High-Efficiency Service Discovery in Wireless Mobile
Ad Hoc Networks

by

Yu Yang

A thesis submitted to the
School of Computing
in conformity with the requirements for

the degree of Master of Science

Queen’s University
Kingston, Ontario, Canada

April 2005

Copyright © Yu Yang, 2005

3

Library and Bibliothéque et

Archives Canada Archives Canada

Published Heritage Direction du

Branch Patrimoine de I'édition

395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4

Canada Canada
Your file Votre référence
ISBN: 978-0-494-38736-8
Qur file Notre référence
ISBN: 978-0-494-38736-8

NOTICE: AVIS:

The author has granted a non-
exclusive license allowing Library
and Archives Canada to reproduce,

publish, archive, preserve, conserve,

communicate to the public by

telecommunication or on the Internet,

loan, distribute and sell theses
worldwide, for commercial or non-
commercial purposes, in microform,
paper, electronic and/or any other
formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduire, publier, archiver,
sauvegarder, conserver, transmettre au public
par télécommunication ou par I'Internet, préter,
distribuer et vendre des theéses partout dans

le monde, a des fins commerciales ou autres,
sur support microforme, papier, électronique
et/ou autres formats.

L'auteur conserve la propriété du droit d'auteur
et des droits moraux qui protege cette thése.
Ni la thése ni des extraits substantiels de
celle-ci ne doivent étre imprimés ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,

their removal does not represent
any loss of content from the

thesis.

Canad;

Conformément a la loi canadienne
sur la protection de la vie privée,
quelques formulaires secondaires
ont été enlevés de cette thése.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant.

ABSTRACT

Being infrastructure less mobile networks, MANETs (Mobile Ad hoc NETworks)
have no central control and are self organized. This makes service discovery more
difficult than in wired networks. Unfortunately, most of the potential applications for
MANETSs must invoke some service requests during their runtime. Traditional service
discovery protocols such as JINI, UPnP and SLP cannot be directly applied to
MANETSs because of their message exchange requirements and the heterogeneity and
mobility of MANETs. In this thesis, we propose a new high efficiency service
discovery (HESED) scheme, which is based on multicast query and multicast reply
and hence is fundamentally different from existing service discovery protocols. In this
scheme, after a client node sends a service query, all the matched servers advertise
their information to all the nodes. Clients cache the received service information, and
are capable of evaluating and utilizing the cached information. This can reduce many
potential clients’ queries. The message complexity of HESED is shown to be O(N) for
N-node MANET: as opposed to O(N?) for traditional schemes. Furthermore, HESED

eliminates the effect of wireless asymmetric links and provides reliable connectivity.

ACKNOWLEDGEMENTS

Deepest thanks to my supervisor, Dr. Hossam Hassanein, for his supervision and
encouragement of my research and the completion of this thesis. I would also like to
thank all my friends in the Telecommunication Research Lab (TRL) at Queen’s
University for giving me so much information in the area of wireless communication
and networking during our weekly group seminar. Special thanks go to Abdelhamid

Taha and Afzal Mawji for their help in proofreading the thesis.

I would also like to acknowledge the financial support provided by the School of
Computing and Communications and Information Technology Ontario (CITO).
Thanks should also be given to Debby Robertson, Gary Powley, Tom Bradshaw and

Richard Linley for their help.

I am extremely thankful to my wife Tianwen He and my parents for their

long-term support and encouragement in all aspects of my life.

it

TABLE OF CONTENTS

ABSTRACT ...ttt sttt st sttt e st s e s st s s st ettt b st e b s e naasenseane ii
ACKNOWLEDGEMENTSccoontiiiiiiiiniininsissresisess s sreenssssssssssssssssssessssnesensesasssaes iii
LIST OF TABLES ...ttt sttt e st st ese st et ssas et saesnssesses esssuestssssuantsussnnsesessns vii
LIST OF FIGUREScotcemtetrmrsrecceveeteneiessenssessssresessescosssessessasssessens ssesesssnsesasssnssssssonsssesensones viii
LIST OF ACRONYMS ...ttt st seseseesssosanessssn e sus st sasessasnase s sesssnss sosssassssrssasss X
Chapter 1 INIOQUCHONcoviiiriiitiriciii i s st shs s b a st eaes 1
1.1 SErvice DISCOVETY ...oviriiiininiisiininiinine st st sissststsss s stssssassess s ssesassssssssssssess ssssasns 1

L2 MANETS .ottt ittt st st sistsasstsvsss sbessssestssssessssessssssass st sbssusssssesassssssssssaass 2

1.3 Routing in MANETSccccciiiiiiiiieenieite e sreete s eeceaess e cresreceesssessessseeneessessseseesnean 4

1.4 Motivation And IMPOItANCEccccovrerererccireeiririreerere e s ses e esee e e e ses s sesemesesnesenes 6

1.5 CONIIDULIONS ...cvevvinicnii it sttt sttt s rese s st sasass e sese e esssemesesaesesesaeseuescsesens 8

1.6 Thesis OTZaniZationccevrveriineine ettt sttt st ssae st steorsstssaesnassssscavessseene 10
Chapter 2 Existing Service Discovery Protocolsccouvieininiiiininiconcenc e 11
2.1 JINIand UDDLL.......ccoccuvivinrireerinmnnnmiiiinsesmsmnmiesirsesemssssssesissssmsessssssessssssssssess 11
2.1.1 ATCRIECIUTE ...cuvvierircercerienae sttt sere st s sneen s st e sresasons b et aasemssresae 11

2.1. 2 HOW JINT WOIKS......c.coviccerimmnmiireirir it ieen et creensesene s ceesns st seassnaseceacn 12

2.1.3 JINI and UDDIin MANETSccccvcciinimmminciiiinceiticetic it essssesnesannens 13

2.2 Universal Plug and Play (UPDP)c.ccooeiiiiiiiniiiiiicniitni e 13
2.2.1 ACRITECIUTE ...ttt ettt et e ee s et cn e st e e e e nranene 13

2.2.2 UPDP Procedures......cuvivueuiriiiiniiiiicnriiiiiniessssssesssssesssnsssssssnssssssnsssssnes 14

2.2.3 UPHP il MANETS.....cccoivuitirintnreninrsrenseessesessssssssessasessesssessesessessssessesssssssnsossosssencs 16

2.3 Service Location ProtoCOl (SLP) ...vvcieiceiviererniieeneieinsiresesnssssesesssssssssssssssssessnsessessssssnes 16
2.3.1 ATCHIECIUIE ...c..veeeenemmisiisise sttt vt st st et sr e ess e st ssesbesestestsbesasresenans 16

2.3.2 SLP In MANETS ...coovvmiiniiiiniiinitiesisisiisiissesssssssessssssnesssssssesssssssssassssesssses 17

2.4 POSt-QUETY SITALEGIES ...c.covrviiinriiircsiciic sttt s st e s s s et s 18
2.4.1 INrOAUCHIONccvrierirrirititie et cteeeer ittt et esse e st s e sae s sre s s sreesessssseneone 18

2.4.2 Request-Reply Strate@iesccuiivivinriiiinniiiiniiniiansssosssssemsnssesssans 18

B B 11111153 1L T 19

2.5 Konark — A Service Discovery and Delivery Protocol.......cuivinmiiiniiininnnn. 20
2.5.1 ATCHItECIULEvevinvvvrreriiiriiiriinst ittt s bsb st sbs s besbensn b asnsaeesnes 20

2.5.2 SEIVICE DISCOVETY ..vevverreereecrereeniensnensessnssserssesmsaresteessestesssmsnesesesseesesssssnsessesssonsorses 20

2 T B 0 111 1115 11U 21

2.6 Network Layer Support for Service DiSCOVETYoovvvccinnincninninecnnniisinc e snccnnns 21
2.6.1 ALCHItECLUIE ...ttt s sr et sae st v s st assas s s sasssses 21

2.6.2 Backbone Management (BBM) ..., 22

2.6.3 Distributed Service DISCOVETYccevmmiiiiiiiiiiniiriicinncisscsssiseeseens 22

2.6.4 COMUNEINLSoovirrirrnniiiiriieteiitiesicssrres s et eet e sareseers s saasrsessasssssseaaessesssnsseesesssrsessns 23

2.7 Other MANET Service Discovery ReS€arch...........cuecveemnmecrcosnsmnnsionnescessensensesssnnns 23
Chapter 3 Proposed Service Discovery Scheme (HESED)......c..cccoeviininininnininnoeiin, 25
3.1 ODJECHIVE ..ttt eecesreereesssrs st st e e e ste s et esas st st sas st ssne srsstsses sassusses sasssasssonssssns 25

3.2 FrameWOrK OVEIVIBWc.cccvieerinmrrintrineierceneererasses s s ceeesessesessessenessensenssssssssesesnsaeseses 27

3.3 Multicast Query and Multicast Reply AlgOrithm.......c..c.ecvcerevcviernecernenesenenreseserereerens 28

3.4 Long Beacon Neighbour DeteCtion........ccuvvurverreeiererserrresersessessessssssasssesssessssssessessenss 31

iv

3.4.1 MANET OIganiZatiOn.........ccccuineninrenenrincnrerenesresssnneressonssiosssssnsensssessssresenssessesens 32

3.4.2 Proposed Neighbour Detection Algorithmccooeeieiinrieiecrierrireceereee s 33

3.5 Edge Node Forwarding AlGOTithim.......ccccemrrinirrinieeniieeneennence st eee e seeesesnsenenns 36
3.6 Cache AIGOTIthIm ... sressens 39
3.6.1 Half Neighbour Changing Time T,cccoccvvuimiirininncniniennsineinsssecsssnsmmesssns 39
3.6.2 Connection Validation Probability (CVP)cccccevververeniervenessesnssesieseeressssessenes 40
3.6.3 Route Validation Probability (RVP)cccovvviiieneinieieecceeseeneneseessesissnsss 42
3.6.4 Cost Function for Service DiSCOVETYccevrvrverrrerrmrrerieerenserseesresseessenssesssasssssaenses 42
3.6.5 Cache Selection AIZOTIthIn..........c.ccociceimnirerinnreie et st sresnaaeeens 45

3.7 Backward Learning Routing AIGOrithim..........ccecevvrrvreriiinerierinninennecseesesesee e sesensesssenes 46
3.8 XML Packet FOIMAL........cccceceernrrersirreniesneeeseessesessaniessersesiosersessessensessossessensessessensesarassees 47
3.9 HESED ADNALYSIS «.cverurerriencirecerenrmrertrresmssssserescessssssesssssssssessessssensossnsessssessssessasessssssssssnes 47
3.9.1 Performance of Multicast MEshccecuiviiineiniinienniinceninecnsisieosessssessssssasnes 47
3.9.2 Message Complexity Of HESEDcccccomirrnnncrrmnenennseneeeenesesesessesessereseens 50
3.9.3 Other Performance ISSUES..........ccccvvveruiicenrireeserseeeriseesesessessesessesseseeseseeseseeseneseens 54
Chapter 4 HESED Design and Implementation.........c.c.couecverrirrirennmneessnesesseesensesseessessassasnes 56
4.1 OVETVIBWcceuriieriiineitctieriecesnte e et teatssses s sss s sseesbe s e ste srasatassasssassnessnessasssnsnsessarsesnnn 56
4.2 Graphical User INterface.........c.covreiniiviiiniininiini ettt cesseseesssesseneseens 58
42,1 JOIM PANEL ...ttt se st e eseassssnas e e s barastans 58
4.2.2 Sarch Panel..........cccocevviinriniresiincnesesrent e sesressssessesessasestessssessssansasassasesen 59
4.2.3 ReSULt PANCL......cc.coiiiiriirininriecncesisieinesrecs s sssaessssessssssss st sseassessessassassesassens 60

4.3 EXPerimental TESEScccuciveiiinicicmmniniinninisiisieiisssisisessssesss seesesssnesssssssssssssssesessoncseses 61
4.3.1 AsymmetriC LinK SCENATIO.......cccvevvervenrererieesesrerseessesrsessessvesssessassasessessasssessssssenes 61
4.3.2 Short Linear Chain SCENATIOc..ccevverieiierimriieniriniiienntaneenesreneetenteseessessesseseressen 62
4.3.3 Long Linear Chain SCenarioceeiriiiicniniinccecsce s esesssessnes 63
4.3.4 Multiple ROULES SCEMATIO ..c.ccvecvemermrrrrerrieereceerrreersasaresessnseressassssessessssesassessssssssssses 63
4.3.5 BOttIeneCk SCENATIOccccvveereerrerrrnrnireeeenerrecreesnsesnessessrossassnssssessasssessesssassesssessassns 64
4.3.6 Printer SEIVEr TSt . ..uuiviiiciiirreicceereriiiiinrissstisisssnessstssssssssssossssssesssasssesssssssassssssas 65
4.3.7 TESERESUILS .eovvuisierisiiriiisiisicesiosisris it siestesssens ot sissnesssisnessassssssessmssssnsssnssiasssasses 66
Chapter 5 HESED Simulation and Result ADalysis........ococviiiiiiiniiiiiin. 70
5.1 STMUlAtion SENG......ccevvvverereere ettt e ese s s s e st e e s e e anasanees 70
5.1.1 Basic Parameterscceoveeueeeireireiriienires et cee sttt cs e e e e s en e aas 70
5.1.2 MODBIlIty MOGELooveiiiriiirieirnieerintniee s seisres e st ssasentseee s sae e senss e sesassenessss 72
5.1.3 Medium Access Control Model.............ooceecininiinnerienine et sveneneseneernens 73

5.2 TSt SCONATIOS. ... viuiereririiririintitie sttt st bttt sttt st e ae se s se st s sensassas e ssnasssasons 74
5.2.1 Scenarios DESCIIPLIONSccecrerrereererserieseseenseseesesrsstesessesssssesssssassessssssssesssrsesasressans 74
5.2.2 PErfOrMAance MELLiCS w.......ccuurevsmmnssssssnsssssssssssssssssssssnnsssssssosssesssessessmssssssensssees 75

5.3 Simulation ANALYSIS ...ceevviriiriinimrueiiinniesieneriieaieneesieesssessesssesssessesssesssssssessesssssssessssessasns 77
5.3.1 Effect of Number 0f PACKELSccccveveriiieneriniiennririiein e e sseesrasnessennessssessssassens 77
5.3.2 Cache Hit RALEc.coveieieriiriiitciicneceeeiesttntene ettt st ess st esaessesn e sessassarassens 80
5.3 3 DRIAY -ttt s e st be e ene s aa s s e etenns 82
Chapter 6 Conclusions and Future WOrkocceceeveevieviinieeinntecenreseecssresiessesresiessesesssssasessenns 85
6.1 SUIMIMATY c..cvoviiiiiiiriteeeienerinreerenr s e e es et eressasaseesansssesenssseseesensasserarsssansessessesssensens 85

O.2 FULUIE WOTK ..vveveeeeieeceeeecereectr et erere e sneesstasessbaeessasesssnsesssssnssnsssesosarasenssssesssnassesssesnnane 86

6.2.1 Reliable Service DISCOVETYocviiiiirmmnri ettt s e seee s enane 86

6.2.2 Tree-based Service Searchccvviivnininninii e 87

6.2.3 Security Over Service DISCOVETYovvviiriniiininiiisii e 88

6.2.4 XML TempPlatesccovveververiieiiiiiniiieerioiinisninssisrsenstssnesnsssssss sressessssssssessesesseses 88

L (1S 01 OO 89
Appendix A XML Packet FOIMALcocoevveeeiceeniniiennieneineceirsneeseserseseasensonessesssseseasssesseessesssmsessses 94
A.1 Client’s MUltiCast QUETY «ccceevveveeeecerseereinrroreorsesssessessessessrneseesssssessssessessassrssssassansnassassass 94

A2 Server’s MUlticast ReplY ... e esnssessssesesns 94

A.3 Client’s Unicast Confirmation.........ccceccerrrierirreeeseentesie st ee sttt st ecse et eesaesne s 95

A.4 Server’s Unicast Acknowledgement ... e 95

A5 Client’s Service REQUESE.......cocviecieiciriiiiisiericeesren e siesss s et sese s sae e e ssssessesessons 96

A.6 Server’s Result REPOItcvcviiiiiiiiiiniccc s 97
Appendix B Packets FOrmatviviniiniiniiiiininniiiisiiissisis s sesssssesssssssnens 98
B.1 HEllO MESSAZE ...veevecvrererrrreeneesneseeeessersneseesseessessecsnssenssssssesssssnsassasrsassesssnossessssrssasnessasssas 98

B.2 Multicast Packet FOrmat...........ccvviviiirnniiiiicininininie e ese e ssess e 98

B.3 Unicast Packet FOIrmat...........cccocvvciininininiiiniicnicnitcn st snncsne st eseessessanssnes 100
Appendix C HESED Implementation ATChIteCtureovvriinieiiinniniinininsiienninines 103
C.1 Client Package.........covuririiniiniiniiiiiniinin it sas s 103
CLLLOVEIVIEW ittt st e sne s sresae b sre b shesaasbesaesbassnsnessasssnes 103

C.1.2 Algorithms for Client Package ..., 105

C.2 SEIVEI PACKAZE ...ovevereriniiriieeeeisioieniersissiisnestestossoresssssssmssessss sassssss srssessnssasssassssnsssanssnes 106
C.3Hello PaCKAGE......coueieniiiettctecctcnn ettt et et s e sae st b b s s saes 107
C.3.1 OVEIVIEW ..neeniiieceeeectereertin et eeeeetee st s sesee s e ene s e e seesaseneaensenaes srnessennessssnees 107

C.3.3 Algorithms for Hello Packagecccccoumenrrenneiccrecncere e ees 108

C.4 Multicast Package..........cccccecrereminiiniiiniciiicie oo e ses st e e sae s seen 112
CLh.1 OVETVIEW .curuinenirereecneceniserieinest e seaesesseassatsestssete sesbssesesenssseussassesensssssesesasssons 112

C.4.2 Flowchart For Multicast Packet Handler..........coocovnvniinniininicnniniiennne. 113

C.5 UnICASt PACKAZE ...vvveveveienrreeeeninreimsitcesisesnenisisissssssenssaes s snssssssssesssssssssssresssnsssssnassas 114
C.5.1 Unicast Package ArchiteCture..........cccvvvremmrresrmercsrmmneninssnsiassise s s sessessssssases 114

