Quality of Service Constrained Routing

By

Zeenat A. Khan

A thesis submitted to the
School of Computing
in conformity with the requirement for

the degree of Master of Science

Queen’s University
Kingston, Ontario, Canada

July 2003

Copyright © Zeenat A Khan, 2003

g

National Library Bibliotheque nationale

of Canada du Canada

Acquisitions and Acquisisitons et
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington

Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author's
permission.

[Dot]

Canada

Your file Votre référence
ISBN: 0-612-86127-9
Our file Notre référence
ISBN: 0-612-86127-9

L'auteur a accordé une licence non
exclusive permettant a la

Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou aturement reproduits sans son
autorisation.

In the name of Almighty Allah,

The most Gracious, The most Merciful

i

Abstract

Multimedia applications, involving real-time audio/video teleconferencing and
telemedicine require strict quality of service (QoS) constraints. Quality of service can be
estimated and specified in terms of constraints or metrics that are of prime interest to the
application such as end-to-end delay bound, bandwidth availability and loss probability.
Substantial amount of work has been done on developing end-to-end QoS routing
algorithms and protocols both for unicast and multicast flows for a wide variety of
essential metrics and their combinations. To guarantee the real-time delivery of packets
satisfying such constraints, QoS channel needs to be established in advance using a path
selection algorithm that takes into account the QoS constraints. Establishing a
connection that provides a guaranteed service involves routing, signaling, call admission,
and resource reservation. A number of schemes that have been studied in this research
work such as Delay-Constraint Unicast Routing (DCUR), Delay-Constraint Routing
(DCR), and Distributed Delay-Constraint Algorithm (DDCA) are mainly focusing on the
routing aspect of the problem while leaving the call admission and resource reservation
problems for future investigation. In our work, we are analyzing and comparing the
above- mentioned Delay-Constrained Least-Cost (DCLC) algorithms while integrating
them with call admission and resource reservation in order to find the most viable path

finding algorithm among the chosen schemes. We call this the Integrated Routing

Protocol (IRP).

il

IRP establishes a unicast connection in two stages, a forward routing stage and a
backward setup configuration stage. During the forward routing process, routing
information is forwarded from a source node towards the destination on feasible paths
through connection setup messages. The setup messages include the latest call admission
control (CAC) information on links within the traversed paths. The destination node
collects information on feasible paths through the above-mentioned routing algorithms in
its database. Then it selects a viable least-cost path with the most available bandwidth
that meets the delay constraint. The backward setup process starts after the destination
node chooses the viable path and attempts resource allocation backwards towards the
source node, such that the CAC criteria are met. The overall performance is enhanced as
routing, CAC and resource reservation are integrated. A comprehensive simulation
model is developed to study the performance of the proposed scheme. A number of
experiments are conducted under different traffic characteristics and network parameters.
Performance results show that IRP amplifies the probability of call acceptance by
providing multiple-path choices between single pair of source and destination nodes. IRP
is also shown to outperform existing DCLC routing algorithms in achieving low call

blocking ratios as it adapts better to changes in the network and link characteristics.

v

Acknowledgement

I am extremely thankful to God, Who gave me the courage, strength and health to
complete my studies. Deepest thanks and gratitude are extended to Professor Dr. Hossam
Hassanein, for his untiring encouragement, kind support and patient discussions that were
instrumental in the completion of this thesis. Heartfelt thanks are extended to Ali
Roumani and Dr. Baoxian Zhou for providing all the help and guidance in due course of
my studies. I would also like to thank all my friends in the Telecommunications and
Networking Research group for being supportive and creating pleasant and friendly
environment. Acknowledging the financial support provided by the School of
Computing and the Natural Science and Engineering Research Council of Canada
(NSERC) cannot be overlooked. Thanks would not be complete if not meant for Debby

Robertson, Irene LaFleche, Tom Bradshaw and Richard Linley for their help.

I am extremely thankful to my ever-loving family for their moral support, long telephone
calls, and prayers. I am also highly thankful to my husband Aman Khan for his wit and
boundless support throughout this period that kept me going. I dedicate this work to him

with many thanks.

ACK
CAC

Call_Setup_Req

CAR
CB
CBR
CBRDB
CBRLB
CBRSTE
DB
DCLC
DCR
DCUR
DDCA
FRBS
lc_nhop

QoS
Reg_Band
RFC

RR

List of Acronyms

Acknowledgement

Call Admission Control

Call Setup Request

Call Acceptance Ratio

Cost Bound

Call Blocking Ratio

Call Blocking Ratio due to Delay Bound
Call Blocking Ratio due to Lack of Bandwidth
Call Blocking Ratio due to Setup Time Expiry
Delay Bound

Delay-Constrained Least-Cost
Delay-Constrained Routing
Delay-Constrained Unicast Routing
Distributed Delay-Constrained Algorithm
Forward Routing and Backward Setup
least-cost next hop

Identification

least-delay next hop

Internet Protocol

Integrated Routing Protocol

Least Cost

Least Delay

Negative Acknowledgement

Quality of Service

Required Bandwidth

Request for Comments

Resource Reservation

Vi

Table of Contents

AADSETAC ... tveeeeerie ettt eetee et e e e et eesteesebr e e st e e e areeembe e e ta e e e bar e s ab s s et e s s e bt e s e b ee e senbeaeas iii
ACKNOWIEAZEMENLeovieeeieeieniiiitinitcitinte sttt e sb e esse s v
LSt Of ACTOMYINIS «..couvriiiiiiiiitiiiii ittt ettt vi
Table Of FIGUIESccoverieriiiiiiiiiiii it st X
Chapter 1 INErOAUCHION.euieeeieeiiee ettt st s 1
1.1 QoS Requirements for IP Routing..........cccccoeeiiiiiiiiiiiiiiiiinnnn, 2

