of bare-metal
implementation.

USB and WhiteBus use a similar approach for scalability,
in which a master schedules different time-slots between the
connected slaves. Regarding the bus interface, USB uses hubs
to extend the number of slaves connected at a particular
time, while WhiteBus utilizes a WBM that supports a limited
number of connected slaves at a time using the WBUSI ports.
In order to increase the number of connected slaves, a different
WBM with a more significant number of WBUSI ports would
be needed.

V. CHALLENGES & FUTURE DIRECTIONS

IoT microcontrollers are diverse and can have from six pins
to hundreds of pins [18]. Therefore, controllers with a low
number of pins usually lack the support of all the peripherals
supported by WhiteBus (e.g., lack of SPI or UART function-
ality). Moreover, some microcontrollers lack the support of
peripheral logic, due to design cost constraints regardless of
the number of pins. Since WhiteBus is designed to provide
peripheral mapping and multiplexing to sensor ports, it is
limited by the available peripherals on the microcontrollers.
Also, the support of I2C is crucial to the operation of WhiteBus
as it is used to access the sensors memory units.

Fortunately, the implementation of the software-based 12C
driver is simple and has a minimal footprint on most mi-
crocontrollers. This implementation would allow WhiteBus to
function effectively even with the the lack of other peripherals.
The developers, in this case, can read the sensor interface
information and determine the feasibility of supporting such
a sensor. Developers are also able to incorporate the use
of other software-based peripheral drivers, and then link the
corresponding pins to the WhiteBus MSI, given that the
microcontrollers can support them.
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Another challenge lies in the diversity of voltage levels in
sensors, the common 3.3v level used in IoT is not supported
by every sensor. Such a difference in voltage level requires
a power management unit to supply the required supply
voltages. We believe that the sensor manufacturer should
implement the voltage level change circuitry into their sensors,
which in turn increases the cost, however, remains a better
option than incorporating a microcontroller for interfacing in
systems such as USB.

A third challenge relates to the advanced sensors that
usually incorporate multiple feedback (i.e., interrupt) lines.
WhiteBus limits the number of feedback lines available to the
sensor based on the peripheral mode supported by the sensor,
for instance, the magenta and red modes provide only two lines
to be used for feedback. Sensors that require multiple feedback
lines may require the manufacturer to integrate an 12C to 1/O
bridge in order to expose the feedback lines over the same
I2C bus used by sensors memory, however, with a different
address. The sensor EEPROM will include, in this case, the
identification and address for the I2C to I/O bridge. It is the
responsibility of the IoT developers to pull the feedback status
via the bridge to check for the sensor status.

VI. CONCLUSION

In order to excel the vision of Industry 4.0 rapid devel-
opment in IoT is required. One of the factors that throttle
the advancement in IoT is the lack of standardization in the
industry. Therefore, a solution such as PnP is in demand to
overcome this heterogeneity.

In response to that demand, we proposed a dynamic pe-
ripheral interface (WhiteBus) that simplifies the integration
of transducers to any IoT system. WhiteBus combines the
peripheral interfaces available on an IoT device and connects
only the peripheral a specific transducer uses, abstracting the
actual interface to the developer and enabling PnP functional-
ity. Our research requires an EEPROM to be integrated with
the transducer similar to the IEEE 1454 standard, allowing the
IoT device to identify the connected transducer.

We compared WhiteBus to notable systems in the literature
and found that WhiteBus provides a good balance between
scalability, complexity, and power consumption. We also noted
that WhiteBus introduces some challenges, for instance, when
using limited functionality microcontrollers, we proposed the
use of software-defined peripherals. The use of sophisticated
transducers might require extra digital feedback connections
that are not supported by WhiteBus. Hence, we proposed
the use of additional simple circuitry on the transducer to
seamlessly support WhiteBus.

Our research only scratches the surface of possibilities
with WhiteBus, hence we consider some future directions
that would improve the interface. It is possible to add self-
configurable PnP functionality to WhiteBus by migrating the
driver software from the IoT device to the transducer memory
unit. Another ambitious direction towards simplifying sensor
integration is implementing an interface translation unit within
the WBM. The purpose of this unit is to allow any sensor

to interface with any IoT device regardless of the available
interfaces.
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