C.5.2 Flowchart for Unicast Packet Handler..........ococovvinniiininniinmninniinnnns 115

vi

LIST OF TABLES

Table 3.1 HESED Framework.ccoiiiiiiiiiii i it 28
Table 5.1 Simulation Environment Parameters..........ccooviviviiiiiiieiiinriienennnns 72
Table 5.2 Mobility Model Parameters............ccvuveiiiiieniiiiiiereneiiiiiiiieiiieieiian 73
Table 5.3 Parameters for Pattern Aoovviiiiiiiiiiiiiiii it iieecnanennens 76
Table 5.4 Parameters for Pattern Bcoviiiiiiiiiiiiiiii i i 77
Table 5.5 Parameters for Pattern Ccooiririiiii i i e rere e eenaas 77

vii

LIST OF FIGURES

Figure 1.1 Wireless Station Mode..........ccocviiiiiiiiiiiiiiiiiii e 3
Figure 1.2 Wireless Ad HOC MOdE.......covvviiiiiiiiiiiiiniiiiiiiciininnieens 3
Figure 2.1 A Typical JINI SyStemocoveviiviniiiiiiiiniiiiiininiie, 13
Figure 2.2 UA/SA/DA ArChiteCtUIE. ...uvvieiieiitiiiireriinterreneaerarereenenaes 16
Figure 2.3 Konark ArchiteCture............oivvuiiniieiiiit e aeaens 20
Figure 3.1 Algorithms for Client and Server Nodes.............c.oooiiiiiiiiiiiiinn 29
Figure 3.2 Multicast Query and Multicast Reply Algorithm......................oceeee 30
Figure 3.3 Symmetric/Asymmetric Link Detection..............ccccvvviiiiiiiiinnn.n. 35
Figure 3.4 Route Recovery..........cooooiviiiiiiii i 36
Figure 3.5 Edge Node Set.......civiiiiiiiiiiiiiiiiiiiiicsi e 37
Figure 3.6 CVP Calculation Diagram.............coooiiiiiiiiiiiiiiiiiiiiiiie, 40
Figure 3.7 Average Distance Calculation Diagram..................ccooiiiinil 43
Figure 3.8 Number of Edge Node Analysis........ccoouiiieiiiiiiiiiiiiiiiiiieiiiaennnns 49
Figure 4.1 HESED Implementation Architecture................ccooeviiiiiiiiiiiinn... 57
Figure 4.2 Join Panel..........c.cooviiiiiiiiiiiii i 58
Figure 4.3 Search Panel............cccoooiiiiiiiiiiii 59
Figure 4.4 Result Panel..........ocoviiiiiiiiiiiiiniii i 62
Figure 4.5 Asymmetric Link SCenario............ocvviviiiiiiiiiiiiiiiiiiiiiniinn, 62
Figure 4.6 Short Linear Chain Scenario...........ccocevvviiiiiiiiiiiiiiiiiii, 62
Figure 4.7 Long Linear Chain SCenario...........ooeveiiiiiiiiiiiiiiiiiieniiinaeennen 63
Figure 4.8 Multiple Route SCeNario............ccvevveiiivrereiiieriieiriereeineneananns 64
Figure 4.9 Bottleneck SCenario...........ovviviiiiiiiiiiniiiiiiiiiiiniei e 64
Figure 4.10 MANET Printer Project.........ccooviiiiiiiiiiiiiiiiiiins 65
Figure 4.11 Test Result(1) - Join Panel...............cooiiiiiiiiiiiiiin, 66
Figure 4.12 Test Result(2) - Search Panelcooiiiiiiiiiiiiiiiinn 67
Figure 4.13 Test Result(3) — Server’s Reply in Result Panel 67
Figure 4.14 Test Result(4) — Server’s ACK in Result Panel 68
Figure 4.15 Test Result(5) — Server Qutputovvvveiiiiniiiiiiiiiiiiniininn 68
Figure 4.16 Test Result(6) — Client Outputcccooiiiiiiiiiiiiiiiiiiia, 69
Figure 5.1 Two Schemes in the Simulation............occocoeiiiiiinini 74
Figure 5.2 Average Numbers of Packets Per Query..........ccoevvviiiiiiiiiin 79
Figure 5.3 Comparisons for Cache Hit Rate..........cccooevvniiininiiiiiniiicinicn 81
Figure 5.4 Comparison for delay...........coveviiiiiiiiiiiiiiiiiii 84
Figure 6.1 Service Searching Tree..........ccoveviiiiiiiiniiiiiniiiiii, 87
Figure A.1 Multicast Query Message Formatc..cooviiiiiiiiiiiin, 94
Figure A.2 Multicast Reply Message Formatcoocoviiiiiiiiiiiiiiiinn, 94
Figure A.3 Client Confirmation Message Formatcovviiieiiiiiinninn, 95
Figure A.4 Server Acknowledge Message Formatccoooiviiiiiiniiinnne 96
Figure A.5 Service Request Message Format...............ooooiiiiiiiiiiiiiiiiiiinnn.. 96
Figure A.6 Service Result Message Formatcocoiviiiiiiiiiiiiiiiiiiiiiiinnnn, 97
Figure B.1Hello Message Format..........ooeviiiiiviniiiiiiiiiirneiiiseie v aeee e, 98
Figure B.2 Multicast Packet Header Positioncocviviiiiiiiiiiiiiiinininane, 98
Figure B.3 Multicast Packet Header................ccooiiiiiiiiiiiiiiieceens 99

viii

Figure B.4 Multicast Packet State Fieldc..coooiiiiiiin 100

Figure B.5 Unicast Packet Header Positionccoevvennnnn, DT 100
Figure B.6 Unicast Packet Headerccocoiviiiiiiiiiiiiiiciiin 101
Figure B.7 Unicast Packet State Field................cooiiiiiiiii 102
Figure C.1 Client Package Architecture.............cooviviiviiiiiiniiiiniiininin, 103
Figure C.2 Algorithm for Client Package............ccoocvviiviviiiiiiiniiinnn. 105
Figure C.3 Server Package Architecture.........cocovvviiiniiiiiiiiiiviinininnn. 106
Figure C.4 Hello Package Architecture............ccoooiiiiiiiiiiiiiiiiiiiiiiiiien, 107
Figure C.5 Algorithm for Hello Package..............ccoovvviviiiiiiiiiiiiiininn. 108
Figure C.6 Disappeared Neighbour Problem..................c.ooooiiin 110
Figure C.7 Algorithm for Edge Node Selection............c.coocvvvviiiiiiiiiininnn. 111
Figure C.8 Algorithm for Half Neighbour Change Time.................cocoeiinine. 112
Figure C.9 Flowchart for Multicast Handler...............c.oooiiiiinin, 113
Figure C.10 Unicast Package Architecture.............ccooviiiiiiiiiiiiiiiiiiinin 115
Figure C.11 Flowchart for Unicast Packet Handler.................cooviiiiininnnn 116

ix

LIST OF ACRONYMS

ACK Acknowledgment

ABR Associativity Based Routing

AODV Ad Hoc On Demand Distance Vector

BBM BackBone Management

CAN Content Addressable Networks

CGSR Clusterhead Gateway Switch Routing Protocol

CORBA Common Object Request Broker Architecture

CVP Connection Validation Probability

DA Directory Agent

DHCP Dynamic Host Configuration Protocol

DSDV Destination Sequenced Distance Vector

DSR Dynamic Source Routing

FTP File Transfer Protocol

GSR Global State Routing

GUI Graphical User Interface

HESED High Efficient SEvice Discovery

HTTP HyperText Transfer Protocol

IP Internet Protocol

ISO/OSI International Standard Organization's Open
System Interconnect

JINI Java Intelligence Naming Interface

LAN Local Area Network

LAR Location-Aided Routing

LBAR Load-Balanced wireless Ad hoc Routing

IETF Internet Engineering Task Force

MAC Multiple Access Control

MANET Mobile Ad hoc NETwork

ODMRP On-Demand Multicast Routing Protocol

OLSR Optimized Link State Routing Protocol

OS Operating System

PDA Personal Data Assistant

RMI Remote Method Invocation

RDT Reliable Data Transportation

RVP Route Validation Probability

RTS/CTS Require To Send/Clear To Send

SA Service Agent

SLP Service Location Protocol

SOAP Simple Object Access Protocol

STAR Source Tree Adaptive Routing protocol

TCP Transmission Control Protocol

TORA
TOSD
TTL
UA
UDDI

Temporally Ordered Routing Algorithm
Traditional On-demand Service Discovery
Time-to-Live

User Agent

Universal Description, Discovery and
Integration

User Datagram Protocol

Universal Plug and Play

Uniform Resource Locator

Virtual Access Point

Virtual Base Station Protocol

Wireless Routing Protocol

Extensible Makeup Language

Zone Routing Protocol

xi

Chapter 1 Introduction

A service is an entity that can be used by a person, a program or another service. It
has a general definition in service discovery and may be software objects, information
access via the Internet, music on demand or classical services such as those offered by

printers, scanners, fax machines, HTTP servers [1] and FTP servers [1].

1.1 Service Discovery

Service discovery finds a desired service over some network coverage that
includes two important classes of entities: servers and clients. Clients need services

and servers are willing to provide services to other nodes.

In general, there are two basic modes to find a service: passive mode and active
mode. In passive mode, clients do not send any queries and servers advertise the
available services periodically. When a client needs a service, and it does not have any
information on it, it has to wait until it receives service information from the server. In

active mode, clients proactively try to find the service. If a client needs a service, the

client will send a service query to other nodes that can forward this query to the server.
When a server receives a service request from a client directly or indirectly, the server
will respond. Finally the client can setup a connection with the server and utilize the
service after it receives the server’s response. Many existing protocols support both

modes.

In general, service discovery has three goals:
1. To search and browse for services
2. Choose the right service

3. Utilize the service

In this thesis, we focus on the first goal, which is the way to find out the server’s
information. Choosing and utilizing the service is application dependent and is

beyond the scope of this thesis.

1.2 MANETs

Most wireless devices have two communication modes: station mode and
peer-to-peer mode. In station mode (Figure 1.1), mobile terminals must find a station
and register themselves to that station, which is usually the wireless access point.
Mobile terminals can communicate with outside computers through this access point.

In this mode, clients have to remain within the station’s radio range.

Internet

Y.
Access

point

Figure 1.1 Wireless Station Mode

In ad hoc mode (Figure 1.2), there is no centralized management and nodes
communicate with each other through multi-hop mode [4]. If the destination node is
outside the sender node’s radio range, then the sender has to find some other nodes to
act as relay nodes for forwarding data packets to the destination node. In this mode,
nodes may cooperate in routing each other’s data packets and this enhances reliability
and extensibility. For example, mobile nodes can select a good route to a destination
and bypass an obstacle such as a concrete wall or an iron door, which is not possible

in station mode.

)

Figure1.2 Wireless Ad Hoc Mode

A MANET (Mobile Ad hoc NETwork) is a collection of wireless mobile nodes
without an existing network infrastructure or centralized administration, and in which
all mobile nodes can communicate with each other in multi-hop ad hoc mode [2][3].
Since MANETS do not need any backbone infrastructure, they can be widely used in
many areas where such an infrastructure is not viable. For example, if we want to
setup a wireless LAN to reliably cover the area inside a building that has obstacles,
we can use many access points to bypass all the obstacles. If we use ad hoc mode, we
only need a few access points and all computers can reach these access points through

multi-hop connections, which effectually bypass obstacles.

1.3 Routing in MANETs

Routing is a critical factor for MANETSs because a node must find a multihop
route to the destination node before it can send a packet. In general, routing
algorithms belong to the network layer and service discovery is in the application
layer, so they are independent of each other. Because our proposed service discovery
scheme is a cross-layer design, meaning the routing algorithm is implemented in the
application layer, some MANET routing algorithms are presented in this section as
background.

Routing protocols in conventional wired networks generally use either
distance-vector or link-state routing algorithms [1], neither of which can be applied in
a dynamic environment such as MANETs. Numerous multi-hop MANET routing
protocols have been proposed [5-19] in the past few years. They can be classified into

three categories: reactive, proactive and hybrid [20].

On-demand reactive protocols (DSR [5], LAR [6], ABR [7], AODV [8], TORA [9]
and LBAR [10]) start route discovery only when needed. Whenever a source node
wants to send a packet to a destination node, the source node has to send route request
packets (control packets) and start a route discovery process. After a route is found,
the source and the destination can communicate with each other through this route.
The on-demand protocols significantly reduce the number of control packets because
control packets are sent only when it is necessary. However, the first data packet
cannot be sent until the route is ready, hence, the delay for the first packet can be very

long [21].

Table-driven proactive protocols (CBA [11], GSR [12], OLSR [13], STAR [14],
WREP [15], DSDV [16] and CGSR [17]) discover routes before they are needed. Each
node maintains a global network-topology table by periodically exchanging
information with its neighbours. When a source node wants to send a packet to the
destination, it can read the local topology table and find out a route to the destination.
Hence, the source node does not suffer a long delay before the packet is sent. Since
nodes have to exchange the topology information packets (control packets) even if

there is no route request, the number of control packets exchanged can be very large.

Hybrid methods (ZRP [18] and VBS [19]) utilize both proactive and reactive

procedures and have all the advantages of both approaches. However, the hybrid

methods also increase the complexity and have extra costs.

1.4 Motivation And Importance

With the advances in wireless technology, the number of wireless devices is
increasing at a fast rate. At the same time, there are more and more services available
in MANETs. However, the lack of centralized control in MANETs complicates
service discovery. In this thesis, we present a new high-efficiency service discovery

scheme for MANETS, which has low communication cost and short delay.

Most of the service discovery protocols have two common phases. The first
involves the discovery of the service provider, and the second utilizes the service.
There are many challenges in both phases. Because MANETS are vastly different
from the traditional wired or wireless networks, it is always a big challenge to find a
proper way to organize a MANET because of its mobility and heterogeneity. In
general, structured networks are always easier to deal with than infrastructure-less
networks. Organizing services and discovering them in MANETS are, therefore, a

fundamental challenge for any MANET application.

Energy consumption is another important issue in MANETs. Service discovery
must query enough nodes in order to find a server and the route to that server, so it
may create a large amount of network traffic. Since mobile devices have very limited
energy, managing the use of energy to run service discovery is a big challenge that
must be faced. Our approach is energy efficient because we can significantly reduce

the number of packets exchanged compared to traditional schemes.

Another issue is delay. Because packet transmission must go through a multi-hop
connection, we have to control the delay from client to server below an acceptable
level. There are three kinds of delays for multi-hop MANETS: processing delay at
each node, request-propagation delay among the different nodes and medium access
delay. Processing delay is the time for processing a packet at a node, such as the time
for a client node to prepare a query, for intermediate nodes to update and forward
packets or for a server node to create a reply. Propagation delay is the delay for a node
sending or receiving packets. Medium access delay in wireless networks may take a
much longer time than it does in wired networks because all the wireless equipment
has to share the limited media resource. There are three ways to reduce delay:
decrease the number of hops, prevent communication bursts in a small area and
reduce the computation load at each relay node. Our approach reduces delay in the
following three ways:

(a) Reduce computation load for intermediate nodes thus shortening the

processing delay.

(b) Prevent adjacent nodes from requesting medium access within a short
time period thus decreasing packet collisions and reducing the medium
access delay

(c) Use cached service information to reduce the overall delay.

In MANETS, the communication radii for different nodes may be different and
asymmetric links are universal phenomena in wireless connections. All nodes can be
mobile and connections between different nodes are not always available. Because
each node has only limited energy, there is no such thing as a permanent node in
MANETs. Service discovery should be capable of eliminating such adverse effects

and providing reliable service to the users.

In general, we need a fast, energy-efficient, reliable and extensible service
discovery scheme among the non-permanent nodes using the unreliable connections
of MANET:. Developing a good scheme is very difficult, but will prove useful for
wireless applications. Most wireless applications need exterior services and the
performance of service discovery affects the overall application performance. Without
a high-efficiency service discovery scheme, we cannot have wireless application

access with acceptable performance.

1.5 Contributions

The main contributions of this thesis are as follows.

(1) We have analyzed the problems and provided solutions for service discovery over
MANETSs. Finding a service provider among mobile nodes is a difficult task.
Traditional on-demand solutions use multicast query and unicast reply, in which
client nodes send their service queries to all nodes and server nodes respond by
sending a reply to clients by unicast. In this thesis, we propose a new algorithm,
which is based on multicast query and multicast reply, which is fundamentally
different from existing service discovery protocols. In this algorithm, after a client
node sends a service query, all the matched servers advertise their information to
all nodes. This can reduce many potential client queries. The scheme is an

on-demand service discovery protocol, but also has the advantages of passive

service discovery.

(2) We propose new routing algorithms for multicast communication and unicast

communication, called the “Edge Node Forwarding Algorithm” and the

“Backward Learning Algorithm”. Edge Node Forwarding is a selective forwarding
algorithm in which only nodes selected forward multicast packets. With different
selection criteria, we could build different kinds of multicast meshes for various
user requirements, such as a fast mesh, a minimum size mesh or a minimum
energy consumption mesh. Backward Learning Routing has no routing phase and
unicast routing is just a by-product of the multicast procedure. It can shorten the

delay and reduce energy consumption at the same time.

(3) We develop Java-based service discovery software, which can be used either as a
client to detect, select and confirm a service, or as a service provider to respond to
and accept clients. We provide a client GUI interface, which is very convenient for
novice users. In our implementation, we also solve the asymmetric link problem,

which is common in wireless LANS.

(4) We design a simulation model to measure the performance of our proposed
scheme. Simulation results show our scheme is faster and more energy efficient

than traditional schemes.

(5) We have set up a mathematical model for message complexity of the proposed

scheme and used this model to analyze energy consumption.

(6) Other MANET protocols can benefit from the work in this thesis. Our service
discovery algorithms can serve as middleware for other higher level MANET
protocols such as data replication and task scheduling since they must find and

utilize services from other mobile nodes.

1.6 Thesis Organization
This thesis is organized as follows:
- Chapter 2 reviews existing service discovery protocols, such as JINI, UPnP, SLP,

Post and Query strategies and Konark.

- Chapter 3 presents our service discovery scheme and the algorithms to realize it.

A framework overview is used to show the relationship among these algorithms.

- Chapter 4 discusses the implementation issues, such as the project architecture,
class diagram, critical components and user interface. We also describe our test cases
in this chapter, which include a linear chain scenario, a multiple route scenario and a

bottleneck scenario.

- Chapter 5 presents the simulation results, which include basic parameter settings,

test case descriptions, and numerical result and their analysis.

- Chapter 6 provides conclusions of the research and directions for future work.

10

Chapter 2 Existing Service Discovery Protocols

Service discovery protocols in wired networks can be either agent-based or
without agents. We introduce several existing service discovery protocols and
post-query strategies on MANETSs. After a brief introduction of each protocol, we
provide a short analysis of their viability for MANETS.

2.1 JINI and UDDI

2.1.1 Architecture

JINI[22] (Java Intelligent Network Interface) is a Java-based service discovery
protocol, which is good for programming service discovery applications. UDDI[23]
(Universal Description, Discovery and Integration) is another industry standard which
focuses on Web services. The main architectures of JINI/UDDI are quite similar

because both of them are agent-based service discovery protocols.

JINI has three components: service provider, lookup service and client. The

service provider can provide service to clients over a published interface. Services can

11

be physical devices (printer, digital camera, coffee machine, etc) or software objects.
In JINI, a service can be implemented in any programming language, but it must have
a Java interface available to clients, which is used for finding other JINI devices and
services. Service implementations can be written using a variety of platforms, such as
SOAP [24], RMI [25] or CORBA [26]. The lookup service acts as a broker between
services and clients.