1.2 Fundamental Network Functionscccccccvvniiiiiinninininininninnn 3

1.2.1 QoS Constrained-Based Routingcccoeevvviiiiiinninnnnn. 3

1.2.2 Call Admission Control........c...ccceeeveeernmierniieinnneeniiinenne. 3

1.2.3 Resource Reservation..........ccccccuvviivnmmniirininnnieeinnnninennne 4

1.2.4 Interweaving Routing, Call Admission

Control and Resource Reservation............cccceeeeeveeiiinnnneenn. 4

1.3 APProach......cccooevivciiiiiiiiniiiiiiiiiiiccc e 5
1.4 Statement of Problem and Research Goal...........c.cccccoecveiniinnnnn. 7
1.5 Performance MEasures.........ccoooouveeeeeemiireeiniiieeeeniiice e 8
1.6 ThesiS OVEIVIEW ...cccivuiiiiieiiiiiiieiiieeeeniireee e e et eiae e 9
Chapter 2 Overview of QoS Routing and Related Workcccoecveiviiiiiiiiinnen. 11
2.1 Routing PrinCiplescccccvvviiiiiiiiiiiiiiniciiiinieciecccee e, 13
2.2 Classification of Routing Protocols............cccccoovieeiimiiieeenin, 13
2.2.1 Distance-Vector Protocols........ccccooeieeeiiiiieiieniiieeeeenns 14

2.2.2 Link-State Protocols.........cccecienrrmmiennienniienieneen e 15

2.3 Routing Algorithmscccccoeeviiiiiiiiiiiiiiiece e 15

vil

Chapter 3

Chapter 4

2.4 RoULING SLrAEEIES......covvuiruiiiiriiiniirier e 16
2.4.1 Source RoUting......c.ccccovveiiniiiiiiiiiiniiiniiiceniie e, 16

2.4.2 Distributed ROUtING.....cococeerviiiiniiiiiiiiiiiieeeenee, 20

2.5 SUINMATY ccooiiiriieiiieeiiiie ettt s stre s eta s e s e e sbb s e s natresns 27
Problem Formulation and Network Model..........ccccovvvvreniiiiiniininenn. 29
3.1 Establishing Connection in IP Networksoccovvviiiiiiiiannnnn, 29
3.2. Problem Description and Network Modelcccoccoeeiiinnnnn 30
3.2.1 Delay-Constrained Least-Cost (DCLC) Problem.............. 31

3.2.2 Routing Information..........ccecceeererviernmirnniniiniiiiniienine. 31

3.3 Selected Routing SChemeSscocvvveemnmiiiniiiniiiiiiiniiiiees 33
3.3.1 Description of DCUR Scheme.......ccoccccvvvmriiiniiiininininnnn. 33

3.3.2 Description of DCR Schemeccooviiiiiiiiiiiiininnnnnnnn 38

3.3.3 Description of DDCA Schemecccccevviiiiiiiinieccnnnnnn, 42

3.4 SUIMIMATY ..oveiieiiireiriieeeeeiiree e sieeeessinrec e ssrs s sebeae s s s sraes 47
Integrated Routing Protocol Overview..........ccceveveeiniiiinnnniiiiiiiiccnnnnn, 49
4.1 Integrated Routing Protocol Problem Definition 50
4.2 Integrated Routing Protocol OVErviewccccceeviiiiiiininnnneenns 53
4.2.1 Messages Exchanged by IRP...........cceviivniiiiiiniiiiinnnnn 53

4.2.2 Operation of Integrated Routing Protocol........................ 55

4.2.2.1 Forward Routing Stage.........cccceeeveeeerncreereannnns 55

4.2.2.2 Backward Setup Stageccocevriiiiiiiiiiiiiennn. 56

4.2.3 Pseudo-Code Description of IRPcccococvveiinniieriannnnn. 58

4.2.3.1 Algorithm for Source Node...........ccecerrvernnrnne 59

viii

4.2.3.2 Algorithm for Intermediate Node...................... 61

4.2.3.3 Algorithm for Destination Node............cc........ 63

4.3 SUIMIMATY ...eieeivreeeririereeeieeeesiiiiee s orrreessssatrr e ee e s ssbbreesessnnes 66

Chapter 5 Performance MEASUTESc.vervveeierrueenieenierreeeeree st sires e 67
5.1 Simulation Modelccoovivviiiinniiiniiiinii 68

5.1.1 Network Model..........coocvviiiiiiniiiiniiiiiiiiiec e 68

5.1.2 Background Network Traffic Model...........cocoevennnnnnnn. 69

5.2 Experimental Settings..........ccccevniiiiimniinniiiiiiiiien, 69

5.3 Performance Evaluation Metricsccocovevvvumiiiiiiiininnineneiennennns 71

54 Simulation ReSults.........ccooiiiiiiiiiiiiiniiiiie 72

5.5 SUMMATY ..eoiviieierieeiieniersreesreesiesnsteesseesaeeeeeesesteesmeseseessneensnes 86

Chapter 6 (070 176] 11 13 10) o OO OO OO P OPPUPOTRUPPPR 88
RETEIENCES . uvtveeeeiiiie ettt 91
APPENAIX A eiiiiiiiiiiiiiiiiciciii e et 95
|4 17 S OO OO O POOO OEPUPP PR 96

ix

Figure 3.1
Figure 3.2
Figure 3.3
Figure 3.4
Figure 3.5
Figure 3.6
Figure 4.1
Figure 4.2
Figure 4.3a
Figure 4.3b
Figure 4.4a
Figure 4.4b
Figure 4.5a
Figure 4.5b
Figure 5.1
Figure 5.2
Figure 5.3
Figure 5.4
Figure 5.5
Figure 5.6