UDDI has a Web-based distributed directory system which is called as “UDDI
Business Registry”. It allows businesses to list themselves on the internet and
discover each other.

2.1.2 How JINI Works

The lookup service acts as a service registrar in JINI (Figure 2.1). When a server
or a client enters a JINI network, the first thing it does is to get a “service registrar
object” (Java object) from the lookup service. The server can use the service registrar
object for registration. During its registration, the server will send a copy of its service
proxy (Java object) to the lookup service. On the other hand, when a client receives
the service registrar object from the lookup service, it can use that service registrar
object to search for an expected service. If such a service provider has registered in
the lookup service, the lookup service should send a service proxy to the client, and

then the client can use the service proxy to communicate with the service directly.

12

Lookup Service

Service ol
Provider B @ ient 1
Networks @
Client 2 Q Service
Provider A

(1) Service provider A registers itself to lookup service

(2) Client 2 requests service provider information from lookup
(3) Lookup service sends service provider’s interface to client 2
(4) Client 2 sets up a connection with service provider A

Figure 2.1 A Typical JINI System

2.1.3 JINI and UDDI in MANETSs

JINI and UDDI cannot be applied in MANET: due to the difficulty of finding a node
that can work as a lookup service center (in JINI) or a business registry (in UDDI)
since each node only has limited lifetime and the energy consumption of such nodes is

much higher than the normal level, which can cause depletion of the broker node.

2.2 Universal Plug and Play (UPnP)

2.2.1 Architecture

UPnP[29] stands for Universal Plug and Play, and is promoted by Microsoft.
Universal plug and play means that whenever a device is connected to a network, it
can be used by other network devices automatically without the need for driver
installation or set up. It looks more like a large and loose operating system, and any

device can connect and disconnect at any time.

13

There are three main components in UPnP: control points, devices and services.
The service is the smallest unit in UPnP networks. A service in UPnP device includes
a state table, a control server and an event server. The state table has the state of the
current service. For instance, a clock server has a state “current time”, a printer server
has states “idle”, “busy”, “data transporting”, etc. The control server can change the

states in the state table and the event server will announce the changed state to the

whole network.

A UPnP device consists of services and nested devices. Control points can
retrieve the device and service description, invoke actions to control the service and

receive the event announcement from a service’s event server.

2.2.2 UPnP Procedures

There are six steps for invoking UPnP service discovery: addressing, discovery,

description, control, eventing and presentation.

A. Addressing
When a device enters an UPnP network, it needs an IP addresé [30] to identify
itself. There are two ways of getting an IP address: DHCP (Dynamic Host

Configuration Protocol) [31] and Auto IP [32].

B. Discovery
After a new device gets an IP address, it will advertise its existence to all the

control points and the discovery message contains a few, essential specifics about this

14

device. If a new control point enters a UPnP network, it will search for all the
interested devices. After this stage, control points and devices have basic knowledge

about each other.

C. Description

If the control point wants to know more about a device, it can retrieve the
device’s detailed description from the URL provided by the device in the discovery
message. This description includes all the information for the device, such as model
name, serial number, manufacturer information, and a list of embedded devices or

services, URLs for control, eventing and presentation.

D. Control

Control points can extract the necessary control information from the service
description, such as command or action lists, parameters for each command, variables,
data types, etc. Control points can send an action request to a device’s control URL [1]

for using this service.

E. Eventing

Each service has a state table that contains one or more state variables. An event
changes one of the state variables. A service or device should announce the state
change to all control points by sending an event message. An event message contains

the name and current value of the changed variable.

15

F. Presentation
A device should have URL page for presenting itself to the users. A user can get

the current device status and control the device by browsing the URL page.

2.2.3 UPnP in MANETS

UPnP cannot be applied to MANETSs because most of the searching, registration
and event updating packets in UPnP have to be broadcast to the entire network. This

can be too expensive in MANETs due to bandwidth and energy concerns.

2.3 Service Location Protocol (SLP)
2.3.1 Architecture

Service Location Protocol (SLP)[33] (Figure 2.2), developed by the IETFE, is a
vendor-independent standard on TCP/IP networks. SLP has three main components:

the User Agent (UA), the Service Agent (SA) and the Directory Agent (DA).

- Directory Agent
Serv1ceyv wegistraﬁon
Service Reply Service ACK

User Agent Service Agent
Service Request\&ervicc Reply Service ACK Service Registration
Client Client Client Server Server

Figure 2.2 UA/SA/DA Architecture

16

A. User Agents (UA):

When a client needs a service, it sends a service discovery request to its UA. The
UA passes this request to its DA, and the DA searches all the registered services. If
there is a service available in the DA, the DA sends the service information to the UA,

and the UA forwards this information to the client.

B. Service Agents (SA):

When a new server enters an SLP network, it must first register itself with DAs.
The server sends a registration request to an SA, and the SA forwards it to DAs. DAs
‘ perform the registration, and send an ACK to the SA. After the SA receives the ACK,
it sends an ACK to the server, so that server knows the registration is finished. A

server also can send a cancellation message to its SA when it leaves this network.

C. Directory Agent (DA):
The DA saves all the registered service information in its database and responds

to the UA’s queries.

2.3.2 SLP In MANETs

It is obvious that we could not apply SLP to MANETs. SLP needs many different
agents and it is very difficult to implement an agent on unreliable mobile nodes. Even
if we have all these agents and a client can get the desired server’s information such
as IP address, the client still has to query the entire network to find out a route to that
server. These costs are not affordable by the mobile nodes in MANETSs who only have

limited battery-energy.

17

2.4 Post-Query Strategies

2.4.1 Introduction

A Post-Query protocol[34] is a time-dependent protocol executed in rounds and

modeling request-reply interactions between clients and servers on MANETS.

The network is modeled as a graph G = (N,L), where N = {1, 2, 3,...n} is a set of
mobile nodes, L is the set of directed links between all the nodes. Let us assume P(s)
is the post protocol, Q(c) is the query protocol. There is one pair (P, Q) for each
service discovery round. In each round, a server posts service information to some
nodes, and a client queries service information from some other nodes. A client can
find a service if and only if PNQ is not empty in the current round. The main idea of

this protocol is that the client receives service replies from intermediate nodes.

2.4.2 Request-Reply Strategies

There are four different strategies for request-reply in this protocol which are

“Post-to-all”, “Query-to-all”’, “Uniform memory less” and “Incremental post-query”.

In the “Post-to-all” strategy, the server advertises service information to all the
clients, and clients save the service information into their local cache. Servers should
update the service information periodically before it expires. When a client wants a
service, it does not need to query any other nodes because the service information is
already in its local cache. The algorithm is good for small and static networks. In a
small and static network, the server posts the service information only once, and the
service information can be used by clients for a long time, thus there is no querying

delay for each client.

18

In the “Query-to-all” strategy, servers do not advertise their information, and
clients should query all the nodes to find out the service. This strategy is basically a

greedy on-demand algorithm.

In the “Uniform memory less” strategy, each server posts its advertisements to
exactly k nodes, and each client queries exactly k’ nodes where k and k’ are fixed.
This algorithm does not guarantee that the client will find the server, but it has less

network traffic than greedy algorithms.

In the “Incremental post-query” strategy, there is a sequence (Pr, Qr), =1, 2,
3,...R of Post-Query protocols. The posting or querying node set starts at a small
value, and it will be increased slowly until the client can find the server. The network
traffic may be reduced to minimum, but the querying delay is very large since the
client has to wait for many steps to get a result. Two variants of this strategy are the

“post-incremental” and “query-incremental”.

2.4.3 Comments

The Post-Query protocol almost covers all the cases of infrastructure less MANET
service discovery. Different strategies are suitable for different kinds of networks. In
general, “Query-to-all” is good for high mobility MANETS; it is expensive but quick.
“Incremental post-query” is good for high mobility MANETS as well, and it has the
minimum network traffic but the maximum delay. Users can select different strategies
according to their requirements. This protocol is very comprehensive and general, but

it is not enough for implementing service discovery for real applications. One reason

19

is that it does not take into account the routing cost. Indeed, the route discovery cost

can be higher than the service discovery cost and it should not be ignored.

2.5 Konark — A Service Discovery and Delivery Protocol

2.5.1 Architecture

The Konark[35] architecture (Figure 2.3) is operating system and programming

language independent because it is built above IP network connectivity and is XML

based. Konark allows each device to act as a server and a client simultaneously. There

is a “Konark SDP manager” in each node. Konark applications are built above SDP

managers, and a Konark application can facilitate human interaction to initiate and

control advertising, discovery and service usage. Konark has two major parts: service

discovery and service delivery.

Konark Applications Konark Applications Konark Applications
KONARK RONARK KONARK
SDP MANAGER SDP MANAGER SDP MANAGER
Messaging Layer Messaging Layer Messaging Layer
TCP/UDP TCP/UDP TCP/UDP
Ir Ip P

Wireless Link Laver Wireless Link Laver

Figure 2.3 Konark Architecture

2.5.2 Service Discovery

A Konark manager maintains a tree-based structure registry, called the “service

tree”. The root and internal nodes of this service tree are the service types, and the leaf

20

nodes are the service name. From top to bottom, the service may become more
specific and the service name will eventually be found at the leaf node. When a node
receives a service request, it will search for the requested service in the service tree
from root to leaf, when it will know whether the requested service is at current node
or not.

Konark supports “active pull” and “passive push” modes for discovering a service
in MANETS:. In “active pull”, a client sends a query to all of the nodes in the MANET
to find the service location. In “passive push”, a server advertises the service
information to the entire network periodically. The discovery process has two steps. In
the first step, a client sends a discovery message on a fixed multicast group. In the
second step, each receiver will search for the local service tree, and check if it

matches the service request. If it matches, the node will send a service response.

2.5.3 Comments

Konark provides a solution for service discovery on MANETS, but it does not
consider energy consumption or delay. Without consideration of energy, it cannot be

applied to real ad hoc applications and is limited to research issues only.

2.6 Network Layer Support for Service Discovery
2.6.1 Architecture

This is a directory-agent based service discovery [36]. The first step for this
algorithm is to set up a backbone structure on the MANET, and the backbone nodes
serve as Directory Agents (DA). In the second step, a server registers its service with

the DAs and a client queries for a desired service from the DAs.

21

2.6.2 Backbone Management (BBM)

The goal of BBM is to obtain a small and relatively stable backbone. Basically, it
has three steps. The first step is to select the backbone nodes, and then find a route
between the backbone nodes. After forming backbones, it should maintain the

topology changes in the MANET:.

Initially, each node is assigned a “white” color. All nodes keep sending hello
messages to each other, so that they know their neighbouring nodes. After a time
interval, each node should have collected enough information about its nearby
environment. Only the nodes that have fewer changed neighbours become a backbone
node whose color is changed to black. In this stage, some nodes are assigned as green
nodes, which are the backup nodes for backbone nodes. After the virtual backbone is
set up, all nodes in a MANET must find a backbone node as its VAP (Virtual Access

Point).

In the next step, the links between backbone nodes are found and a routing table
is prepared at each backbone node. The maintenance of the backbone nodes is also
very important for MANETs. If green nodes do not receive their VAP’s hello
messages for a time period, they know that their backbone node is down. An election

is started to vote for a new backbone node.

2.6.3 Distributed Service Discovery

The server must register itself to its VAP first, and its VAP then multicasts the
service information to some other VAP nodes or all the VAP nodes. The TTL

(time-to-live) field is used to control the VAP multicast range. Clients can search for

22

service from their VAP directly. The VAP serves as Directory Agent (DA) in this

algorithm.

2.6.4 Comments

These algorithms use agent-based MANET service discovery, and the major
problem for agent-based algorithms is that the agent node may fail. Furthermore, it is
quite energy consuming to rebuild a new agent, which contains all the service
information. This is especially true since mobile nodes have limited battery energy in

MANET:.

2.7 Other MANET Service Discovery Research

Other service discovery research for MANETS can be separated into three classes:
directory agent based, without directory agents and security oriented.

Directory agent based service discovery in MANETs [37-41] generates an
infrastructure by the mobile nodes. Some nodes are core nodes which control or help
other nodes. The infrastructures can vary for different researches such as Service Ring
[37], Content Addressable Networks (CAN) [38], Multi-Layer Clusters [39], hash
indexing self-organized directory agent [40], and Bluetooth centralized structure [41].
In general, the directory agent based algorithms create an infrastructure for MANETS
first. The nodes in that infrastructure are management nodes, which manage some
other nodes. Other nodes query and receive information through the management
nodes.

Some service discovery protocols do not have a directory agent [42-45]. In these
cases, client nodes have to discover services themselves [42][45], from intermediate

nodes [43] or by service groups [44]. In typical proactive service discovery solutions,

23

client nodes send multicast or broadcast queries and server node respond with unicast
replies [45].

Other research directions in this field related to security or location-aware design
include service representation (coordination-based design) [46], asynchronous home
agent based [47], secure location-aware service discovery SPLENDOR [48] and

Bluetooth based schemes [49].

24

Chapter 3 Proposed Service Discovery Scheme

(HESED)

In this chapter, we present the features of a good service discovery scheme for
MANETSs. We then describe our service discovery scheme HESED (High Efficiency
SErvice Discovery) and the algorithms for realizing HESED. At the end of this
chapter, a theoretical analysis proves two major advantages of HESED, which are

energy efficiency and short delay.

3.1 Objective

Before we can design an effective service discovery scheme, let us first look at the

features of a good service discovery scheme.

Low energy consumption is a critical, and possibly most the important, feature.
Since most of the mobile devices only have limited energy supply, high energy

consuming applications cannot run on these devices. Wireless communication is a

25

major source of energy consumption, and depends on the number of packets
transmitted. For most wireless adapters, the signal strength is set during installation.
Although the user can manually change it later, it must stay at a fixed level during the
communication. This means the energy consumption only depends on the packet size
and it is not related to the actual distance between two nodes (if they are in range of
each other). Therefore, we can roughly control the energy consumption level by
controlling the number and size of packets sent. Hence, we make this an objective of

our proposed scheme in order to lower the total energy consumption.

The second feature is shortening the delay. Any application that utilizes service
discovery cannot afford extended delays. It should be noted that delay and energy
consumption may be two contradicting factors. Reducing delay may mean sending
more control packets, hence increasing energy consumption. We show later how our

proposed scheme balances the two requirements.

We remark that wireless connection and ad hoc nodes are not reliable because of
the mobility in MANETs. On the contrary, practical wireless applications need
reliable communication between different nodes. Our proposed scheme can partially

archive this goal by sensing the nodal neighbourhood information.

Because of the heterogeneity of MANETS, compatibility with various operating
systems (OS) is a necessary factor. We, therefore, propose application-level routing,
to complement lower level wireless routing support that is compatible to any OS.
Hence, and in contrast to the ISO/OSI model (International Standard Organization's

Open System Interconnect) and IP layered approaches, which may not be best

26

suited for wireless ad hoc communication, we deploy a multi-layer approach which
combines an application-level support protocol (viz. service discovery) with a
networking layer protocol (viz. routing). According to our proposal, there should be
four sub-layers within the application/networking layer: application-level routing,
application-level —multi-hop relaying, application-level RDT (reliable data
transportation) and application-level beacon. Naturally, these four sub-layers are not

totally separate in our implementation.

3.2 Framework Overview

In HESED, when a client node requires a service, it evaluates the cached services
using a Cache algorithm first. If it cannot find any valid cached service, the client
node sends a query and waits for replies according to a Multicast Query and Multicast
Reply algorithm. The multicast packet is sent by an Edge Node Forwarding algorithm
and the unicast packet is routed by a Backward Learning Routing algorithm. Long
Beacon Neighbour Detection provides the necessary information and eliminates
asymmetric links for the Edge Node Forwarding algorithm. Table 3.1 summarizes the

features of the main algorithms used in HESED.

27

Algorithm Name

Brief Description

Cache Evaluate client node’s cached information by using the
neighbour node mobility information, which is obtained from
the Long Beacon Neighbour Detection algorithm.

Mutlticast Query and | Exchange information among client nodes and server nodes

Multicast Reply with the Edge Node Forwarding Multicast algorithm.

Edge Node Forward multicast packet by using an auto-generated

Forwarding Multicast | multicast mesh which is formed by edge nodes. Edge nodes

Routing are selected by using the information collected from the Long
Beacon Neighbour Detection algorithm.

Backward Learning Propagate unicast packet along the reversed multicast route.

Routing This is a by-product of Multicast Query and Multicast Reply

algorithm.

Long Beacon

Neighbour Detection

Detect neighbourhood nodes. It is the lowest layer of HESED,

and provides the necessary information to other algorithms.

Table 3.1 HESED Framework

3.3 Multicast Query and Multicast Reply Algorithm

This algorithm is the core part of HESED because it defines how to exchange

service discovery messages. Indeed, HESED is fundamentally different than any of

the post-query strategies in that it uses query-all and reply-all mode. Query-all means

clients send multicast queries to all reachable nodes with a limited TTL. Service

providers also use multicast mode with limited TTL to send their reply and none of

the intermediate nodes send any reply even if they have some knowledge about the

28

query. All the nodes that receive the service reply should cache the service
information in their local memory. Since there are many different servers available, a
client may receive more than one reply. Clients should send a unicast confirmation to
the most desirable server. After a server receives this confirmation, the server sends
the client an acknowledgment (ACK) message, which includes detailed information
about the service and how to utilize it. All packets use the pre-defined XML [50]
template. Figures 3.1 and 3.2 describe the algorithms for a client and server and the

interaction between them.

Algorithm for Client Node Algorithm for Server Node
Main() Main()
Upon receiving a multicast packet pl Upon receiving a multicast packet p1
If client did not receive pl before and it is If server did not receive pl before and it
required to re-send, then is required to re-send, then
multicast(p1) multicast(p1)
If p1 is a service discovery reply, then If pl is a service discovery query,
updateCache(p1) then
if current node = p1.destination Generate a service reply packet
then p2
generate unicast packet p2 multicast(p2)
unicastForward(p2) else if receive a unicast packet p3, then
else if receive a unicast packet p3, then if current node is the destination then
if current node is the destination then generate a service confirmation
Output final result to user packet p4
else unicastForward (p4)
unicastForward(p3) else
else if current node need a service unicastForward (p3)
generate a new service discovery query
packet p4
multicast(p4)

Figure 3.1 Algorithms for Client and Server Nodes

29

(1) Search local cache for desired

service .
(2) If not found, multicast a request to

the whole multicast group

(3) Multicast a reply, all clients will

cache this reply

Client Server

/ (4) Send a unicast confirmation

(5) Send a unicast ACK reply

Figure 3.2 Multicast Query and Multicast Reply Algorithm

It should be noted that when an intermediate node receives a client’s query, the
intermediate node may have some service providers’ information in its local cache. In
such a case, the intermediate node is able to respond to the query and it need not
forward packets to the service providers. While this may reduce some potential

network traffic, we do not allow such a scenario because:

- There are potentially a number of similar servers available in large MANETS. It
is difficult for an intermediate node to have full knowledge of all of them and
hence select the best. If the intermediate node replies to the query and does not
forward it, clients may lose access to some servers that exist but which are

unknown to the intermediate node.

- Even if some intermediate nodes know all the service information (it may be
very expensive to maintain), intermediate nodes still have to send this
information to the client, and the size of the response message could be very
large. If every intermediate node sends this large response, the client may

receive many large duplicate responses.

30

- Each intermediate node has to check whether the services in its cache can be
matched with the client’s query. The intermediate node can do packet
forwarding only after it cannot find any cached information. This may create a

long processing delay at each relay node.

- Some information may be outdated. This not only leads to misinforming clients,

but also to having conflicting information about services arrive at clients.

For the reasons listed above, only service providers are allowed to answer client
queries and the intermediate nodes just cache the service information for their own

use.

Service discovery includes two phases: a searching phase and a utilization phase.
After the client receives a server’s reply, the searching phase of the service discovery
is over and it then goes into the utilization phase. In the utilization phase, the client
node sends a unicast confirmation first and the server sends a unicast acknowledge if
it can accept this client node. The server’s unicast acknowledgement could be
converted into a GUI and the users could control the server through this GUIL After
the server finishes the assigned task, the server generates a service report to the client
and ends the whole service discovery process. All the messages are presented in XML;

the detailed format is described in Appendix A.

3.4 Long Beacon Neighbour Detection

This neighbour detection algorithm is a fundamental part of service discovery

because it organizes MANETs in an efficient way and supports the multicast

31

algorithm. Each node maintains local topology information so that the node may find
a better solution for a given task such as multicasting. This algorithm requires each
node to send beacon messages periodically to all its neighbours. The beacon message
includes its one-hop neighbours’ information so that each node can know all the

nearby nodes within two hops.

3.4.1 MANET Organization

There are many ways to organize wireless MANETS and we can separate them into
three classes according to each node’s neighbour knowledge. Let us assume that each
node knows its nearby nodes inside K hops. We can separate the MANETS into three
categories according to the different K values in which K equals to 0, D and 1<K<D-1

(where D is the network diameter).

The first category is K=0 where each node knows nothing about its neighbours.
For setting up a connection between two nodes, the source node has to query the
whole network to find a route to the destination node even if the distance between the
source and the destination is only one-hop. Many well-known routing algorithms such

as DSR [5] use this method because it is the simplest mode and requires no cost.

The second category is K=D, which means nodes have complete knowledge about
the whole network-topology. This is very expensive to maintain and update. It is very

efficient for small networks but it is impractical for large networks.

The third category is when 1< K< D-1, which means each node knows the network
topology up to K hops away K =1, 2 ...D-1. HESED belongs to this class where K=2.

Most of the current wireless devices belong to this category where K=1. It is our view

32

though that this is not a good solution for MANETS. For example, consider two nodes
ina MANET - A and B. If node A receives a beacon message from node B, then node
A cannot determine if node B can also receive node A’s beacon message. Node A
cannot trust this link for reliable data transport because node A does not know
whether this is a bi-directional link or not. To solve this problem, node A must ping
all its neighbours to confirm these links before node A can actually use them. This
may create a long delay because node A has to wait for these unreachable nodes until
a time-out. It may lead to a disaster if every node does this before it can send a packet.
This may even be worse than ignoring such information and setting up a new route.
This short beacon is very useful to detect a wireless access point in infrastructure

wireless LAN, but it cannot be used in MANETS.

The choice of particular importance in MANETSs is K=2 because the asymmetric
link problem is resolved at the neighbour detection stage and it reduces the difficulty
of route discovery or service discovery. Users enjoy much better performance such as

shorter delay and lower energy consumption with affordable beacon cost.

3.4.2 Proposed Neighbour Detection Algorithm

Because communication range varies for different nodes, asymmetric links are
inevitable in MANETs and they are also a main source for unreliable wireless
connections. We alleviate this problem by “long beacon neighbour detection”. In our
algorithm, only the nodes that are connected by symmetric links, are considered as
neighbours of one another. There is an example in Figure 3.3 of a symmetric link and
an asymmetric link. In Figure (2a), (3a), (4a), there is a symmetric link between node
A and B, and they can receive each other’s beacons. At step 1, when node A receives

node B’s beacon, node A adds node B as its neighbour candidate and send the updated

33

beacon. Node B also list node A as its neighbour candidate for the same reason. At
step 2, node A finds itself appeared in node B’s beacon, and node A knows that node
B has received node A’s beacons. Node A can conclude that the link between node A
and B is symmetric link and Node A updates Node B from its neighbour candidate list
to its neighbour list. In Figure (2b)(3b)(4b), the link between nodes A and B is an
asymmetric link. Since node A does not receive beacons from node B, node A cannot
list node B as its neighbour or as a neighbour candidate. Node B cannot find itself in
node A’s beacon, and node B can conclude that node A cannot receive node B’s
beacon and that there is an asymmetric link between the two nodes. Because finding
an asymmetric link needs feedback from one’s neighbour nodes, this task cannot be

done by short beacons.

Beacon | SN:A | NC:none Beacon | SN: B | NC: none

N: none N: none

(1) Node A and B do not detect each other at the initial stage

O—® ® ®)

(2a) Link AB is a symmetric link (2b) Link AB is an asymmetric Link

34

Node A:

Beacon SN:A | NC:B
N: none

Node B:

Beacon SN:B NC: A
N: none

(3a) Beacon for A and B (Step 1)

Node A:

Beacon SN: A | NC:none
N: none
Node B:
Beacon SN: B NC: A
N: none

(3b) Beacon for node A and B(Step 1)

Node A:

Beacon SN: A | NC:none
N:B

Node B:

Beacon SN:B NC: none
N: A

(4a) Beacon from A and B (Step 2)

Node A:
Beacon SN: A NC: none
N: none
Node B:
Beacon SN:B NC: A
N: none

(4b) Beacon from node A and B (Step 2)

Where:

SN: Source Node

NC: Neighbour Candidate
N: Neighbour

Figure 3.3 Symmetric/Asymmetric Link Detection

This algorithm also has one advantage for route recovery. Because nodal

movements are continuous, a 1-hop neighbour node may become a 2-hop neighbour

node for a period during its departure. This provides an opportunity for the sender

35

node to rebuild a route without querying others. For example (Figure 3.4), node A and
B are the relay nodes on some connections and node B is node A’s next relay node at
time To. But node B is leaving node A’s radio range at time T}, so node A has to find
a new route to the destination. Fortunately, node A can find node B’s existence from
node C’s beacon. Node A can use node C as the relay node to forward packets to node
B. In this case, it is not necessary to redo the route discovery from the source to the

destination. This reduces route re-discovery costs and improves network performance.

© O

(a) Time Ty (b) Time T,

Figure 3.4 Route Recovery

Since each node has some knowledge about the mobility of its neighbours, it can

calculate the average neighbour residence time 7,, which can be used in the cache

algorithm. Details of the cache algorithm are described later.

3.5 Edge Node Forwarding Algorithm

The Edge Node Forwarding algorithm can forward the multicast messages which are
created by the Multicast Query and Multicast Reply Algorithm. Many multicast
algorithms (such as ODMRP [51]) use flooding to forward the initialization packet. In
flooding mode, every node has to forward the packet so that it can be propagated to
the whole network. In the Edge Node Forwarding algorithm, only selected nodes

forward packets while achieving the same coverage as flooding mode.

36

After the neighbour detection stage, each node knows all the nearby nodes within a
2-hop distance, and we separate these into two sets: the one-hop set including all
nodes that can be reached within a single hop and the two-hop set including all nodes
whose distance to the source node is two hops. We separate the one-hop set into two
subsets: an edge-node set, which includes the nodes that can cover the entire two-hop
set nodes in their communication range, and an internal-node set, which includes the

remaining nodes.

Each node asks all its edge nodes to forward the multicast packets, while internal
nodes do not forward any packets. On the other hand, a node will forward a packet

only when it first receives the packet and the sender declares it as an edge node.

e N O Source Node

|

/

E: szz' ‘:: |:| One-hop Neighbours
“‘L‘F__| ',"/ A Two-hop Neighbours
\\-"_‘A . EdgeNode

Figure 3.5 Edge Node Set

Figure 3.5 illustrates the operation of the multicast packet forwarding algorithm. In
Figure 3.5, the dashed-line circle is node A’s radio range. Source node (A) has

one-hop neighbours (nodes B-F) and two-hop neighbours (nodes G-I). Node D and E

37

can cover all the second-hop neighbours, so node D and E are edge nodes and all
other nodes, namely nodes B, C and F, are the internal nodes. If node A wants to send

a multicast packet, it will ask node D and E to relay the packet.

Edge nodes are selected by a greedy algorithm. A source node sorts all its one-hop
neighbours by the number of one-hop neighbours that node has, and the source node
selects edge nodes from top to bottom on the list until the selected edge node set can
cover all the two-hop set nodes. The algorithm always selects the same set of nodes,
those which have the most neighbours as their edge nodes, so they always ask the
same node to cover the same area and this can prevent duplicate resending to the same
area by different nodes. All of above analysis is based on the assumption that local
topology does not change during one multicast communication. The duration for one
multicast communication is approx. 10-100ms, and the nodal movement is less than 1
meter during this time which is not comparable with the average communication
radius (200m). Thus, ignoring nodal movement during a multicast communication

should not affect the final result.

Edge node selection can vary based on different criteria. The above selection could
form a multicast mesh where the number of mesh nodes is minimized because edge
nodes are selected by the maximum number of neighbour nodes. If we select the edge
nodes based on minimum response time, then we can create a fast multicast mesh. If
the edge nodes are selected based on minimum energy consumption or maximum

remaining energy, then an energy-aware multicast mesh will result.

38

3.6 Cache Algorithm

This algorithm is mostly independent from the other algorithms, except for the
Neighbour Detection algorithm. The algorithm uses a time period known as the “half

neighbour changing” time, T,, which is measured by the neighbour detection

algorithm, and can be used for calculating the connection validation probability
(CVP). Since one route consists of many connections, the route validation probability
(RVP) can be calculated by accumulating CVPs. The RVP can then be used to
calculate the cost function to check if we can take advantage of using cached service

information.

3.6.1 Half Neighbour Changing Time 7,

Let ry, be the ratio between the number of one node’s remaining neighbours and the
number of all its neighbours after time Ty, it is givenby tm, = |S;NS,|/|S, | where
S: is the neighbour node set at time Ty, and S, is the neighbour node set at time Ty,

T, is the time for half of the neighbouring nodes to change, which means r=0.5.

Assuming neighbouring nodes leave at a fixed rate, the average leaving rate r, per time
unit is 1, =(1/2)/ T,=1/(2*T,). Let the proportion of remaining nodes be 1, hence 1-
1y nodes have left. Based on the properties of uniform distribution, the time is t=
(1- 1y)/ 11 =2 *T_*(1- rp). Thus, the proportion of remaining neighbours, which is our

defined as CVP, after time t is given by:

¢
T).

o

CVP=r,= (-

39

3.6.2 Connection Validation Probability (CVP)

[
Ll

Ay
Vo

v

Vo

Figure 3.6 CVP Calculation Diagram

The CVP can be calculated in the following way. In Figure 3.6, the large circle is
the communication range of node O, which is at the origin of the coordinate system.
Assume the size of the MANET is relatively large and all nodes are evenly distributed
in this network with density p nodes per communication range. The communication
radius R for each node is the same. All nodes are moving with a velocity v’ and we

assume that Vv’ is normally distributed with probability density function

1 vt 72 . .)
G(v)=—r—e"""™""®" where u is the mean value and v* is the variance.
VN LT

Assume node O is moving with velocity vy towards direction —x. If the reference
frame moves with node O, a relative velocity —vo should be applied to all the other
nodes. There is a node A at time tp with position (r,6)whose absolute velocity is v’
and it can move along any direction. So the position of node A at time t; can be any
point on the circumference of the small circle. Only those points on the

circumference of the small circle’s shadow area can be treated as node O’s neighbour

40

at time t;. Thus the probability that node A, whose velocity is v’, is in node O’s
communication range at time t; is as follows:

Py (v’)=(length of arc A;A;)/(perimeter of the small circle)

d*+ (')’ -R®
2dv't

y7w (1)

=(7 — arccos

Where d= \/ (vgt)* + 77+ 2rvgtcosd and t=t;-to

If the speed of the node is less than (R-d)/, this node is moving too slowly to move
out of the communication range. If the speed of the node is larger than (R+d)/t, this
node is moving too fast to stay in the communication range. Thus, the probability of a

node A with variable velocity being in node O’s communication range at time t; is:

R- R+d

d
Pe)=| * Gdv+ [y GMBMdv (2)

0

The probability that all the nodes which were in the communication range at to, will
remain in communication range at t is as follows:

I:I:npz(i‘,e)-p-r.d(g,dr

P3(Vo)=
3(0) ﬂd?zf)

=I:L2”p2(r,6’)-r-d0-dr
7d?2

3

After integrating (3), the only variable in P3; is nodal velocity and all other
parameters are the network attributes, which are constants. If one node’s velocity is

fixed, for any given time period, its neighbour departure rate is the same.

41

3.6.3 Route Validation Probability (RVP)

Let RVP be the probability of a route remaining valid after time t. The RVP
depends on the CVPs of all its intermediate nodes and the source node. Thus RVP =
Pi*Py*... *Pn (P1, P2,.. Pn are the CVPs for all the intermediate nodes and the
source node)

t t t
ZT(Da) *(1 ZZ*Z)a) ¥ (1——2T @)

RVP=(
For two hops, we have

o (2
* (- ! ~1. ' —........_...__T oI "a
ma ﬂ) Yo where Le=To, 1o,

24

_ t

Recall T o is the accumulated half neighbor changing time. We can accumulate

T'» at each intermediate node so that we can get the T, for the entire route.

3.6.4 Cost Function for Service Discovery

Let Muoma, Trorma be the number of packets and the delay, respectively, for a
service discovery process without using caching. If cached information is used and the
service provider is successfully found, only Mcache packets are sent and the reply is
obtained in time Tcache. If it fails, we have to start a new service discovery process,
thus the total number of packets sent is Mcachet Muormat, and the total time is Teache+
Thormat,

So, the expected cost of using the cache is

Texp = RVP * Teache + (1-RVP)*(Tcache+ Trormat) = Teache + (1-RVP)*Tnormal

Mexp = RVP * Maache + (1-RVP)*(Meachet Miorma) = Meache + (1-RVP)*Muormal

where Meyxp, Texp is the expected number of packets and delay, respectively, for a

service discovery process.

42

Let D be the network diameter, which is the maximum number of hops from one
end to another end, and let d, be one-hop delay. If TTL is used for multicast packet
forwarding, the network diameter D should be considered as 2*TTL because this is
the actual network size from a node’s point of view.

Since edge nodes are selected by maximizing the communication coverage, the
average distance for one-hop is close to the communication radius. In our analysis,
there is one server and many clients evenly distributed in the network whose shape is
a circle with diameter D and the clients and the server are evenly distributed in this

circle.

)

B
A‘
i

Figure 3.7 Average Distance Calculation Diagram

In Figure 3.7, let us randomly select two points A and B whose polar coordinates are

(a,0) and (1, 9), respectively; d’ is the distance from A to B which is:

d’=va® +r* -2arcos@
We can get the average distance d”, which is from A to all the points inside this circle

by integrating r from O to D and 0 from O to 27.

D
1 ¢~
o)2 1 .
d _J:zﬂj_ﬂd de- dr
Thus, the average distance d which is between two randomly selected points, is the

integral of d”,

43

D
d= F 4 4"2m - da~0.62D
0 ZD?

The approximate value of d was calculated by a small Java program and it can be

approximated as 0.62D for ease of computation. Since D is the number of hops from

one end to another, d is also counted as number of hops which is used as the average

number of hops between the server node and the client node.

Let Tcache and Mcacte be the delay and number of packets for usiﬁg caching which
are the cost of two unicast (confirmation and ACK) communication since we do not
need to send and receive multicast queries or replies. Here are the equations for
Teache and Meacte:

Teache =(number of hops * delay per hop) *2

= (0.62D* dp)*2
=1.24D* dy
Mcache = (number of hops * 2)
=(0.62D)*2
=1.24D.
Where dj, is the average delay per hop.

Let Thorma and Mg be the delay and number of packets for a normal service

discovery process. Trormar and Myoma are the cost of two multicasts and two unicasts

(service request and service reply). Similarly, the equations for Thnormal and Mpomar are

as follows:
Trormal = (multicast cost)+(unicast cost)
=(number of hops * delay per hop) *2+(number of hops * delay per hop) *2

= (0.62D* dh)*2+(0.62D* dh)*2 = 2.48*D* dh

44

Miormat = (number of multicast packets)+(number of unicast packets)

= (Area of the whole network / average coverage per packet) *2
+ (average number of hops from a server to a client) *2

=[aD*/(nr*/2)]*2 + (0.62D)*2
=(2D% *2 + (0.62D)*2
= 4*D’+1.24D
Note that the coverage area of each multicast packet is nr’/2 on average.

Two strategies can be used for evaluating RVP. The first is delay-sensitive, which
selects P by forcing Texp < Trormal. Another is energy-aware, which selects P by using
Mexp < Miomai- For the delay-sensitive strategy, we can get the cost function as
RVP>1/2. For the energy-aware strategy, the cost function is RVP>1.24/(4D+1.24).

In the simulation and implementation, we use the delay-sensitive strategy.

3.6.5 Cache Selection Algorithm

Each node joins one or more multicast groups to receive all the service information
in these groups. Each newly received service reply is attached with a timestamp and
saved into local memory.

When a new service reply comes and the cache is full, the RVP for all the services
in the cache will be calculated. The cached service that has the minimum RVP will be
replaced with the new information.

When a client needs a service, it will search the local cache first. If the service is in
the cache, the RVP will be calculated, and a cost function is used to determine if it can
be used. Sometimes information for more than one service can pass the evaluation,
and all of the passed information should be reported to the user. The user can decide

which one should be used.

45

3.7 Backward Learning Routing Algorithm

Routing in HESED is integrated within the service discovery process. Each

multicast packet contains the source node’s IP address and the previous node’s IP

address.

Each node keeps these two IP addresses to form a routing table and updates

this routing table whenever it forwards a multicast packet. For example, if node A

receives

Node A

a multicast packet whose source is node B and the previous node is Node C.

should know that all packets whose destination is node B should be sent to

node C first.

Our algorithm is similar to backward learning [51], with the following additional

features:

Routing tables can be updated whenever the current node receives a
multicast packet, thus the tables are always up-to-date.

Since each node only sends a multicast packet once, there is no loop in the
multicast mesh. For this reason unicast routing is able to avoid the looping
problem.