Figure 5.7

Table of Figures

DCUR algorithm for source nodec.coovevmreiiniiniiiiiin e 35
DCUR algorithm for intermediate node...........coooovininirinininnine 38
DCR algorithm for source node.............cceovvviiviiiiiiiniiii e 39
DCR algorithm for intermediate node..............cccooirniiiiniiniiin 41
DDCA algorithm for source node..........c.ooovviiieiininnininnicenes 44
DDCA algorithm for intermediate node............cceceviiiniiiniinnnn 46
IRP at Forward Routing Stage..........cccooiviiiiiiiiiiiiiiiiinccecee 56
IRP at Backward Setup Stageccceeevevveeiiimiiriiiiiiiiiiicninee e 58
Algorithm for source node during forward routing stage..............cccoceeuee. 60
Algorithm for source node during backward setup stage......................... 60
Algorithm for intermediate node during forward routing stage 61
Algorithm for intermediate node during backward setup stage................ 63
Algorithm for destination node during forward routing stage.................. 64
Algorithm for destination node during backward setup stage.................. 64
Call Acceptance Ratio vs. Network Load at Delay Bound 200................ 74
Call Acceptance Ratio vs. Network Load at Delay Bound 90 76
Call Blocking Ratio vs. Network Load at Delay Bound 200 79
Call Blocking Ratio vs. Network Load at Delay Bound 90 80
Call Acceptance Ratio vs. Network Load at Delay Bound 200................ 82
Call Acceptance Ratio vs. Network Load at Delay Bound 90 82
Call Blocking Ratio vs. Network Load at Delay Bound 200 84

Figure 5.8
Figure 5.9

Figure 5.10

Call Blocking Ratio vs. Network Load at Delay Bound 90
Call Blocking Ratio due to Setup Time Expiry vs. Network Load

Call Blocking Ratio due to Setup Time Expiry vs.
Call Setup Time Limit......cccccovviiiniiiiiiiiiiniiinni e

...........

...........

Xi

Chapter 1

Introduction

IP has two primary responsibilities: providing connectionless delivery of packets through
an internetwork (without any guarantee for an assured delivery of packets) and providing
fragmentation and reassembly of datagram but without any guarantee of orderly arrival of
packets at the destination. Such type of Internet routing traffic model provides Best
Effort services that are not suitable for multimedia applications. The Best Effort
connectionless service is a simple and scalable service that finds the shortest path from
source to destination regardless of the constraints required by the applications such as
bandwidth availability, delay, delay variations, buffer space, etc. The Best Effort model
treats all the users or packets equally. Such a service would forward or discard packets
solely based on Internet traffic conditions. If the network is over congested, and cannot
forward packets then packets are simply dropped. Best Effort service is not good enough
for newly emerging real-time multi-media applications such as video conferencing,
Internet telephony, telemedicine, HDTV or video on demand, etc., where packet loss, low
bandwidth, delay jitters are not tolerated. Therefore, there is a need for Internet
architectures and protocols, including routing protocols that can provide an assured
service to fulfill the required constraints of the multi-media applications independent of
the network traffic condition. The Internet community referred to such type of services
as Quality of Services (QoS). QoS routing is a set of routing mechanisms under which
flow path selection is based on knowledge of network resources availability as well as

flow QoS requirements. This thesis investigate various QoS routing schemes and

proposes a novel approach of Integrated Routing Protocol to meet multi-media

requirements and achieve efficient network resource utilization.

The remainder of this chapter is organized as follows. Section 1.1 describes QoS
requirements for IP routing. Section 1.2 outlines the fundamental network functions such
as, QoS constrained-base routing, call admission, resource reservation and interweaving
all the three functions to achieve high network performance in terms of satisfying end-to-
end QoS requirements of an application. Section 1.3 outlines the approach used in this
thesis. Section 1.4 describes statement of problems and our two-fold research goal.
Section 1.5 outlines the performance measures studied in this work. Section 1.6 presents

an overview and structure of the remainder of the thesis.

1.1 QoS Requirements for IP Routing
It is critical for routing protocols to deliver data packets efficiently between a pair of

source and destination nodes. The basic function of QoS routing is to find a network path
that satisfies a set of given constraints of a connection. There are various QoS
requirements, needed to be satisfied in order to provide assured delivery in IP routing.
Such requirements include establishment of connection between end users, if the subnet
is connectionless, whereas the routing decision must be made in every node visited and
every packet routed. Therefore, IP-constrained routing requires connection establishment
between end users within a well-defined call setup time limit. Selection of paths is the
responsibility of QoS routing algorithms that are required to meet end-to-end delay
bounds and available bandwidth, such that to optimize the network resources and manage

network traffic in an efficient manner to enhance the network throughput.

1.2 Fundamental Network Functions
This section addresses fundamental network functions, such as QoS constraint routing,

Call Admission Control (CAC) and resource reservation (RR). These functions must
work closely with each other in order to provide guaranteed quality of service to

applications. Our research interest lies in integrating all three closely related functions.

1.2.1 QoS Constrained-Base Routing
Routing algorithms determine a path from a source to a destination for the traffic flow.

The routing algorithms used in current Internet routing protocols are mainly based on
shortest path algorithms, while shortest path algorithm can only find a least delay path or
find a path with most available resources [RFC1583]. Many heuristic solutions are
proposed to address this problem. The QoS requirement of a connection is given as a set
of constraints. For instance, a bandwidth constraint of a unicast flow requires that a
feasible path between end systems have sufficient residual (unreserved) bandwidth, to
satisfy the QoS constraints of a connection. Similarly, a delay constraint requires that the
longest end-to-end delay between end systems not exceed an upper bound on the delay.
The problem of QoS routing in distributed applications is difficult due to a number of
reasons, as these applications require diverse QoS constraints on delay, delay jitter, loss
ratio, bandwidth, etc. Our research objective is to study distributed delay-constrained

QoS routing algorithms.

1.2.2 Call Admission Control
In order to maintain network load at a manageable level and guarantee QoS requirements

of applications, we need an admission policy that grants or denies resource reservation

before routing data packets over the Internet. We have to take into account the total

resource allocation for a flow along a path in relation to available resources. If this flow
needs too many resources we may reject it even if the network has enough capacity. This

ensures that resources could be utilized by other flows with lower resource requirements.