The asymmetric link problem is resolved because we detect and remove
asymmetric links during the neighbour detection phase and we can guarantee
the backward unicast route to the source to be bi-directional and reliable.
Using asymmetric links would increase the connectivity of MANETs, but
some applications may need an ACK at each hop which cannot use
asymmetric links. Since HESED is designed to provide a general solution for
any ad hoc application, we must sacrifice the asymmetric links for reliable
communication.

Route recovery is aided by the neighbour detection phase. When a node is

departing from a certain communication range, it may switch relaying from a

46

1-hop neighbour to a 2-hop neighbour. Neighbour detection can check
whether the departing node belongs to its 2-hop neighbours. If it does, the

current node can still communicate with this departing node.

3.8 XML Packet Format

As wireless technology develops, more and more services will become available in
MANETs. Our ultimate goal is to make services on the MANETs Internet-compatible,
hence the service description language should be able to describe any service. For this
reason, we select XML [50] as the description language because of its extensibility
and flexibility. We define six packet types, namely the client’s multicast query, the
server’s multicast reply, the client’s unicast confirmation, the server’s unicast
acknowledge, the client’s service request and the server’s result report. The detailed

XML packet format can be found in Appendix A.

3.9 HESED Analysis
3.9.1 Performance of Multicast Mesh

A. Up-to-date multicast mesh

Edge node forwarding should exhibit good performance in highly dynamic
environments such as MANETs because the multicast mesh can be created
automatically and it is always up-to-date, which is not always the case in other
multicast algorithms. In highly dynamic large MANETS, the network-topology is
always changing. Each node can adjust its edge node list to adapt to changes and there
is no need to rebuild the whole multicast mesh. This self adapting process has limited
cost, since it is a by-product of the neighbour detection. Many other multicast

algorithms (viz. ODMRP [51]) create the multicast mesh at the initial stage and they

47

assume the multicast backbone does not change during the communication. The
adaptation property of edge node forwarding is much better than ODMRP because

ODMRP’s multicast mesh is hard to change once it is created.

B. Comparison with flooding mode

Compared to the flooding mode, edge node forwarding has three major advantages:
low network traffic, short medium access delay and high reliability. Since only a small
portion of nodes forward packets, the network traffic can be reduced. Lower network
traffic can eliminate many potential medium access collisions, thus it also can reduce
the medium access delay. Edge node forwarding has a good potential to be extended
to a reliable multicast algorithm if we apply ACKs from the edge nodes to the source
node. In flooding mode, using ACKs is not possible because sender nodes do not have

the receiver nodes’ list and they cannot decide whether the packet should be resent.

C. Number of edge nodes (N¢)

The number of edge nodes naturally depends on the geometry and size of the
MANET. Figure 3.8 presents the best case and the worst case of the edge node
selection. In the best case, Ne (the number of edge nodes) is approximately S/nR?,
where S is the area of the MANET and R is the radio radius. In the worst case, N, is
N/2, where N is the total number of nodes. The actual value for N, should be between

these two extremes.

48

A. Best Case B. Worst Case

Figure 3.8 Number of Edge Node Analysis
In case A, the duplicated radio coverage is reduced to a minimum and the edge
nodes’ radio range can cover the most of the MANET. N, depends on the MANET
field size S and edge node’s radio radius R and is close to S/aR?. In case B, all the
neighbour nodes are distributed at the boundary of the two circles whose radius is R
and 2R, respectively. Each two hop neighbour can only be reached by a unique 1-hop
node, thus N is N/2.
Let us create a general equation for Ne.
For case A,
Ne = S/nR* = (N/D)y/nR*= (1/DaR*)*N= k(*N
where: S is the simulation field area.
R is the radio radius
D is the node density per area unit
k1 is a constant which is equal to (1/DrR?)
N is the total number of nodes
For case B:

Ne =N/2 = k*N

49

Where ky=1/2

For any kind of node distribution, the number of edge node should be between the

maximum and the minimum value:
ki*N < Ne < k2*N
Thus we have:
Ne = k*N, where ki< k <k,

So the number of edge nodes is directly related to the total number of nodes.
Simulation results show the value of N, in a random MANET is about N/3, which is
closer to the worst case. Nevertheless the performance of HESED is still superior to

that of the traditional scheme.

3.9.2 Message Complexity of HESED

We have so far claimed that the advantages of HESED are low energy consumption
and low delay in large-scale MANETSs. Although a multicast reply is more expensive
than a unicast reply, the multicast reply can deliver the service information to all the

reachable nodes, which can reduce many potential multicast queries.

If the query results in a cache hit, this will save time and energy for searching and
replying. The maximum number of queries depends only on the average cache expiry
time, which is independent of the size of the MANET. For one query, the number of
packets is O(N) because each node must receive a multicast packet. Thus the message
complexity in HESED is O(N). In the following we compare the message complexity

of HESED to that of traditional service discovery protocols.

50

A. Basic parameters and assumptions

The following are the parameters used in the comparison. These represent typical

MANETSs with randomly distributed nodal locations and mobility.

Size: N nodes

Density: n nodes/per communication range
Communication radius: R

Average cache expiration time: Texp

Average network diameter (approx.): D=+N/n

Number of regions: N/n

Time period: 1 unit of time

Service request rate: k queries/ (per node, per unit of time)
Total number of requests: N*k (per unit of time)

We assume query and response packets are the same size. We also assume that all
nodes have the same transmission range (or equivalently, use the same signal
strength). This is typical in MANETS using existing air interfaces. Hence the

energy consumption for each packet is the same.

B. Cost of traditional algorithms

The typical behaviour of on-demand service discovery is that a client sends a
multicast query and a server sends a unicast reply to the client. The client may receive
more than one reply and the client selects one and sends a confirmation to that server.
The server sends an ACK to the client to end this service discovery. Let us assume
that ODMRP [51] is used as the multicast algorithm. The multicast source node sends
a join query and every node re-sends this join query so that every node in the network

may receive this join query. All the multicast group members send an ACK by unicast

51

through the same route back to the source to form the multicast mesh. The multicast
packets are sent through this multicast mesh. We calculate the number of packets for

each step as follows:

Stepl: Multicast join query. The number of packets transmitted equals to the
number of the nodes in the network because each node has to resend this join query,

M;=N

Step 2: multicast ACK. Because flooding forward is used in ODMRP, all the nodes
whose distance from the source ranges from O to R have the same probability of

becoming a relay node. Thus the average distance between two relays is

"2 -rd
l =ILZ;—r=-§-R . The number of relays in the whole network is (N/n)/(2/3)2=
iR

(9N)/4n. There is at least one ACK for each relay node, so the minimum number of

ACKs is M= (9N)/4n.

Step 3: Multicast client’s query. Each relay node has to re-send this query, so the
number of packets in this step is the same as the number of relays, which is M3 =

(9N)/4n.

Step 4: Server sends a unicast reply. Assume there is only one server in this network.
The average distance from client to server is approximately 0.62D where D is the
network diameter. The total data delivered is computed by aggregating all the
point-to-point distances inside a circle whose diameter is D. The number of hops is

M,=(0.62D)/(2/3) = 0.93D

The total number of packet (M) in MANETS during time t is

52

Mig =(N*0)*(Mi+#M+ Mt Mg) = N**C + N*JN *C, , which is OQN?)

where : C =k*(l+1),C =k*0.93*\/I
1 2n" 2 n

C. Cost for HESED

(1) Cost for service discovery queries

Because there are service caches in our algorithm, the worst case is that the clients
have queries when the cached item expires. The interval of multicasting a service
query is the average cache expiration time, and the maximum number of queries in

one unit of time is 1/Texp , Where Ty, is the average cache expiration time.

The cost per query (Mper_query) is the cost for one multicast query and one multicast
reply. One packet can cover one region in the HESED algorithm and if 1/2 of this
region is new, it would require (N/n)*2 packets in total.

M —£*2+£*2=_1!*4

per _query n n n

The total queries’ cost for HESED (Mgueries) is:

1 N
Mqueries= T_* —*

exp

4
n

(2) Cost for beacon messages
Assume T ;i is the interval for sending hello message periodically. Since each node

must send the beacon message periodically, the number of beacon packets (Mpeacon) S

Ly

int

M

beacon ~

(3) Total Cost

M = Mqueries + Mbeacon = Cl*N . WhiCh iS O(N) WhCI'CI Cl = T_l"*i""“l—“

n .
exp int

53

In general, HESED has an extra overhead cost which is the beacon message cost.
But this cost is O(N) and is considerably lower than the cost of the traditional mode,

which is O(N?).

3.9.3 Other Performance Issues

A. Memory Usage
Comparing with the traditional mode, HESED uses more memory in order to improve
the performance. The memory used in HESED can be separated into three parts:

routing table storage, neighbour information storage and service information storage.

- The memory size of each entry in the routing table is only 8 bytes which
includes a source node IP address (4 bytes) and next hop node IP address (4
bytes). Even if a node serves for 100 different routes, the size of route table

is only 800 bytes.

- Neighbour information storage is also very small. Suppose we have a
crowded MANET, one node has 100 one-hop neighbours and each of its
one-hop neighbours also has another 100 one-hop neighbours, so this node
has 100 one-hop neighbours plus 100*100=10000 two-hop neighbours.
Because each node uses 4 bytes for its own IP address, the total memory

usage for neighbour information storage is only (10000+100)*4~40k.

- The size of service information storage depends on the number of available
servers. If each item of service information is 2000 bytes and there are 1000

servers available, then the service information storage needs 2000*1000=

54

2M bytes.
Based on the above estimations, the memory usage in HESED is affordable to all

users.

B. CPU Resource and Communication Cost

HESED uses more CPU resources than the traditional mode because HESED has
to evaluate the cached information, maintain local topology information and interpret
XML packets. Without doing these computations, a client has to send out a service
request throughout the whole MANET in the traditional mode. For a large MANET,
the energy consumption for doing computation at the local node is much less than the

communication cost of propagating a multicast request to all the nodes.

55

Chapter4 HESED Design and Implementation

In this chapter, we review the overall architecture of HESED and discuss its
implementation. We design several test scenarios for service discovery in MANETS,

test the viability of these scenarios and demonstrate the usability of the system.

4.1 Overview

The implementation consists of six Java Packages: a client package, a server
package, a multicast package, a unicast package, a hello package, a XML package and
a global package (see Figure 4.1). The client package includes several GUI classes and
their event handler classes, and the event handler classes are in charge of sending and
receiving multicast, unicast packets for service queries and service confirmation and
managing the service information cache. The server package includes the service
response classes, which can respond to clients’ service queries and confirmations. The

client and server packages are supported by three other packages, which are the

56

multicast, unicast and hello packages. The multicast package can create, open and
modify a multicast packet header, and the unicast package can create, open and modify
a unicast packet header. The hello package can create, send, analyze and receive the

hello messages, update the current node’s local topology information and keep track of
the half neighbour changing time 7, (see section 3.6.1). All packets are built according
to an XML grammar, which can be created and opened by the XML package. The
global package includes all the global variables, which are used by all other packages.

Details of the HESED implementation architecture are described in Appendix C.

1 1
Client Package Server Package
Implement GUI Response to client’s
Find the servers requests
Confirm the Service

A A 4 t

gg HG 3 &
7 8 B g
g z g gr. 2
© 4 =]
1Y 1 y 1
Multicast Package Unicast Package Hello Package
Send and receive Send and receive Collect
multicast packets unicast packets neighbour’s
information
w
g
4 v & —
XML Package Global Package
Create and translate Global variables
XML strings such as input and
output queue

Figure 4.1 HESED Implementation Architecture

57

4.2 Graphical User Interface

The client program provides a simple GUI as a convenience to users who may not
have knowledge about service discovery and/or MANETs. The GUI has three panels:

a join panel (Figure 4.3), a search panel (Figure 4.4) and a result panel (Figure 4.5).

4.2.1 Join Panel

CIFtp se
[1 Database Server

General
~User Defined Multica

Figure 4.2 Join Panel
The join panel (Figure 4.2) allows a user to join different multicast groups such as
printer groups, ftp service groups, database server groups or user defined groups. If a
user selects the “General” group then the user will accept all kinds of service
information. At the network layer, all multicast groups use the same multicast socket
and the user drops some multicast packets at the application layer if he did not join

that group.

Each node is responsible for forwarding multicast or unicast packets for others even

58

if that node does not belong to that packet’s multicast group. Small multicast groups
may not be able to form a multicast mesh to deliver their information if packets are
forwarded only by their group members. For this reason, each node is required to help
other multicast groups if it is an edge node. This way, each node can attain reliable

communication.

After a user selects a desired multicast group, the user should click the “join”
button and a packet filter will be created according to the user’s selection. All the
packets which belong to these desired multicast groups will be delivered to the
client’s program and these packets are saved into the local service information cache

if necessary.

4.2.2 Search Panel

Figure 4.3 Search Panel

The search panel (Figure 4.3) allows a user to specify their search criteria and

convert these criteria to XML text whose format is presented in Appendix A.

59

Searching may be based on the service title or service keyword, which can be found in
the service description. We only provide these two criteria but advanced users can
also edit their own XML search query in the XML code text field. When the user
clicks on the “search” button, the client program starts searching and checks the local
cache first. If the desired service information is found in the local cache, it shows the
service information at the result panel. If none of the cached information matches the
user’s criteria, the client has to send a multicast service request and waits for the

service reply.

4.2.3 Result Panel

Join Multicast Group

 Service Provider Brief

Figure 4.4 Result Panel
The result panel (Figure 4.4) shows all received service replies. The client may
receive more than one service multicast reply and the user selects the favorite server
and sends a confirmation to it. The client should input the selected server number in
the textfield and press the “confirm” button. The client program will send a unicast

confirmation to the server and the server will respond to it with a detailed service

60

information packet. When the client program receives this unicast response, the client
will display the detailed information in the “service provider brief description” text

area. Then the user can invoke the program to use the service.

This user interface is designed for novice users who may not have any knowledge
about service discovery or MANETSs. Our ultimate goal is that the service discovery
delay is short enough that users do not realize there is a MANET service discovery
phase at the beginning of applications running on the MANET. Since the delay in our
scheme is relatively low, we expect that we can achieve this goal in our

implementation.

4.3 Experimental Tests

We have designed several scenarios for this service discovery algorithm which
include an asymmetric link scenario, a short linear chain scenario, a long linear chain
scenario, a multiple route scenario and a bottleneck scenario. Since this is application
layer software, all the packets’ sending and receiving should go through the regular
operating system’s socket. Its performance depends very much on the operating
system. Hence, we do not measure the specific performance data and we will present
our simulation for the performance evaluation in the following chapter. The goal for
this implementation is to prove the feasibility and usability of our algorithm. HESED
shows very good performance for the following scenarios.

4.3.1 Asymmetric Link Scenario

As we know the asymmetric link problem must be solved in wireless ad hoc
applications. In our scheme, we have the neighbour detection algorithm, which can

detect asymmetric links and mark these links as invalid. This scenario is designed for

61

demonstrating the asymmetric link detection.

10.0.0.20 10.0.0.9

<——» Symmetric Link
4——— Asymmetric Link
Figure 4.5 Asymmetric Link Scenario
Node A is the source node which has a symmetric link with node B, and node B has
an asymmetric link with node C. In this scenario, nodes A and B can detect each other
and node B knows of node C’s existence but node C cannot receive node B’s hello
messages. When node A sends a multicast query, node A will not list B as one of its
edge nodes, since there is no second hop node connected to B. When B receives a

multicast packet, it will not forward it to C.

4.3.2 Short Linear Chain Scenario

10.0.0.1 10.0.0.20 10.0.0.9

<4¢——> Symmetric Link

Figure 4.6 Short Linear Chain Scenario
Node A is the client node and node C is the service provider node. Node A sends a
multicast service query and node C may respond with multicast service information.

After this phase, node A and node C exchange a unicast confirmation and ACK.

62

4.3.3 Long Linear Chain Scenario

In this test case, we have 5 nodes which are arranged as a line. Node A is the client
node, and Node E is the server node. All the packets have to go through four hops to
reach the destination. The scenario can test the data transport reliability on longer

distances.

10.0.0.20 10.0.0.9 10.0.0.6 10.0.0.3

<+—— > Symmetric Link

Figure 4.7 Long Linear Chain Scenario
4.3.4 Multiple Routes Scenario
This scenario[52] (Figure 4.8) is used to test if the routing implementation can
choose a proper route from multiple alternative routes. Node A is the client node and
node E is the server node. The route can be any of A-B-E, A-C-E or A-D-E.
According to our edge node selection criterion, node C has the most neighbours and
should be selected as the edge node. Thus, the route A-C-E is selected in this

scenario.

63

<+—>» Symmetric Link

Figure 4.8 Multiple Route Scenario

4.3.5 Bottleneck Scenario

This scenario[52] (Figure 4.9) is used to test several concurrent excessive FTP
server accesses through an intermediate node, which will be the bottleneck of
communication. In this scenario, Node A, B and C are the client nodes, Node E, F, G
are the FTP server nodes. Node D serves as a bridge between the clients and servers.
Node D should maintain six routing entries in its unicast routing table, and HESED is

very stable in this test.

10002 A E 10006
10003 B &a «—» F 10.0.0.7
/ 0 \

10004 C G B G 10008

<——» Symmetric Link

Figure 4.9 Bottleneck Scenario

64

4.3.6 Printer Server Test

As an instance of HESED, we have designed a MANET printer service (Figure
4.10), which has been implemented by an undergraduate student [53]. This Visual
Basic based project will be integrated with HESED. HESED discovers the printer
server’s information such as name, IP address, port number, and this information is
manually input into the client program of this project. This project has two parts: one
is the printer server and another is the client program. The client program can send a
print task to the printer server through a multi-hop wireless ad hoc connection by

using our MANET testbed, and the server can receive and perform the printing task.

Printer Server

Client Utilize the

printer

MANET Printer MANET Printer

Client Program Server Program
A

Printer Info

Discover and
HESED Client Regi . HESED Server
egister Service

Program D p»! | Program

MANET Testbed MANET Testbed

Figure 4.10 MANET Printer Project

The printer server project has three steps:

e At first, the HESED client program sends its multicast query and HESED
server responds to it with a multicast reply. This reply includes the server’s IP
address, port number and a brief description for the printer.

® Then, the HESED client program sends a unicast confirmation to the server.
This confirmation includes client’s printer account information such as account
number and password. The HESED server can create a new access code and

send the code to the client if the account information is correct.

65

e Finally, the MANET client can send print jobs to the MANET printer server by
using the access code and the printer can print the task later.
HESED implements the first two steps and the MANET printer project is in charge of

the last step.

4.3.7 Test Results

All of the above tests were very successful and this section presents a typical result
for the long linear chain scenario (see section 4.3.3) in which the IP addresses for the
server and the client are 10.0.0.3 and 10.0.0.1, respectively.

First, the client joins the “printer” multicast group (see Figure 4.11). Then, the client
inputs the search criteria and starts the search process (see Figure 4.12). After the
server responds to the client’s query, the client displays the server’s response on the
result panel (see Figure 4.13). In this test, the client picks the server whose number is
“1” and sends a unicast confirmation to that server. Figure 4.14 presents the
acknowledgement received from the server. Figure 4.15 and Figure 4.16 are the

command prompt output of the server and the client, respectively.