1.2.3 Resource Reservation
Resource reservation usually follows routing. To begin communication, we must first

find, a feasible path between the sender and receiver that meet the specific requirements,
the application has set. To determine whether the QoS requirements of a flow can be
accommodated on a link, a router must be able to determine if sufficient resources are
available on the link [RFC2386]. QoS-based routing and resource reservation are closely
related in a sense that their objective is the same, but they both perform different
functions. Resources cannot be reserved unless the routing protocol can find a suitable
path [Auk96]. So we need efficient mechanisms that integrate both functionalities to

achieve better network performance.

1.2.4 Interweaving Routing, Call Admission Control and Resource Reservation
During the routing process, an admission control function is invoked at each link on the

route being examined, to decide whether or not the QoS requirements of a flow can be
accommodated on a link. The decision must be based on the incoming calls traffic
characteristics and resources availability for the new connection as well as existing
connections. Admission control is of significance, as it is often desirable to reject a
request even when a feasible path has been found, if admitting the request will lead to
inefficient use of network resources. Failure to put in such protection can result in

throughput degradation in case of overload [RFC2676]. The information about the

already allocated and available resources during QoS path computation improves the
chances of finding a best path. Our approach to the problem of unicast connection

establishment is to interweave routing with CAC and RR.

This thesis investigates three heuristics proposed in literature and presents our new
approach of integrating admission control, resource reservation with distributed QoS-
constrained routing algorithms. The objective of the admission control function as well
the routing algorithm is to accept as many new connections as possible while
guaranteeing the QoS requirements for every existing call [Hwa93, HaA00, Rou00], in
order to fulfill real-time multi-media applications requirements. The paths for the
connection are selected and resources are allocated, based on the requested QoS and the

available network resources.

1.3 Approach
Several heuristic solutions have been proposed to address the problem of QoS routing.

The approach we use consists on minimizing one of the QoS parameters under a second

parameter constraint, for instance, minimizing a path cost under a delay constraint.

We interweave routing with CAC and resource reservation using a concept similar to
Forward-Routing and Backward-Setup (FRBS) mechanism [HaA0O]. This research aims
to find the most viable path between source and destination nodes in two stages. The first
stage computes QoS paths using distributed delay-constrained unicast routing algorithms
described in Delay-Constrained Unicast Routing (DCUR) proposed by Salama et al.

[SRV97], Delay-Constrained Routing (DCR) proposed by Sun and Langendorfer,

[SuL98] and Distributed Delay-Constrained Algorithm (DDCA) proposed by Zhang et
al., [ZKMO1]. Call admission control is used in routing to test if a path can support the
call (connection)', while maintaining the QoS of the existing connections. In the second
stage, the destination node selects the path with best costs value and begins resource
reservation backwards towards the source node, exercising CAC on each link along the
path. The routing algorithm searches for all the available paths to increase number of
accepted connections (HaA00). CAC decisions are based on the current network traffic

load.

The rationale behind choosing DCUR, DCR, and DDCA routing schemes for our
research work is their common objective to solve the unicast delay-constrained cost
minimization problem. The common properties these schemes exhibit are as follows:
e All these schemes work in a hop-by-hop fashion, using a distributed routing
strategy.
e Each node knows the minimum cost and minimum delay to every other node in
the network.
e The cost vector and delay vector at all nodes are assumed to be up-to-date.
¢ Distance-Vector or Link-State protocols are used to support the dynamic nature of
Internet traffic.

e Periodic updates are sent only to intermediate neighbor nodes, instead of flooding
the entire network. Only limited state information are needed at each node,

requiring small amounts of computation.

! The term call and connection are used interchangeably.

e The path is constructed one node at a time, each time the added node lies on either
the least-cost (LC) or least-delay (LD) path.

e Routing metric, path computation and algorithm complexity are the important
common criteria taken into account for choosing the above mentioned routing

schemes.

1.4 Statement of Problem and Research Goal
The need to provide a guaranteed QoS requires a call-level admission control mechanism

and the reservation of resources on link-by-link basis. Providing QoS in IP network is
complicated due to its connectionless nature. The need to reserve resources (e.g.,
bandwidth) for each individual connection in order to guarantee its QoS requirements has
made connection establishment in high-speed network indispensable. This is the
responsibility of the resource reservation and admission control mechanisms to provide
information about residual resources (bandwidth) on a link such that path selection
decisions are based on this information. A bandwidth constraint of a unicast connection
requires, for instance, that the links composing the path must have certain amount of free
bandwidth available [RFC2386] to assure real-time channel establishment. The
establishment of such channels requires the development of efficient route selection

algorithms that are designed to take into account the QoS constraints.

As mentioned above, this thesis aims to study and compare the Distributed Delay-
Constrained Least-Cost (DCLC) unicast routing algorithms proposed in literature. The

algorithms are analyzed and compared in an integrated setting with call admission and

resource reservation, in order to find the most viable path finding algorithm among the

chosen schemes. This approach is denoted as Integrated Routing Protocol.

Our destination-controlled Integrated Routing Protocol establishes a unicast connection
in two stages, a forward routing stage and a backward setup stage. During the forward
routing process, the routing information is forwarded from source towards destination on
feasible paths through connection setup messages. The setup message includes the latest
call admission control (CAC) information on links within the traversed paths. The
destination node collects information on feasible paths through above-mention routing
algorithms in its database. Then it selects a viable least-cost path with the most available
bandwidth that meets the delay constraint. The backward setup process starts after the
destination node chooses the most viable path and attempts resource allocation
backwards towards the source node, such that the CAC criteria are met. The main
objective of this effort is set as two fold:

e To enhance the developed routing strategies by analyzing and interweaving them

together with call admission control as well as resources reservation.
e To introduce a new approach of Integrated Routing Protocol (IRP), that provides

a mechanism for path computation that is superior to existing routing strategies.

1.5 Performance Measures
The network performance objective is to establish real-time channels that attempt to

maximize the average call acceptance ratio by admitting calls with sufficient resources.
IRP enhances the probability of call acceptance by providing multiple paths choices

between single pair of source and destination node. The proposed IRP scheme finds

loop-free routes that satisfy the requirements of individual flows and adapts well to
changes in network and link characteristics as it achieves low call blocking ratios. The
IRP is shown to achieve a high success ratio for call establishment, and hence results in

enhancing the overall network performance.

1.6 Thesis Overview
The remainder of thesis is organized as follows. Chapter 2 presents a survey of QoS

routing and related work such as routing principles, routing algorithms and routing

protocols. The classification of routing protocols into distance-vector and link-state
routing protocols and the QoS routing strategies such as source routing, hierarchical
routing and distributed routing are presented with a brief literature review of various

proposed algorithms under each strategy.

Chapter 3 presents a unicast routing problem formulation and network model description.
A detailed description and evaluation of the Delay-Constrained Least-Cost routing
algorithms such as Delay-Constraint Unicast Routing (DCUR) by Salama et al. [SRV97],
Delay-Constraint Routing (DCR) by Sun and Langendorfer [SuL.98], and Distributed
Delay-Constraint Algorithm (DDCA) by Zhang et al., [ZKMO1] is presented. Various
aspects of the selected distributed delay-constrained unicast algorithms are addressed
such as routing information needed for routing algorithms and connection establishment

requirements in connectionless IP networks.

Chapter 4 proposes a model of the Integrated Routing Protocol (IRP) approach. It also
describes the design and implementation of various algorithms and presents pseudo code
for source node, intermediate and destination nodes both at forward routing stage as well

as backward setup stage.

Chapter 5 presents the performance evaluation of the experimental setup. A
comprehensive simulation model is developed to study the performance measures of the
proposed scheme. A number of experiments are conducted under different traffic
characteristics and network parameters. The performance metrics studied are the call

blocking probabilities and call acceptance ratio.

Chapter 6 concludes the thesis with summary of the research contributions.

10

Chapter 2
Overview of QoS Routing and Related Work

The routing process consists of two fundamental stages at the network layer [Sal96]. The
first stage consists of selecting a route for the session during the connection establishment
phase, and the second stage consists of forwarding real data packets of that session along
the selected path. In this research we focus on the first task only and assume that the true
state of the network is available to every node via distance vector routing protocol such
as Bellman Ford’s shortest path algorithm. Network nodes use this information to
determine end-to-end least cost as well as least delay paths. Each link in the network is
associated with certain parameters that provide the measurable QoS metrics. The
selection of routing metric is one of the key design issues that determine the criteria for
path selection. In addition to this, routing metric has an important implication on the
complexity of path computation [WaC95]. Well known metrics include bandwidth,

delay, jitter, cost and loss probability.

The routing problem can be classified into two major classes: unicast routing and
multicast routing. Unicast routing refers to finding a feasible path between a single
source and a single destination. On the other hand, multicast routing refers to finding a
feasible tree covering a single source or multiple sources and a set of destinations. Our
research focus is on unicast routing algorithms. The routing algorithms are classified into
static routing, adaptive routing and dynamic routing. In static routing, all routing

decisions are known at network setup time and are fixed, independent of the network

11

state. Dynamic routing allows routing decisions to vary over time, but not necessarily
depends on the network state. Finally, in adaptive routing, the routing decisions are
based on a function of some estimate of the network state and thus may also vary over

time [Hwa93].

The rest of this chapter is structured as follows. Section 2.1 present routing principles
and outlines a defined line of difference between routing algorithms and routing
protocols. Section 2.2 presents classification of routing protocols into distance-vector and
link-state routing protocols. Section 2.3 describes routing algorithms and their types.
The classification of routing algorithms into various strategies is presented in Section 2.4.
The well-known QoS routing strategies are source routing, hierarchical routing and
distributed routing. However, recent work on QoS routing has been focusing on two
main directions: source routing and distributed routing. In source routing, each node
maintains an image of the global state of the network, based on which a routing path is
centrally computed at the source. Whereas, in distributed routing, the path computation
process is carried out in a distributed fashion by finding the next best hop in the path.
Control messages are exchanged among the nodes and the state information collected at
each node is used in order to find a path. A brief introduction along with a review of
various proposed algorithms of the two strategies is presented in Section 2.4. Section 2.5

concludes the chapter with a discussion of QoS routing and related work in form of short

summary.

12

2.1 Routing Principles
Routing is the main process used by Internet hosts to deliver packets, depending on

routing algorithm and routing protocol. A routing protocol is a set of rules implemented
at the network layer, selecting the least-cost path to the destination. A routing protocol
forms the core of the Internet. At the core of any protocol is a routing algorithm that
determines routes connecting a set of network nodes belonging to a particular session
[TEL316]. A protocol should be robust and fault tolerant so that it reacts fast and safely
to link or node failures in order to minimize the resulting instability in the network. Path
selection within routing algorithms is formulated as a cost-optimization problem. The
objective function for optimization could be any one of a variety of parameters, such as
least end-to-end delay, hop count or bandwidth utilization. At the current stage of
network evolution, it may be appropriate and important to design a simple, scalable
routing algorithm that satisfies a given end-to-end delay bound and manages the network
resources efficiently, particularly if the designed algorithm can be easily integrated into
the current Internet routing protocols. Our objective is to study the performance of

routing algorithms and not the routing protocols.

2.2 Classification of Routing Protocols
Routing protocols are used between routers and represent additional network traffic

overhead on the network. An important feature of a routing protocol is its ability to sense
and recover from failures. How quick it can recover is determined by: the type of fault,
how it is sensed, and how the routing information is propagated through the Internetwork.
When all the routers on the internetwork have the correct routing information in their

routing tables, the internetwork has converged. When a link or router fails, the

13

internetwork must reconfigure itself to reflect the new topology. Information in routing
tables must be updated. Until the internetwork re-converges, it is in an unstable state with
inconsistent information. Internet routing protocols can be classified into two categories:
distance-vector protocol and link-state protocol. The following section describes these

categories.

2.2.1 Distance-Vector Protocols
Distance-Vector routing protocols, such as Routing Information Protocol (RIP) are based

on a distributed version of the Bellman-Ford Shortest Path (SP) algorithm. Each node
maintains only limited information about the shortest path to all other nodes in the
network. Upon receipt of an update, for each destination in its table a router compares
the metric in its local table with the metric in the neighbor’s node and also the cost of
reaching that neighbor. If a path via neighbor has a lower cost, the router updates its local

table to forward packets to the neighbor.