(A) The client joins a multicast group

Figure 4.11 Test Result(1) - Join Panel

66

(B) The client inputs search criteria

Figure 4.12 Test Result(2) - Search Panel

(C) The client displays the search result on the result panel.

(1). reply
| [group=printer

’ itte=hp deskjet 4550 printer
 serverlP=10.0.0.3

serverPor=3614
description=very good guality and very expensive

Figure 4.13 Test Result(3) — Server’s Reply on Result Panel

67

(D) This is the server’s unicast ACK which is received by the client.

<?xml vertion="1.0"?=<group=printer=fgroup=<description>= =t

Figure 4.14 Test Result(4) — Server’s ACK on Result Panel

(E) The server’s command prompt output:

C:\testJavasdp>Java WA_SDP/server/SDPAHServer
1P=10.0.0.3

Port=3614

Start Hello Receiver

Start Hello Sender

Start listening on 239.0.0.101

(1) Add One Neighbour:10.0.0.6@3217
No other neighbours

(1) Add One Neighbour:10.0.0.6@3217
Bi -Conn: 10.0.0.3 @3594

(1) Add One Neighbour:10.0.0.6@3217

Figure 4.15 Test Result(5) — Server Output

68

(F) The client’s command prompt output

C:\test\Javasdp>Java WA_SDP/client/SDPClient
IP=10.0.0.1

Port=3592

Start Hello Receiver

Start Hello Sender

Start listening on 239.0.0.101

(1) Add One Neighbour:10.0.0.20@4485
Uni-Conn:10.0.0.1@3592

(1) Add One Neighbour:10.0.0.20@4485
Bi -Conn:10.0.0.1 @3592

Client Sends multicast Query***** Multicast Packet Header ¥

Packet ID = '000002af’

Source IP = '10.0.0.1'

PreviousIP="0.0.0.0'

Payload = '<?XML version="1.0"><group>printer</group><Query><title>HP
Deskjet</title><keyword></keyword></Query>'

Receive and Add to ResultPool ***** Multicast Packet Header %

Packet ID = '00000237'

Source IP ='10.0.0.3'

PreviousIP='10.0.0.20'

Payload = '<?xml vertion="1.0"?><group>printer</group><reply><title>HP Deskjet
4550 printer</title><serverip>10.0.0.3</serverip><serverport>3614</serverport>
<description>Very good quality and very expensive</description><load>95%</load

></reply>'

Sender: send it to 10.0.0.3 @3608***** Unicast Packet Header ***%**

Packet ID = '000002b0’

Source IP ='10.0.0.1'

Source Port= "3592'

Dest IP ='10.0.0.3'

Dest Port= '3614'

Payload = '<?xml vertion="1.0"7><group>printer</group><confirmation><title>hp
deskjet 4550 printer</title><clientip>10.0.0.1</clientip><clientport>3592</cl
ientport></confirmation>'

Figure 4.16 Test Result(6) — Client Output

69

Chapter 5 HESED Simulation and Result Analysis

We evaluate the performance of HESED by comparing it to the traditional service
discovery using simulation. The performance of HESED is tested under three patterns,
which are nodal density pattern, field size pattern and mobility pattern. We also
change the network traffic of the above three scenarios. Simulation is also used to

verify the theoretical analysis of Section 3.9.

5.1 Simulation Setting
5.1.1 Basic Parameters

We simulate MANETSs with an area of 1000-1600m in length and 300-480m in
width, which has on average 0.00005-0.00014 nodes per square meter (15-63 nodes in
total). All nodes are evenly distributed in the simulation area and service discovery
queries are generated at each node according to a Poisson distribution with an arrival

rate of 0.1-0.2 queries per second. The communication range for each node is a

70

Gaussian random variable whose mean value is 200m and variance is 50m. The
packet processing time for each node is evenly distributed from 1 to 100ms. Each
node sends the hello message for neighbour detection every 3 seconds. The simulation
time period is 300 seconds and each simulation is run 10 times and the average is
obtained and reported. We assume real MANETS are large scale and contain many
servers and each server is in charge of one small area, and we only simulate one such
small area in our simulation.

The service discovery query rate is a critical parameter in our simulation. Since our
ultimate goal is to make MANETSs have the same functionality as wired networks, we
selected the query rate according to that seen in wired networks. In wired networks,
when a user is surfing the Internet, the user could open many web pages, which
contain quite a number of different objects. Due to the mobility of MANETSs, we
should consider each webpage object as a new service request, even if they come
from the same client. The actual number of queries used in our simulation was thus
selected from 0.1 to 0.2 queries per second per node. Because we use cached
information, HESED can achieve better performance when the query rate is ever

higher than in the simulation.

Since wireless cards vary and the transmission rate could be quite different, we
assume there are three kinds of wireless adapters used in the simulation, whose
transmission rate are 56kbps, 11Mbps and 54Mbps with probability 20%, 40% and

40%, respectively.

71

Parameter Nominal value

Simulation field size (1000m-1600m) * (300m-480m)
Nodal density 0.00005-0.00014 nodes/ m”
Number of nodes 15-63

Node placement Evenly random

Query arrival rate 0.1-0.2 queries/second
Communication range Mean is 200m, variance is 50m
Processing delay at each node 1-100 ms

Period of sending hello messages 3 seconds

Simulation time 300ms

Number of available servers 1

Bandwidth 56kbps, 11Mbps and 54Mbps

Table 5.1 Simulation Environment Parameters

5.1.2 Mobility Model

The random waypoint model [54][55] is the most commonly used mobility mode
for MANETS. Each node randomly selects a destination, moves to that location with a
randomly selected speed and stays at that point for a randomly selected time period.
This mode will cause the node density at the central area to be higher than that at
border areas, nodes are not evenly distributed in the simulation area, and the
simulation mode would not represent the real world very well. The model is adapted
in the simulation by requiring nodes to bounce at the boundary thus all the nodes are

evenly distributed within the simulation field at any time.

We consider the velocity as an attribute of a mobile node and one mobile node

72

cannot change its velocity during its life time, which means all the nodes are moving
at their average velocity all the time. A node can move along one direction for a
random selected time period, pause for a fixed time period and change its direction
after pausing. In our simulation, the nodal velocity is distributed according to a
Gaussian distribution whose mean is 5 m/s and variance is 1 m/s. The pause time is

two seconds. Node moving time is randomly selected from 1000ms to 5000ms.

Parameter Nominal value

Nodal movement model Revised random waypoint mode
Speed Mean 5m/s, variance 1/m

Node moving time 1000 ms -5000 ms

Pause time 2 seconds

Table 5.2 Mobility Model Parameters

5.1.3 Medium Access Control Model

We adopt a simplified multiple access control (MAC) scheme. We did not
implement the IEEE 802.11 [56] RTS/CTS MAC protocol in our simulation because
our service discovery algorithm is aimed for all kinds of wireless devices such as cell
phones, PDAs, laptop computers or Bluetooth devices. We do not want to be limited
by any existing MAC protocol. Another reason is that IEEE 802.11 does not define
the MAC mode for broadcasting, and more than 50% of the packets in HESED are
multicast packets. In our simulation, we assume there is a perfect MAC protocol,
which means a node can send a packet as soon as the medium is available and there is
no communication overhead, as in RTS/CTS etc. Medium availability is when all
nodes inside the sender node’s communication range are not receiving or sending
packets at that moment. If a node wants to send a packet but the medium is busy, it
must wait and this event is called a collision in our simulation. We implemented a

global medium access queue and all the packets must enter this queue first before they

73

can be sent. This queue is sorted by sending time and all the packets have to check the

medium availability before they can leave the queue.

5.2 Test Scenarios

5.2.1 Scenarios Descriptions

We compared two schemes in this simulation (see Figure 5.1), one is the HESED
scheme and another is the Traditional On-demand Service Discovery mode, which is
abbreviated as TOSD in the rest of this chapter.

In HESED mode, client nodes will check whether there is cached information
available when they need a service. In the event of a cache hit, a route validation
check is started for checking whether the route can be reused. A new service

discovery process is started if the route is invalid.

1. Service request sent

by edge _node . 1. Service request
forwarding multicast sent by flooding %
« > < > E"
2. Server’s reply sent 2. Ser.ver’s reply sent

by edge node by unicast

forwarding multicast

(A) HESED Scheme (B) TOSD scheme

Figure 5.1 Two Schemes in the Simulation

In the TOSD scheme (viz. [35]), clients use the flooding mode to broadcast the
service request. The service providers send a unicast reply after they receive the query.
This TOSD mode in our simulation is improved in two aspects. First, we assume there
is no route discovery cost. Because route discovery belongs to the network layer and

the service discovery is in the application layer, there is no cost for the network layer

74

to discover a route to destination when it is doing a unicast. HESED does not have
such a cost because the backward learning algorithm can find route without additional
cost. The TOSD scheme in the simulation also uses the backward learning routing
algorithm and there is no extra communication cost or delay for the routing phase.
Second, we assume the flooding mode can solve the asymmetric link problem. For
example, each node maintains a bi-directional neighbour list and only forwards the
packets received from the nodes that are on the list. We cannot reuse the cached
information because there is no cache evaluating algorithm comparable to our
research.

We do not perform a comparison between our scheme and other agent-based or
cluster-based service discovery algorithm because it is not practical to implement an
agent or a cluster header with unreliable nodes or links. The performance of the
agent-based scheme depends on the stability of the agent node and the result may vary
under different node stability assumptions. Agent-based or cluster-based service
discovery algorithms can attain very good performance if they assume the agent nodes
are super-nodes, who have the unlimited energy supply and are always alive. Since it
is very hard to verify the correctness of such an assumption, we donot compare our

algorithm with agent-based or cluster-based algorithms.

5.2.2 Performance Metrics

Our performance metrics include three parameters for each test case which are
delay, number of packets and cache hit rate. The delay is the average delay for all
successful queries. In HESED, the delay includes the delay for a multicast service
request and that for a multicast service reply. The delay in TOSD includes the delay

for one multicast service request and that for another unicast service reply. The

75

number of packets is the average number of packets for each successful query and this
data is directly related to energy consumption. In HESED, these packets include two
multicast communications and the cost of hello messages. In TOSD mode, the total
packets include one multicast communication and one unicast communication. The
cache hit rate is the probability that cached service information can be used by a client
node, and this can show how often the cached service information can be reused by a
new query.

In the analysis, we use three simulation patterns, which we call pattern A, B and C.
In pattern A (nodal density pattern), the average velocity and the simulation area are
fixed and we increase the nodal density from 0.00005 to 0.00014 nodes per square
meter and the service discovery query rate from 0.1 to 0.19 queries per second per

node. This pattern is designed for comparing the performance when the network

traffic is high.

Parameter Nominal value

Simulation field size 1500*300

Average velocity Sm/s

Query arrival rate 0.1, 0.13, 0.16, 0.19 queries/second

Nodal density 0.00005, 0.00008, 0.00011, 0.00014
nodes/m’

Number of nodes 22, 36,49, 63

Table 5.3 Parameters for Pattern A
In pattern B (field size pattern), the nodal density is fixed and the simulation field is
changed from 1000m * 300m to 1600m * 480m and the service discovery rate from
0.1 to 0.19 queries per second per node. Since the nodal density does not change, the
number of nodes increases when the simulation field becomes larger. This pattern is
designed for comparing the performance of the above two schemes when one service

provider has to provide services to a large area.

76

Parameter

Nominal value

Simulation field size

1000*300, 1200%*360, 1400*420,
1600*800

Average velocity

5 m/s

Query arrival rate

0.1, 0.13, 0.16, 0.19 queries/second

Nodal density

0.00005 nodes/m*

Number of nodes

15,21, 29, 38

Table 5.4 Parameters for Pattern B

In pattern C (mobility pattern), the average velocity is changed from 0-6 m/s and

the service discovery query rate is also from 0.1 to 0.19 queries per second per node.

In this pattern, we try to evaluate our scheme’s performance under different nodal

mobility.

Parameter Nominal value
Simulation field size 1500*300
Average velocity 0,2, 4, 6m/s

Query arrival rate

0.1, 0.13, 0.16, 0.19 queries/second

Nodal density

0.00005 nodes/m”

Number of nodes

22

5.3 Simulation Analysis

5.3.1 Effect of Number of Packets

Table 5.5 Parameters for Pattern C

The number of packets is directly related to energy consumption. Figure 5.2 is a

comparison of number of packets per query for the HESED and TOSD schemes.

77

Pattern A: Query Rate = 0.10 Pattern A: Query Rate = 0.13
]]
o [
E 2
w ——TOSD % 5 -+ TOSD
E ~#- HESED E ~#-HESED
g E o
Z Z
20 40 60 80 20 40 60 80
Number of Nodes Number of Nodes
Pattem A: Query Rate = 0.16 Pattern A: Query Rate = 0.19
8 8
; 2
g ~+—TOSD 5 ——TOSD
g ~%— HESED g -+ HESED
E e
z z
20 40 60 80 20 40 60 80
Number of Nodes Number of Nodes
(E) Pattern A (Nodal Density Mode)
Pattern B: Query Rate = 0.10 Pattern B: Query Rate = 0.13
§ 30 ﬁ
& K
5 20 ——TOSD %5 ——TOSD
8 10 ~#- HESED 8 ~#-- HESED
g g
z 0 z
10 20 30 40 0 10 20 30 40
Number of Nodes Number of Nodes
Pattern B: Query Rate = 0.16 Pattern B: Query Rate = 0.19
8 8
v/
2
5 —-TOSD s —-TOSD
X [—*~ HESED g ~% HESED
2 2
10 20 30 40 0 10 20 30 40
Number of Nodes Number of Nodes

(B) Pattern B (field size pattern)

78

Pattem C: Speed = 0 m/s Pattern C: Speed =2 m/s
g 8
& s
= ——TOSD % —+—TOSD
_Sg ~=- HESED B ~=— HESED
: g
Z Z
0 20 40 60 80 0 20 40 60 80
Number of Nodes Number of Nodes
Pattern C: Speed =4 m/s Pattern C: Speed = 6 m/s
a a
3 k>
s &
= ——TOSD 5 ——TOSD
B -+~ HESED B -»- HESED
o
: 2
z z
0 20 40 60 80 0 20 40 60 80
Number of Nodes Number of Nodes

(C) Pattern C (mobility pattern)

Figure 5.2 Average Numbers of Packets Per Query

Figure 5.2 (A)(B)(C) correspond to pattern A, B and C, respectively. The curves
for TOSD are the number of packets per query for the traditional flooding mode. The
curves for HESED are the numbers of packets which included the query cost and
beacon cost. In short, it is the average for all the queries with all the costs. In Figure
5.2 (A) and (B), the four parts represent the query rate as 0.1, 0.13, 0.16 and 0.19,
respectively. These four figures in Figure 5.2 (C) represent different node velocity as

0, 2, 4, 6 m/s, respectively.

In TOSD mode, the average number of packets per query includes the flooding
broadcast packets and the multi-hop unicast packets. In HESED mode, the number of
packets includes the hello message cost and two edge forwarding cost, which is one
for the client’s query and another for the server’s response. Theoretically, the number

of packets for a flooding broadcast should be equal to the number of nodes in the

79

whole simulation area. Since there always are some nodes isolated from others, the
number of packets for a flooding broadcast is always lower than the number of nodes.
The edge node forwarding algorithm only queries selected nodes to send packets thus
the average number of packets of the implemented queries is lower than that of the
flooding broadcast. When we count all the queries, which include those queries using
the cached information, the average number of packets hardly changes when the
number of nodes is increasing. We can see from the figures that the curves of the
TOSD scheme are going up with the number of nodes and the curves for HESED are
flat. Recall that the average number of packets per query for TOSD scheme is O(N)
and that for HESED is O(1). Recall that when we calculate the energy consumption
(message complexity) for the whole network, it is O(N?) for TOSD and O(N) for

HESED.

5.3.2 Cache Hit Rate

The cache hit rate is the ratio between the number of queries using the cache and the
total number of queries. Cache hit rate is a very important parameter for indicating the
adaptability of HESED on different kinds of MANETS, thus we measure and analyse

it in this section.

80

Pattern A

0. 96
2 0.95
& 0.94 —o—Node=22
£0.93 —#—Node=36
= 0.92 —+—Node=49
'§ 0. 91 —a— Node=63
S 0.9

0.89

0.1 0.13 0.16 0.19
Query Rate

(A) Cache Hit Rate (Pattern A)

Pattern B

0.95
2 0.94
& 0.93 —e— Node=15
£0.92 —a- Node=21
= 0.91 —a— Node=29
‘i:)’ 0.9 —¢— Node=38
© 0.89

0. 88

0.1 0.13 0. 16 0.19
Query Rate

(B) Cache Hit Rate (Pattern B)

Pattern C

0.98
2 0.9
g 0. 94 —e— Node =22
st -~ Node =36
= 0.92 —+—Node =49
fé 0.9 ——Node =63
O 0.88

0. 86

0 2 4 8
Velocity

(C) Cache Hit Rate (Pattern C)

Figure 5.3 Comparisons for Cache Hit Rate

Figure 5.3 (A)(B)(C) are the cache hit rate for patterns A,B and C, respectively.
Since the server node always multicast its information to all clients, those nodes who
are closest to the server always receive the newest information and can use the cached

information. There are two events which can cause most of the new queries: one event

81

is that the node’s cached information expires when it needs service, and another is
when a node just comes into the server node’s connectivity area and has not received

any service information yet.

The first event usually occurs when the node is very far from the server and the
lifetime for the cached information is very short. This kind of event increases in
frequency when the query rate becomes low. In such cases, the interval between two
service responses is enlarged and there is a greater probability that remote nodes are
timing out. This can be illustrated using Figure 5.3 (A) and (B) in which the cache hit

rate increases with the number of nodes.

The likelihood of the second event increases when the nodal mobility is high and
more nodes may come and leave the server’s connectivity area during the simulation
time period. Thus the cache hit rate decreases when the average velocity increases

(see Figure 5.3 (C)).

The cache hit rate can present the cache information usage and this result can help
to improve our service discovery scheme and maximize the usage of the cached

information in the future.

5.3.3 Delay

Delay is a critical performance metric for any service discovery scheme. Figure 5.3
indicates that the average delay for our HESED scheme is much lower than the TOSD

scheme.