A problem with such protocol is that it may continue to use old information that is
invalid, even after network topology changes and new information becomes available.
Due to their distributed nature, distance-vector protocols may suffer from looping
problems when the network is not in a steady state. On the plus side, and considering
message complexity, distance-vector routing protocols scale well to large network sizes,
because each node (router) sends periodical topology update messages only to its direct

neighbors.

14

2.2.2 Link-State Protocols
Link-State protocols such as Open Shortest Path First protocol (OSPF) are based on

Dijkstra’s SP algorithm. A database is maintained at each node that describes network
topology and link delays between each router. Each router keeps track of the complete
graph of links and nodes in the network. Therefore, each router periodically discovers its
neighbors and measures delays across its links then forwards this information to all other
routers. Updated information is propagated at high priority using flooding technique.
Updates contain sequence numbers and a router forwards “new” copies of the packet.
This way routing updates propagate even if routing tables are not quite correct.
Acknowledgments are sent to neighbors. Each router uses the Shortest Path First
(Dijkstra’s SP) algorithm to compute the shortest path based on the current values in its
database. Since each router makes its calculation using the “same” information
(depending on the update frequency), accurate routing decisions can be made. Link-state

protocols also do not suffer from looping.

2.3 Routing Algorithms
Routing algorithms search for paths from a source to a destination. The path that appears

to be most promising among all possible paths is selected. Routing decisions affect the
network behavior for the duration of a call. Routing is particularly crucial to network
performance. There are two types of routing algorithms currently in practice; adaptive
and non-adaptive algorithms. Adaptive algorithms are flexiable and adapte well to
changes in network topology, load, delay, etc., to select routes. On the other hand, non-
adaptive algorithms are static and routes do not change. Adaptive algorithms can be

further classified into following types: isolated, centralized and distributed:

15

o Isolated: Each router makes its routing decisions using only the local information
it has on hand. Specifically, routers do not even exchange information with their
neighbors.

e Centralized: A centralized node makes all routing decisions. Specifically, the
centralized node has access to global information.

e Distributed: Algorithms that use a combination of local and global information.
In a distributed routing mechanism a path is computed in a distributed manner on
a hop-by-hop fashion.

In this work we opt to study the behavior of adaptive distributed routing algorithms.

2.4 Routing Strategies
Distributed multi-media applications have quality of service requirements specified in

terms of constraints on various metrics such as bandwidth, delay, delay jitter, cost etc.
Various routing strategies could be adopted to find the feasible path between source and
destination nodes. There are three well-known routing strategies commonly in use. Their
classification depends on how state information is maintained and how the search for
feasible path is carried out [ChN98b]. These are: source routing, hierarchal routing and

distributed routing.

2.4.1 Source Routing
In source routing, each node maintains an image of the global network state. The global

network state refers to the information regarding the network connectivity and resource
availability, based on which the entire routing path is computed at the source node. The

link-state protocol is used to periodically update the network state. Finding a path in

16

source routing can be computationally intensive for the source router. The overhead of
the source routing algorithm lies in the fact that a huge amount of storage capacity is
required at each router in the network to maintain global state information. The global
state thus maintained is inherently imprecise due to the dynamic nature of network
resources availability [GSAO1]. There is always a tradeoff between the average number
of messages exchanged and the amount of staleness or impreciseness in the global state
maintained at each router. The amount of impreciseness and the average message
overhead both increases with the network size. Hence, such approaches are not scalable
to large network size [GSAO1]. In the following we review various source routing

algorithms in the literature.

A throughput competitive routing algorithm for bandwidth-constrained connection was
proposed by Awerbuch et al. [AAP93]. The algorithm tries to maximize the average
throughput of the network over time. It combines the function of admission control and
routing. Every link is associated with the cost function that is exponential to the
bandwidth utilization. A new connection is admitted into the network only if there is a
path whose accumulated cost over the duration of the connection does not exceed the
profit measured by the bandwidth-duration product of the connection. It was proved that
such a path satisfies the bandwidth constraint. Let T be the maximum connection
duration and n be the number of nodes in the network. The algorithm achieves a
throughput that is O (Log nT) factor of the highest possible throughput achieved by the

best off-line algorithm that is assumed to know the entire connection request in advance.

17

Another heuristic that combines source routing with call admission was proposed by Liu
and Mouftah [LiM95]. The proposed scheme is known as a Virtual Call Admission
Control (VCAC) algorithm that examines a routing database of all links in the entire
network before a path is selected thus resulting in an effective topology database. The
database includes links that follow the CAC scheme and are able to accept calls. Thus
chances of new call acceptance are enhanced along a path selected from the effective
topology than from the entire topology. To avoid possible delays, link metrics used by
CAC and routing in VCAC are advertised through link state updates and stored in the
network topology database. The concept of effective topology and Actual Call
Admission Control (ACAC) is used in the proposed VCAC scheme. Upon receiving the
call setup request, the VCAC is first exercised on every link included in the entire
topology. Dynamic routing protocols such as Shortest Path First (SPF) and Open
Shortest Path First (OPSF) are used to select the path. Each link on the selected path is
examined through its own ACAC. Then VCAC algorithm is performed upon every link
in the entire topology to decide about the link to be included into the effective topology.
This decision is based on the call characteristics and values of link metrics available in
the database topology. The links that pass the VCAC check are likely to pass the ACAC
check as well, resuiting in a path construction on such an effective topology with high
probability. Such links will be included in the topology to achieve high network

performance. The proposed VCAC algorithm showed good performance, with its
requirement of only one metric and its computational simplicity using any VCAC

strategy.