82

Pattern A: Query Rate = 0.10

Pattern A: Query Rate = 0.13

o 400 ,g
ii ;% —~TOSD ||| 2 —+-TOSD
o -+~ HESED|| | 3 -+ HESED
| 100 a
0
0 20 40 60 80 0 20 40 60 80
Number of Nodes Number of Nodes
Pattern A: Query Rate = 0.16 Pattern A: Query Rate = 0.19
——TOSD § —+—TOSD
~#- HESED —§ -+ HESED
0 20 40 60 80 0 20 40 60 80
Number of Nodes Number of Nodes
(A) Pattern A (nodal density pattern)
Pattern B: Query Rate = 0.10 Pattern B: Query Rate = 0.13
. 400
B g 300
> ——TOSD ; 200 ——TOSD
§ ~#— HESED § 100 ~+— HESED
0
0 10 20 30 40 0 10 20 30 40
Number of Nodes Number of Nodes
Pattern B: Query Rate = 0.16 Pattern B: Query Rate = 0.19
_ . 400
g g 300
> —=TOSD 1 = S0 ——TOSD
-~ ~—u— HESED ~ e HESED
2 g 100
0
0 10 20 30 40 0 10 20 30 40
Number of Nodes Number of Nodes

(B) Pattern B (field size pattern)

83

Pattern C: Speed = 0 nmv's

Pattern C: Speed = 2 m/s

0 20 40 60 80
Number of Nodes

% ——TOSD ——TOSD
§ ~u~ HESED 4~ HESED
0 20 40 60 80 0 20 40 60 80

Number of Nodes Number of Nodes

Pattern C: Speed = 4 mvs Pattern C: Speed = 6 m/s
‘é -+-TOSD ‘E: —+—TOSD
3 -»- HESED|| | & -»-—- HESED
a =]

0 20 40 60 80
Number of Nodes

(C) Pattern C (mobility pattern)

Figure 5.4 Comparison of delay

Figure 5.4 (A) (B) (C) are the delay for pattern A, B and C, respectively. The TOSD

curves are the delay for the traditional scheme and the HESED curves are the average

delay per query for our scheme. The four figures in sections (A) and (B) represent

different query rates as 0.1, 0.13, 0.16, 0.19 queries per second per node, respectively.

In fact, the number of queries did not affect the average delay per query too much.

Section C shows the average delay per query for different nodal mobility and the

velocity for these four figures are 0, 2, 4 and 6 m/s respectively.

The above figures indicate the performance comparison under different cases such

as different node density, different simulation field and different node mobility.

HESED has a better performance than that of TOSD in all of the above scenarios.

84

Chapter 6 Conclusions and Future Work

This chapter summarizes the results of the thesis work and provides a number of

directions for future work.
6.1 Summary

In this thesis, we introduce a high efficiency service discovery (HESED) scheme for
MANETs, which has low communication cost and short delay. HESED is
fundamentally different from earlier post-query strategies in that it uses query-all and
reply-all mode. Query-all means clients send multicast queries to all reachable nodes
with a limited TTL (time to live). Service providers also use multicast mode with
limited TTL to send their reply and the intermediate nodes do not send any reply even
if they have some knowledge about the query. All the nodes which receive the service
reply should cache the service information in their local memory. The packet
complexity of HESED is O(N) for N-node MANETs as opposed to O(N?) for

traditional schemes. HESED also eliminates the effect of asymmetric links and

85

provides reliable connectivity. Our theoretical analysis, simulation and

implementation demonstrate the superiority of HESED over existing schemes.

6.2 Future Work

HESED provides a highly efficient framework for service discovery on MANETs.
There are still several issues to be resolved before it can be widely used, including:
A. Reliability: reliable multicast algorithm in MANETS.
B. Security: a third party cannot steal the user’s information
C. Commercializing the product: service discovery library for developers
D. Service classification and matching algorithm: tree-based service matching
can greatly improve the searching performance.

E. Standard XML templates.

6.2.1 Reliable Service Discovery

Since most of the communications in HESED are multicast, a reliable multicast

algorithm is necessary for a reliable service discovery scheme.

In our edge node forwarding mode, all the edge nodes form a multicast backbone.
We are planning to setup an acknowledgement mechanism for all the backbone nodes
and make sure all backbone nodes can receive and forward multicast packets. In this
algorithm, all the backbone nodes should send ACKs to their previous hop node. The
previous hop node should count the number of received ACKs. If it fails to collect all
the ACKs, it has to resend the packet until it receives all the ACKs or reaches the
maximum retry limitation. We have reserved a flag in the multicast packet header,

which is in the state field (Appendix B.2). If the ACK style is “10” in the state field,

86

then the edge nodes should send ACKs to its previous node.

6.2.2 Tree-based Service Search

When a server receives a client’s query, the server should compare itself against the
client’s criteria and check if it matches. In HESED, we only do text comparison using
brute force. If the MANET is quite large, the number of available services can be
huge and the client’s criteria can be very large. This can take a high computation cost
if brute force algorithm is used. The time complexity for brute force is O(N) as
opposed to O(logN) for a tree-based algorithm, which improves the search

performance.

A service searching tree (Figure 6.1) can have different levels, which represent
service classification. When moving down from top to bottom, the service will

become more specific. A leaf node represents a specific service.

Root
Software Hardware
Social Computer Other Office
/ \
Food Music
MP
Local 3 Database

server

restaurant
list

server

Figure 6.1 Service Searching Tree

The service searching tree is predefined, and can be stored at the client nodes and

87

the server nodes. Client nodes could use this tree structure to create XML queries and

server nodes could check whether the service query belongs to their own groups.

6.2.3 Security Over Service Discovery

Security is always a problem in wireless LANs because a hacker could receive the
radio signal between the sender and the receiver. Service discovery has to use
multicast for advertising the service information so all the clients could receive this
information and there is no secret code among the client nodes. A technique like the
Public-Key Cryptography can be used for solving the security problem. Such a
solution would have the following steps:

Stepl: A client node sends a plain-text service confirmation to the server after it
receives the server’s multicast reply.

Step2: The server sends an acknowledgement packet to the client, which includes the
server’s public key k;.

Step3: The client node sends a service request to the server, which is encrypted using
ki and this packet has the client’s public key k.

Step4: All the packets sent by the client or the server should be encrypted with k1 and
k2, respectively.

6.2.4 XML Templates

More specific XML templates should be developed for different kinds of services
and devices. We cannot develop these currently because we still do not have large
MANETS: and the services exist only in our imagination. After MANETS have been in
use for a while, we can analyze the service properties and propose more suitable XML

templates.

88

References

[1] J. F.Kurose and K.W.Ross, Computer Networking: A Top-Down Approach
Featuring the Internet, Second Edition. Addison Wesley, 2003.

[2] I. Chlamtac, M. Conti, and J.Liu, “Mobile Ad Hoc Netowrking: Imperatives and
Challenges”, Ad Hoc Network Journal, Volume 1, No.1, pp.13-64, January
2003.

[3] C. E. Perkings, AD HOC Networking. Addison Wesley, 2001.

[4] F.Y. Loo, “Ad Hoc Networks: Prospects and Challenges”, Rinkou Paper,
http://www.mlab.t.u-tokyo.ca.jp/~ylfoo/Research/ MANET_RinKou.pdf,
January 2004.

[5] D. B. Johnson and D. A. Maltz, “Dynamic Source Routing in Ad Hoc Wireless
Networks”, Mobile Computing, Kluwer Academic Publishers, pp.153-181,
1996.

[6] Y.B. Ko and N. H. Vaidya, “Location-Aided Routing (LAR) in Mobile Ad Hoc
Networks”, Mobicom ’98. 4th Annual ACM/IEEE International Conference
on Mobile Computing and Networking, pp. 66-75, October 1998.

[7] C.-K. Toh, “A Novel Distributed Routing Protocol to Support Ad Hoc Mobile
Computing”, I5th IEEE Annual International Phoenix Conference on
Computers and Communications, pp. 480-486, 1996.

[8] C.E. Perkins and E.M. Royer, “Ad-hoc On Demand Distance Vector Routing”,
the 2nd IEEE Workshop on Mobile Computing Systems and Applications, pp.
90-100. , February 1999.

[9] V. Park and S. Corson, “Temporally-Ordered Routing Algorithm (TORA)
Version 1” Internet Draft, draft-ietf-manet-tora-spec-03.txt, work in progress,
June 2001.

[10] H.S. Hassanein and A. Zhou, “L.oad Aware Destination Controlled Routing for

MANETSs”, Computer Communications, Volume 26, Issue 14, Septmeber
2003.

[11] P. Krishna, N.H. Vaidya, M. Chatterjee and D.K. Pradhan, “A Cluster-Based
Approach for Routing in Dynamic Networks”, ACM SIGCOMM Computer
Communications Review, 1997.

89

[12] T.-W. Chen and M. Gerla, “Global State Routing: A New Routing Scheme for
Ad-hoc Wireless Networks”, IEEE ICC ’98, pp. 171-175, Jun.1998.

[13] P. Jacquet, P. Mubhlethaler, A. Qayyum, A. Laouiti, L. Viennot and H. Clausen,
“Optimized Link State Routing Protocol Internet Draft”,
draft-ietf-manet-olsr-04.txt, work in progress, June 2001.

[14] J. Garcia-Luna and M. Spohn, “Tree Adaptive Routing Internet Draft”,
draftietf-manet-star-00.txt, work in progress, October 1999.

[15] S. Murthy and J.J. Garcia-Luna-Aceves, “An Efficient Routing Protocol for
wireless Networks”, ACM Mobile Networks, Special Issue on Routing in
Mobile Communication Networks, pp.183-97, October 1996.

[16] C. Perkins and P. Bhagwat, “Highly Dynamic Destination-Sequenced
Distance-Vector Routing (DSDV) for Mobile Computers”, Computer
Communications Review, pp. 234-244, October 1994.

[17] C. Chiang, “Routing in Clustered Multihop, MobileWireless Networks with
Fading Channel”, IEEE SICON , pp. 197-211. , Apr.1997.

[18] Z. J. Haas, M. Pearlman and P. Samar, “The Bordercast Resolution Protocol
(BRP) Internet Draft”, draft-ietf-manet-zone-zrp-04.txt, work in progress,
July 2002.

[19] H.S. Hassanein and A.M. Safwat, “Virtual Base Stations for Wireless Mobile
Ad Hoc Networks — Infrastructure for the Infrastructure-less,” International
Journal of Communication Systems, Volume 14, Issue 8, October 2001.

[20] C. Ying, Q. Lu, Y. Liu and M. Shi, "routing protocols overview and design
issues for self-organized network", International Conference on
Communication Technology (WCC - ICCT), Volume 2,pp.1298-1303, 2000.

[21] A. Boukerche, “A simulation based study of on-demand routing protocols for
ad hoc wireless networks”, 34th Annual Simulation Symposium, pp.85-92,
April 2001.

[22] Sun Microsystems, “JINI technology”, http://www.sun.com/jini,
January1999.

[23] OASIS, “UDDI Specifications Version 3.0.2”, ttp://uddi.org/pubs/uddi_v3.htm,
2005.

[24] World Wide Web Consortium (W3C), “SOAP Specification”,
http://www.w3.org/TR/soap/, 2005.

90

[25] Sun Microsystems, “Java Remote Method Invocation (Java RMI)”,
http://Java.sun.com/products/jdk/rmi/, 2005.

[26] The Object Management Group (OMG), “Catalog of OMG CORBA®/IIOP®
Specifications”,
http://www.omg.org/technology/documents/corba_spec_catalog.htm, 2005.

[27] A. S. Tanenbaum, “Computer Networks”, Prentice Hall Inc., USA, 1996.

[28] W. Stallings, Data & Computer Communications, Sixth Edition. Prentice Hall,
2000.

[29] UPnP Forum, "UPnP™ Documents”,
http://www.upnp.org/standardizeddcps/upnpresource20050331.zip, 2005.

[30] Internet Engineering Task Force (IETF), “RFC 791: Internet Protocol”,
http://www.ietf.org/rfc/rfc0791.txt, 1981.

[31] Internet Engineering Task Force (IETF), “RFC 2131: Dynamic Host
Configuration Protocol “, http://www.ietf.org/rfc/rfc2131.txt, 1997.

[32] C. Toh, AD HOC Mobile Wireless Networks Protocols and Systems, Prentice
Hall PTR, 2002.

[33] Internet Engineering Task Force (IETF), “RFC 2608: Service Location
Protocol, Version 2 “, http://www.ietf.org/rfc/rfc2608.txt, 1999.

[34] M. Barbeau and E. Kranakis, “Modeling and Performance Analysis of Service
Discovery Strategies in Ad Hoc Networks”, International Conference on
Wireless Networks (ICWN), 2003.

[35] C. Lee, A.Helal, N.Desai, V. Verma and B. Arslan, "Konark: A system and
protocols for device independent, peer-to-peer discovery and delivery of

mobile services", Systems, Man and Cybernetics, Part A, IEEE Transactions
on, Volume 33, Issue: 6, pp.682 — 696, Nov. 2003.

[36] U. Kozat and L. Tassiulas, “Network Layer Support For Service Discovery In
Mobile Ad Hoc Networks”, INFOCOM, Twenty-Second Annual Joint
Conference of the IEEE Computer and Communications Societies, IEEE
Volume 3, pp. 1965 - 1975, 2003.

[37] M. Klein B. Konig-Ries and P. Obreiter “Service Rings — A Semantic Overlay
For Service Discovery In Ad Hoc Networks” 14th International Workshop on
Database and Expert Systems Applications, 2003.

[38] M. Klein B. Konig-Ries and P. Obreiter, “Lanes — A Lightweight Overlay For

91

Service Discovery In Mobile Ad Hoc Networks”, 3rd Workshop on
Applications and Services in Wireless Networks (ASWN), 2003.

[39] M. Klein and B.Onig-Ries, “Multi-Layer Clusters In Ad-Hoc Networks — An
Approach To Service Discovery”, International Workshop on Peer-to-Peer
Computing, co-located with Networking 2002 Conference, 2002.

[40] J. Liu, K. Sohraby and Q. Zhang, “Resource Discovery In Mobile Ad Hoc
Networks”, The Electrical Engineering Handbook Series: The handbook of ad
hoc wireless networks, pp. 431 — 441, 2003.

[41] M. Haase, 1. Sedov, S. Preuss, C. Cap and D. Timmermann, "Time and Energy
Efficient Service Discovery in Bluetooth", 57th IEEE Semiannual Vehicular
Technology Conference, pp.736 — 742, 2003.

[42] J. Wu and M. Zitterbart “Service Awareness And Its Challenges In Mobile Ad
Hoc Networks”, Workshop der Informatik, Wien, Osterreich, 2001.

[43] L. Cheng and 1. Marsic, “Service Discovery And Invocation For Mobile Ad
Hoc Networked Appliances”, 2nd International Workshop on Networked
Appliances (IWNA), 2000.

[44] L.Cheng, “Service Advertisement and Discovery In Mobile Ad Hoc
Networks”, ACM Conference on Computer Supported Cooperative Work
(CSCW), 2002.

[45] S. Motegi, K. Yshihara and H. Horiuchi, “Service Discovery For Wireless Ad
Hoc Networks”, The 5th International Symposium on Wireless Personal
Multimedia Communications, pp.232- 236, 2002.

[46] R. Handorean and G. Roman, “Service Provision In Ad Hoc Networks”, 5th
International Conference on Coordination Models and Languages, pp. 207-

219, 2002.

[47] K. Nagi and B. Konig-Ries “Asynchronous Service Discovery In Mobile

Ad-Hoc Networks”, Database Mechanisms for Mobile Applications, pp.69-78,

2003.

[48] F. Zhu and M. Mutka and L. Ni “Splendor: A Secure, Private, And
Location-Aware Service Discovery Protocol Supporting Mobile Services”
IEEE Annual Conference on Pervasive Computing and Communications

(Percom),pp.235-242, 2003.

[49] 1. Sedov, S.Preuss and C.Cap, “Time and energy efficient service discovery in

92

Bluetooth”, Vehicular Technology Conference, pp.418 — 422, 2003.

[50] World Wide Web Consortium (W3C), “Extensible Makeup Language (XML)
1.0”, http://www.w3.org/TR/REC-xml, 2004.

[51]1 Y. Zhao, L. Xu and M. Shi "On-demand multicast routing protocol with
multipoint relay (ODMRP-MPR) in mobile ad-hoc network" Communication
Technology Proceedings, ICCT. International Conference on, Volume.2,
pp-1295 - 1300, 2003.

[52] Y. Xu and H. Hassanein, “Ad Hoc Layer for Seamless Wireless Hopping”,
Queen’s Univeristy, PARTEQ, IP Disclosure (Patent in preparation), 2003.

[531 R. Au, “Wireless Printer Server Project”, CISC 499, 2005.

[54] G.Lin, G. Noubir, and R. Rajaraman “Mobility models for ad hoc network
simulation”, INFOCOM. Twenty-third Annual Joint Conference of the IEEE

Computer and Communications Societies Volume 1, 7-11, pp.454 — 463,
2004.

[55] C.Bettstetter, G.Resta and P.Santi, “The node distribution of the random
waypoint mobility model for wireless ad hoc networks” Mobile Computing,
IEEE Transactions on, Volume 2, Issue: 3, pp. 257 — 269, 2003.

[56] Matthew Gast, 802.11 Wireless Networks: The Definitive Guide, O'Reilly,
2002.

93

Appendix A XML Packet Format

A.1 Client’s Multicast Query

A client may send this multicast query when it needs a service and it cannot find
that service in its cache. This query includes the search criteria such as title or

keyword and the server can use such criteria to check if a match exists.

<?xml version="1.0"?>
<group></group>
<query>

<title></title>
<keyword></keyword>
</query>

Figure A.1 Multicast Query Message Format

A.2 Server’s Multicast Reply

When a server receives a client’s multicast query and it matches the search term,
the server should send a brief service description and server’s location information
such as IP address and port by multicast. All clients cache this service information for
future use. If load balancing is required, we can add the server’s load information

such as capacity or current load into this packet.

<7xml version="1.0"?>
<group></group>

<reply>

<title></title>
<serverIP></serverIP>
<serverPort></serverPort>
<description></description>

</reply>

Figure A.2 Multicast Reply Message Format

94

A.3 Client’s Unicast Confirmation

When a client selects a server, it should send a confirmation to that server for
registration purposes. This confirmation includes the client’s information such as IP

address and port number through which the server can communicate with the client.

<?xml version="1.0"7>
<group></group>
<confirmation>
<title></title>
<clientIP></clientIP>
<clientPort></clientPort>
<description></description>
</confirmation>

Figure A.3 Client Confirmation Message Format

A.4 Server’s Unicast Acknowledgement

When a server decides to accept a new client, it sends an ACK to that client. This

ACK can be translated into a webpage through which the clients utilize the service.

95

<7xml version="1.0"7>
<group></group>
<details>
<title></title>
<serverIP></serverIP>
<serverPort></serverPort>
<description></description>
<panel>
<label>
<position></position>
<text></text>
<name></name>
</label>
<inputFile>
<position></position>
<text></text>
<name></name>
</inputFile >
<textField>
<position></position>
<text></text>
<name></name>
</textField >
</panel>
</details>

Figure A.4 Server Acknowledge Message Format

A.5 Client’s Service Request

Clients fill out and submit the service webpage when they want to utilize the
service. In this request, clients inform the server of the necessary values or provide an

input file so that the server can provide the service accordingly.