18

Wang and Crowcroft [WaC96] investigated the routing problem subject to multiple
quality of service constraints. They studied the multiplicative, concave and additive
constraints, and proposed a well-known shortest widest path algorithm. This algorithm
finds a bandwidth-delay-constrained path using Dijkstra’s shortest path algorithm. All
links with bandwidths less than the requirement are eliminated such that remaining paths
in the resulting graph will satisfy the bandwidth constraint. Thus shortest path in terms of

delay is found. The path is feasible, if and only if, it satisfies the delay constraints.

A novel forwarding technique for routing with multiple QoS constraints is proposed by
Fei and Gerla [FeG00]. The proposed technique can be applied both in distributed hop-
by-hop routing and source-based approach. The key idea of the smart forwarding is that
when constructing an end-to-end path, one can make some “smart” decision on which
next hop should be in the path to satisfy the constraints and minimize the cost. It can be
used as a crank back approach in which it attempts another path if one does not work out.
However, it tries a path only if it knows there is a chance that given path might be
feasible. The algorithm performance and processing overhead can be adjusted by setting
a limit on how many crank-back trials or forwarding branches it can have. It utilizes a
per-computed table (updated periodically) that can be constructed with low computation
complexity and each on-demand routing request can then be answered with low
processing overhead. When used as a flooding scheme without limiting crank-back trials,
it can greatly reduce the number of routing messages since a routing request will only be
sent to promising neighbors based on “smart” decisions. Simulation results show it is

always effective in finding low cost paths.

19

2.4.2 Distributed Routing
In distributed routing, path selection is carried out in a hop-by-hop fashion. The

Distance-Vector protocol is used to periodically update the intermediate neighbor nodes.
Every node maintains global state information only about its next neighbor in the form of
a distance vector (tables), returning the best next hop only. Since the path computation
process is shared among intermediate routers, there is no computational burden on any
single router in the network [GSAO1]. Hence the routing response time can be made
shorter to enhance the network scalability and making the distributed routing mechanism
more suitable for routing with dynamic nature of traffic conditions. However, it may
suffer from looping problem if the global state information at nodes is not kept
consistent. Loops will cause routing failure because distance-vectors do not provide
sufficient information for an alternative path. In the following we review various

distributed routing algorithms in the literature.

Distributed algorithms can be categorized into two types based on whether all the routers
maintain a global state or not. If the routers have a global state, such information can be
used in path computation to specify the best next hop. If no global state is stored then
flooding techniques can be used to establish a path, where a request is flooded on all
outgoing links that satisfy the QoS requirements of the request. The problem with such

an approach however, is that the overhead involved in establishing a connection may be

high.

Salama et al. [SRV97] proposed a distributed delay-constrained unicast routing (DCUR)

algorithm. A cost vector and a delay vector are maintained at every node by a distance-

20

vector protocol. A control message is sent from the source toward the destination to
construct a delay-constrained path. Any node i at the end of the partially constructed path
can select one of only two alternative outgoing links. One link (i, j) is on the least-cost
(LC) path that is directed by the cost vector while other (i, k) is on the least-delay (LD)
path directed by the delay vector. Link (i, j) has the priority to be chosen, as long as

adding the least-delay path from j to the destination does not violate the delay constraint.

Reeves and Salama [ReS00] has proposed a revised version of DCUR after Salama et al.
[SRV971, which simply ignores from further consideration any least-cost links, once loop
removal has removed that link due to a loop occurrence. An entry in the invalid-link
table at the corresponding node is created and saved. DCUR worst-case message

complexity is O(VP).

Sun and Langendorfer [SuL.98] proposed delay-constrained routing (DCR) and improved
the worst-case performance of the DCUR algorithm by avoiding loops instead of
detecting and removing loops. A control message is sent to construct the routing path.
The message travels along the least delay path until it reaches a node from which the
delay of least-cost path satisfies the delay constraint. From that node on, the message
travels along the least cost path all the way to destination. The message complexity of

the DCR algorithm is O(|V)).

Sriram et al. [SMMO98] proposed a preferred link distributed delay-constrained least-cost
routing algorithm in order to remove the restriction on path selection method in DCUR as

proposed by Salama et al. [SRV97] and Sun and Langendorfer [SuL98] algorithms. It

21

provides better performance in terms of increased call acceptance rate and lower average
route cost. It also combines resource reservation with probing thus avoiding a separate
reservation phase. The preferred link distributed delay-constrained least-cost routing
algorithm is fundamentally a backtracking-based route selection method. At each node a
set of actions is performed whenever it receives a call setup or a call reject packet. When
a node v receives a call setup packet, it forwards it along the first preferred link. If a
reject packet is received from the node at the other end of this link, then node v attempts
to forward the packet along the next preferred link and so on, until a specified number of
links have been tried out. If all such attempts result in failure, then v sends back a reject
packet to the node from which it received the call setup packets. If the call setup packet

reaches the destination, then the call is successfully setup.

Zhang et al. [ZKMO1] proposed a distributed delay-constrained algorithm (DDCA).
DDCA is basically an extension of DCR proposed by Sun and Langendorfer [SuL98].
The path construction process is replaced by path probing process and extends the
probing direction to include both the least-cost (LC) and least-delay (LD) direction.
DDCA is based on a relay strategy. The relay node is a node that connects two super-
edges (connected segment of the path on which all the routers use the same metric for
packet forwarding) on a selected path. The minimum cost path returned by the proposed
algorithm will always be loop free. In DDCA, each node in the network maintains a
delay table and a cost table. The information in the delay and cost tables can be
distributed to nodes using distance vector protocols. More details on DCR, DCUR and

DDCA are provided in Chapter 3.