<xml version="1.0"7>
<group></group>

<request>

<variable name>value</variable name>

</request>

Figure A.5 Service Request Message Format

96

A.6 Server’s Result Report

After the server finishes the requested service, this report should be sent to the

client indicating the final result of the requested service. This packet ends the service

discovery process.

<?xml version="1.0"7>
<group></group>
<result></result>

Figure A.6 Service Result Message Format

97

Appendix B Packets Format
B.1 Hello Message

A hello message contains information for the current node and the uni-directional

and bi-directional neighbours list.

Cur_IP | Cur_Port | Num | Neigh IP | Neigh_Port | Neigh_IP | Neigh_Port | ... | Properites

ey 1) 2 2)

4 2 2 4 2 4 2 n

Figure B.1 Hello Message Format

Note:

Cur_IP: current node’s IP address, 4 bytes

Cur_Port: current node’s UDP port number, 2 bytes

Num: number of neighbour nodes, 2 bytes which is maximum 65536.

Neigh_IP: one of the known neighbour’s IP address, 4 bytes.
Neigh_Port: one of the known neighbour’s port, 2 bytes
Properties: property of each neighbour node which is one bit per node. The bit

is 1 for symmetric link and 0 for asymmetric link.

B.2 Multicast Packet Format

(1) Multicast Header position

Mac Header| IP header UDP Header Multicast Header Data

Figure B.2 Multicast Packet Header Position

Since this is an application level multicast that takes place above the transport layer,

98

the multicast header should be put after the UDP header.

(2) Multicast Header Format

Packet ID (4) Source IP (4) Previous Node | State (1) TTL(2)
IP (4)

Number of Edge Node IP (4) | Edge Node IP (4) | QoS (1) T12(3)

Edge Nodes (1)

Length (4) Check sum (4) Option

Figure B.3 Multicast Packet Header

Notes:

PacketID : a unique number for a multicast packet

SourcelP: multicast source node’s IP address

Previous node IP: because this is a multi-hop multicast, this field is the previous
node’s IP address. This field and the source IP field can be used for backward
learning routing.

State: the type and properties for the current multicast. See next section.

TTL: Time-To-Live. Number of maximum multicast forwarding hops

Number of edge nodes: only edge nodes should forward the received packets.

Edge node IP: list all the edge nodes’ IP addresses so that the receiver knows whether
it needs to forward the packet.

QoS: reserved field for Quality of Service

T1/2: half neighbour changing time. It is changed at each forwarding node.

Length: length of packet header

Checksum: checksum for the whole packet

Options: reserved field.

99

(3) State field

The state field defines several different modes for the current multicast and is 8 bits.

multicast | Forward | ACK

reply(l) | style(2) | style(2)

Figure B.4 State field
Multicast Reply (1/0): All the multicast group members must send a unicast reply to
group leader (Sender)
Forward Style: 00: only the mesh nodes forward the packet
01: only the edge nodes forward the packet
10: flood forward, every node must forward the packet once.
11: reserved
ACK style: 00: no ACK
01: ACK to direct sender by unicast
10: ACK to all neighbours by one-hop multicast

11: reserved

B.3 Unicast Packet Format

(1)Unicast Header position

Mac Header{ IP header UDP Header Unicast Header Data

Figure B.5 Unicast Packet Header Position

Since this is an application level multi-hop unicast that takes place above the transport

layer, the unicast header should be put after the UDP header.

100

(2) Unicast Header Format

Packet ID(4) Source IP (4) Source Port(2)
Dest_IP(4) Dest_Port(2) TTL(2)
QoS(1) State(1) Length(4)
CheckSum(4) Optional(var) Data

Figure B.6 Unicast Packet Header
Notes:

PacketID : unique number for a unicast packet

SourcelP: source node’s IP address

SourcePort: source node’s UDP port number

Dest_IP: destination node’s IP address

Dest_Port: destination node’s UDP port number

Previous node IP: because this is a multi-hop multicast, this field is the latest node IP
address. This field and the source IP field can be used for backward learning
routing.

TTL: Time-To-Live. Number of maximum multicast forwarding hops

QoS: reserved field for Quality of Service

State: the type and properties for the current multicast. See next section.

Length: length of packet header

Checksum: checksum for the whole packets

Options: reserved field.

(3) State Field

FLAG |[ACK RESEND | FAILURE

Figure B.7 Unicast Packet State Field

101

FLAG:

ACK:

RESEND:

FAILURE:

1: Control packet, 0: data packet

1: ACK, 0: No-ACK

1: should resend it later, O: ok, received

1: failure notice, cannot find a route to destination

0: successful delivery

102

Appendix C HESED Implementation Architecture

C.1 Client Package

C.1.1 Overview

The client package includes 9 classes, and it can create a GUI for the user and

handle all the events coming from this GUI (see Figure C.1).

Hello ST
Package |
|
| |
Unicast Emmmmmmmm : Class: SDPClient
Package \ " |frame
i__ | ha: HelloAction
-mh : MPacketHandler
_I ~ua: UnicastHandler
: T T
Multicast ===-=—=-— ’—_-_-_—'_ ________ U \
Package 1) | !
N A4 N N
Class: Framel Class: SDPListener Class: ControlWatcher Class: ResultWatcher
1) T T
[
| iedadetntt | I it 1
) | |
N N N
Class: JoinAction Class: SearchAction Class: ResultAction
+actionPerformed() +actionPerformed() +actionPerformed()

Class:CachePack

Figure C.1 Client Package Architecture

Class SDPClient has the main method and it invokes all of the other classes and
methods in this package (see Figure C.1). It creates 4 threads: the GUI
implementation thread, the hello message thread, the multicast handler thread and the

unicast handler thread, using the class Framel, HelloAction, MPacketHandler and

103

UnicastHandler, respectively. Class Framel is the GUI implementation and it has
three panels: the join panel, the search panel and the result panel. There are three other
classes, the event managers for those panels, called class JoinAction, SearchAction
and ResultAction. SDPListener opens a multicast socket and receives packets.
SDPListener adds the received multicast packets to a global multicast packet queue
that is checked by the multicast handler. A multicast handler processes the packets and
saves the result into a multicast result queue. There is also a similar queue called the
unicast result queue which is a result for processed unicast packets by UnicastHandler.
ControlWatcher and ResultWatcher check the unicast result queue and multicast result

queue, and write the result to the search panel and the result panel, respectively.

104

C.1.2 Algorithms for Client Package

Algorithm for main()
Start GUI Process
Start SDPListener Thread
Start HelloAction Thread
Start MPacketHandler Thread
Start UnicastAction Thread
End of Main

Algorithm for SDPListener
Open a multicast socket
While(true):
Waiting for coming packets
If a packet arrives, then:
Add the packet to the input multicast packets queue
End of SDPListener

Algorithm for GUI and actionPerformed methods

If “join” button is pressed, then:
Switch to search panel
Update the multicast packet filter
If “search” button is pressed, then:
Switch to result panel
Send the multicast query
Start Control Watcher thread
If a server reply is coming, then:
ControlWatcher picks up the reply from queue.
The server reply is displayed at the result panel
If “confirm” button is pressed, then:
Send a unicast confirmation
Start ResultWatcher thread
If a server’s ACK is coming:

ResultWatcher remove the ACK from the ACK queue

The ACK is shown at the result panel
End of GUI

Figure C.2 Algorithm for Client Package

105

C.2 Server Package

The server package includes four classes: SDPAHServer, MulticastListener,
ServerMulticastHandler and ServerUnicastHandler. SDPAHServer is the main class,
MulticastListener receives and saves multicast packets into the input multicast packet
queue. ServerMulticastHandler opens and replies to the received multicast packets
and ServerUnicastHandler opens and replies to the unicast packets. We also used the
unicast package, multicast package and hello package for multicast, unicast and

neighbour detection, respectively. The architecture is shown in Figure C.3.

—1

Unicas [Em======m=m=m .
Package

—

Multicast K--=======~== i~
Package

JClass SDPAHServer

H main()(

—

Helllk K---mmmmmmeens
Package

Class MulticastListener || Class ServerMulticastHandler Class ServerUnicasttHandler

Figure C.3 Server Package Architecture

The server opens two sockets: one is a multicast socket for listening to clients’
requests and another is a unicast socket for listening to these clients’ confirmations.
When a server receives a service request (Appendix A.l), the server creates and
replies with a service’s reply (Appendix A.2). If the server receives a unicast
confirmation (Appendix A.3), the server makes an ACK packet (Appendix A.4) and
sends the ACK to that client. Since we also invoke the Hello package, Multicast

package and Unicast package, the server also can perform neighbour detection,

106

multicast and unicast packet forwarding.

C.3 Hello Package

C.3.1 Overview

The Hello package performs neighbour detection collecting all the nodes’
information within two hops, eliminating asymmetric links, maintaining the edge
node list and calculating the half neighbour changing time. This package includes five
classes: HelloAction, HelloMsg, OneHopObject, OneHopSet and TS_half (see Figure

4.8).

HelloAction is the main class in this package and has two threads: HelloSender and
HelloReceiver. HelloSender sends the hello message periodically for reporting its
local topology information. HelloReceiver receives hello messages from the nearby
nodes and updates the local topology information. The other 4 classes are data
structure classes providing data structures for the hello message, one-hop node

information and half neighbour changing time.

Class HelloActior

Al N
Class HelloSender Class HelloReceiver
L ___/ i
:' Tt _._' Lz r:'__—___—____.__,______:?Ex'_'_'_'_'_'_':_'_T T 'i
1 I
1 [| I |
N }/ NV 7 N N e \l'/
Class HelloMsg| |Class OneHopObject| |Class OneHopSet Class TS_hall

Figure C.4 Hello Package Architecture

107

C.3.2 Hello Message Format

The hello message (Appendix B.1) has all of the one-hop neighbour nodes’
information and it also shows whether there is a symmetric link between a node and
its neighbour or not. A node’s ID includes the node’s IP address and its UDP socket
number so that there can be more than one client and server running on the same

computer if they use different UDP socket number and have their own ID in HESED.

C.3.3 Algorithms for Hello Package

A. Beacon Handling Algorithm

Set pl<— new received hello message
Set cur_ID ¢« current node’s ID
Set pattern <~ p1’s host node ID

If pattern= cur_ID, then return.
Set forcedUpdate < (forcedUpdate+1)%10
If forcedUpdate !=0, then
if p1 has been registered in the hashtable, then
update the time stamp for pl
return
open packet pl
neigh[]« neighbour node’s ID list in p1
for i<—0 to neigh.length, do
if neigh[i] = cur_ID, then
there is bi-direction connection between cur node and pl
else if neigh(i] is a uni-direction neighbour of cur_ID and it is bi-direction to pattern
add neigh[i] as one of 2-hop neighbour of pattern
else if neigh[i] is a bi-direction neighbour of pattern
add neigh[i] as one of 2-hop neighbour of pattern
end

Figure C.5 Algorithm for Hello Package

Each node has two neighbour sets: the 1-hop neighbour set and the 2-hop

108

neighbour set. The 1-hop neighbour set contains all the uni-directional and
bi-directional neighbouring nodes. If a node (Node A) finds itself in another node’s
(Node B) neighbour list, Node A knows that Node B received Node A’s hello message.
Since Node A has received node B’s hello message, Node A concludes that there is a
bi-directional connection between nodes A and B. Using feedback from node B is the
only way to decide whether the connection is bi-directional or uni-directional,
therefore a long beacon algorithm is necessary for all reliable MANET applications.
We expect this algorithm to be implemented by the wireless equipment manufacturers
in the future because the asymmetric link problem is quite common for wireless ad
hoc communication. We also have a checking validation algorithm, which can check
the timestamp for each received beacon. If a neighbour node is time out, then it is

removed from the neighbour list.

Since the neighbour nodes are not changed as frequently as the beacon message,
each node should check the received beacon duplication. If one hello message is the
same as the previous received message, we can sometimes ignore it for reducing the
computation cost. In some specific cases, we have to update the local topology
information even if the hello message is the same as before. To solve this problem, we
have a variable called forcedUpdate which can update the local topology information
even if one node receives the same hello message. It can solve the following problem

which we call the disappeared neighbour problem.

109

@AB ®/'B ®/'B C

C
1-hop 2-hop 1-hop 2-hop 1-hop 2-hop
A. Time To B. Time T; (before C. Time T; (after forced

forced undate) update)

Figure C.6 Disappeared Neighbour Problem

At time Ty, node A, B and C in Figure C.6, can detect each other, thus Node A finds
it has two one-hop neighbours, Node B and C. At time T;, Node C moves out of Node
A’s radio range and Node A cannot receive Node C’s hello message. After Node C’s
previous hello message times out, Node A may delete Node C from its 1-hop
neighbour’s list. Node B still can sense Node C and A so node B thinks the
network-topology did not change and its neighbours are still node A and node C, and
node B will not change its hello message. Node A always receives the same hello
message from Node B, and Node A thinks it does not need to change the two hop
neighbours of node B, Node C then disappears from Node A’s neighbours list, where

it should be listed as a two hop neighbour. If Node A intends to send a multicast
packet at this time, Node A does not think Node B can forward this packet and node C

may never receive it.

110

If we force node A to update B’s 2-hop neighbours even if node B’s hello message
does not change, then node A can become aware that Node C has become a neighbour
of Node B and list Node C as one its 2-hop neighbour. In this manner, node C will not
lose any multicast packets from node A, since node A has listed node C as one of its

neighbours.

B. Edge Node Selection Algorithm

finishedOneHop <— new hashset
finishedTwoHop <— new hashset
keyList «— one hop bi-direction neighbours’s list
do
for i<—0 to keyList.length
curSize « keyList[i]’s neighbour number
if curSize = 0, then
add keyList[i] to finisedOneHop
if curSize is the max,then
index «i
add keyList[index] to finishedOneHop
if all of keyList[index]’s neighbours are in the finishedTwoHop, then
continue
else
add keylist[index]’s neighbours into finishedTwoHop
while finishedOneHop’s size != one hop neighbour’s size

Figure C.7 Algorithm for Edge Node Selection
At the beginning of the algorithm, we create two new hash sets, which are
finishedOneHop and finishedTwoHop. After that, we sort the 1-hop neighbours by the
number of its neighbours, select these nodes on the ordered list one by one, and
register all the 1-hop neighbours for the selected nodes. After we have registered all
the 2-hop neighbours or finished all the 1-hop neighbours, then all the selected nodes

form the edge node set.

11

C. Half Neighbour Changing Time Estimation Algorithm

A node should check the neighbour validation before it sends a hello beacon each
time. If it finds some nodes are timed out, it will remove and count such nodes. This is
called a T_half event. Each such event creates a T_half value, and we use the average

of the latest 10 T_half value.

Algorithm for data collection
numCh < number of new removed neighbour nodes
totalNeighbour <— number of all the 1-hop neighbours
curTS«— get from operating system
Interval - curTS — lastTS
[astTS ¢ curTS
T_half = (interval * totalNeighbour)/(2*¥*numCh)
Add T_halfto a TS queue

Algorithm for T_half calculation
When need this T_half:
If TS queue size >10
Get the last 10 data from the TS queue
Return the average for this 10 data
Else
Get all data from the TS queue
Return the average for these data

Figure C.8 Algorithm for Half Neighbour Change Time

C.4 Multicast Package

C.4.1 Overview

The multicast package does not interact with other threads directly and it always
gets or puts these packets to multicast input or output queues. The major functionality
of this package is to receive and forward multicast packets. This package only

includes two classes, which are MPacket and MPacketHandler. MPacket is the data

112

structure class for multicast packets and MPacketHandler is a thread class which can
receive and forward multicast packets. The multicast packet format can be found at

Appendix B.2.

C.4.2 Flowchart For Multicast Packet Handler

Yes|

Is input queue

Pick up one received
multicast packet

from queue as mp

¢ Yes
Get current node’s edge node
list
v
Update T/,
Get sourcelP and Previous il
Node IP from m
+ P Create new multicast header
Update unicast routing table v

Send multicast packet to its
neighbours

Figure C.9 Flowchart for Multicast Handler
The multicast handler includes three functionalities: the unicast routing table update,
the service cache update and multicast packet forwarding. When a node (node A)
receives a multicast packet (MP), it checks whether it has received this packet before.

If it is a duplicate multicast packet, then node A should drop this packet. Otherwise

113

node A should open it and extract the source node (B) IP address and previous node(C)
IP address. Node A can update the unicast routing table with these two IP addresses,
all the unicast packets, whose destination is node B should henceforth be sent to node
C first. If this is a service reply and node A is a client node, then node A should save
this service information to its local cache. If node A is listed as one of the edge node
in the received packet, then node A should rebuild the multicast packet header and
resend it. The rebuilding work includes TTL decreasing, changing the previous node

IP field to current node’s IP address, creating a new edge node list and updating T,.

C.5 Unicast Package

C.5.1 Unicast Package Architecture

This package includes five classes: UnicastAction, UnicastHandler, UnicastListener,
UnicastSender and UPacket (Figure C.10). UnicastAction is the main class which
starts three threads: UnicastListener, UnicastHander, UnicastSender. UnicastListener
receives unicast packet and saves it to an input packet queue. UnicastHandler gets the
packet from the input packet queue, deals with it and puts the modified packet into the
output packet queue for UnicastSender. UnicastSender gets the packet from the output
packet queue and sends it out. UnicastListener sends an ACK for all received unicast
packets and UnicastSender checks ACKs and resends the packet if there is no ACK.
UPacket is the data structure class for unicast packet. The unicast packet format can

be found in Appendix B.3.

114

Class UnicastAction

- - = et e s o = = o ' e -

Class UnicastListener Class UnicastHandler UnicastSender

\

Input Packet Queuc \ Output Packet Queue /\

1
[
1
|
I
l
I
1
|
N
UPacke

Figure C.10 Unicast Package Architecture

C.5.2 Flowchart for Unicast Packet Handler

When a node receives a unicast packet, it should check whether this packet’s
destination and port number match the current process. If it is the same then this
packet should be put into the response queue so that other threads such as the client or
server’s main thread can get this packet. Otherwise, the current node should forward it
to its destination. The current node should find out the next relay node’s information
from its routing table, decrease the TTL and send it out. The current node should also
wait for an ACK from the next relay node. If it does not get an ACK by the time out,
then this packet should be resent. Because we have the neighbour detection phase, if
we can find the next relay node from the routing table then the relay node must be
reachable by the current node. It is highly probable that packets can be delivered to
next hop because of the ACK and resend mechanism. If the current node cannot find
the relay node, then it should report a route failure to the source node, and the source

node must repeat the service discovery process.

115

y

Yes

Get a packet(pl) from
input packet queue

Sender thread gets pl from

the output queue

Is the destination IP and
port matched for curre

Put pl

response pool

into the

I

v

decrease p1’s TTL

v

Search for the next hop node’s

IP and port
v

Put p1 into the output queue

Send this packet to the next relay

node

4

Waiting for ACK

Increase p1’s TTL

v

Put p1 into output queue

Figure C.11 Flowchart for Unicast Packet Handler

116