22

The Distributed Routing Algorithm (DRA) framework based on selective probing is
another approach used for solving the DCLC problem and was proposed by Chen and
Nahrstedt [ChN98a]. The DRA has three phases: probing, acknowledgment and failure
handling. The probing phase is essentially the QoS routing and it establishes a tentative
path between the source and destination such that the path satisfies the QoS requirements
of the connection. A router on receiving a probe, selectively floods it on all the outgoing
links, which are capable of supporting the QoS requirements, except the one on which the
probe arrived. Every router selectively floods the first probe received for a given
connection and rejects all duplicates. The probing phase ends once a probe reaches the
destination, and the path that the first probe takes to reach the destination is called the
tentative path. No reservations are made in the probing phase. The destination sends an
acknowledgment to the first probe it receives and it discards all the duplicate probes.
This ensures that only one path is established. In the acknowledgment phase, the
destination sends an acknowledgment along the tentative path and resources are reserved
along the way. A connection is established when the source gets the acknowledgment.
As the network resources change rapidly, an intermediate node on the tentative path
(which would have forwarded the probe earlier) might not have the required resources
when it gets an ACK for the same connection. In such a case, the failure-handling phase
is started. The node that was unable to reserve the resources sends a failure message to
the downstream routers to free their resources and the connection request is refused. A
router could receive a probe with certain QoS constraints which none of its outgoing links
can support. The router will simply discard the probe without forwarding it. If such a

condition occurs in all the paths between a source and destination pair, the connection

23

will not be set up. In both cases, the call is blocked. The probing algorithm substantially
reduces the routing overhead at the cost of long routing time. If every node maintains a
global state, which is allowed to be imprecise, the ticket-based probing is used to improve
the performance of selective probing [ChN98b]. A certain number of tickets are issued at
the source according to the contention level of network resources. Each probe must
contain at least one ticket in order to be valid. Hence, the maximum number of probes is
bounded by the total number of tickets, which limits the maximum number of paths to be
searched. The algorithm utilizes the imprecise state at intermediate nodes to guide the
limited tickets along the best possible paths to the destination. In such a way, the

probability of finding a feasible path is maximized with the limited probing overhead.

Enhancing the selective probing approach of Chen and Nahrstedt [ChN98a], two
heuristics are proposed by Sarangan, et al. [SGAQO] for selectively flooding the probes so
that the overall resource admission rate is increased. The proposed strategy is for metrics
like bandwidth, switch buffer, CPU usage etc., where the minimum value of the metric at
each router along a path should satisfy the QoS constraint. Examples of metrics that do
not come under this category are delay, jitter, etc. In the first proposed heuristic, probes
travel through paths that fit the QoS request more precisely, reach the destination faster
than probes that travel through other paths. The acknowledgment (ACK) would then be
sent back along this path of close fit. The intuition behind this approach is to discourage
fragmentation of available resources. If the ACK is sent back on the path of best fit, the
chances of resources getting used up at an intermediate node in this path before the ACK

reaches that node is quite high. Hence, it would seem that the call admission rate should

24

decrease in this approach instead of increasing. However, experimental results showed
increase in number of connections established due to this strategy outnumber the number
of connections that are rejected. Another strategy to increase the call admission rate is
that if a destination has many paths to choose from, it sends the ACK on the path that has
the maximum resources. The probability of the resources getting used up before the
ACK reaches an intermediate router on this path is lower when compared to a router on
any other path. The idea behind the first approach is that discouraging resource
fragmentation maximizes a number of connections, whereas in the second approach, the
chances of generating a failure message along the tentative path are reduced. It is
assumed that the control messages have a higher priority over the data packets. They will
not be dropped in any case, even if the network gets congested and will be serviced
immediately at the routers. Hence, the control messages incur a negligible queuing delay
at all routers. The only delay they experience in a router is the protocol processing time.

Furthermore, on assuming a high-speed network, the propagation delay can be neglected.

Hassanein and Al-Otaibi [HaA0O] proposed a routing algorithm that combines routing,
CAC, and resource reservations. The proposed setup process employs a destination-
controlled routing algorithm that uses the CAC criteria as its cost function. The proposed
scheme is denoted the FRBS scheme, which has two stages, a Forward-Routing stage and
a Backward-Setup stage. During the forward stage, routing information on all paths from
source to destination is forwarded through setup messages to the destination using a
controlled flooding approach. Setup messages include CAC information on all links

within the traversed path. The destination node collects information on all possible paths

25

in its routing table. The destination then makes a selection of the path with the best-cost
value, and reservation is attempted along this path backwards towards the source such
that the CAC criteria are met at this backward setup stage. The simulation results showed
good performance in terms of accuracy of routing decisions and call blocking
probabilities. However, the scheme is not scalable to large networks with many feasible

paths.

A two-level forwarding mechanism based on the QoS requirements of the unicast flow is
proposed by Ghosh et al. [GSAO1]. All the routers in a network are assumed to be QoS
aware, i.e., packets are forwarded based on both their destination and QoS requirements.
Each connection request contains the destination ID, and the set of QoS requirements for
that flow. The routing algorithm reads the destination and the QoS requirements, and
returns a path (if available) that is most likely to satisfy the allocation requirements. The
approach of Ghosh et al. [GSAO1] is different than the approach of others [ChN98&a,
ChN98b, ChN98c, ShC00, and Hou96] in the sense that additional state information is
used to reduce the overhead in connection establishment. A router stores information
only about its immediate neighbors (routers reachable in one hop) and second-degree
neighbors (neighbors of a neighbor). The advantage of this approach is two-fold. First,
the message overhead and the impreciseness will not be as large as maintaining the global

state. A router exchanges information only with its direct neighbors. As a result, the

impreciseness in storing the information about the second-degree neighbors will not be as
big as the impreciseness in storing the entire global state. Second, using the information

about the second-degree neighbors, a router can forward the connection requests

26

intelligently instead of blindly flooding the requests. This is because every router can
now see two levels downstream. Hence, the overhead in connection establishment is
reduced, even though additional overhead is incurred in maintaining the information

about the second level links.

2.5 Summary
This chapter presented a review of various aspects of quality of service routing and

related work. Routing algorithms used in current Internet routing protocols are mainly
based on shortest path algorithms [RFC1583]. Shortest path algorithm can only find a
least delay path or find a one with the most available resources. The goal of QoS routing
algorithms is to find a path in the network that satisfies the given requirements of the
application, and may also optimize the global network resource utilization [GSAO1].
Depending on the scope of the path selection process, an algorithm either returns the next
best hop (known as distributed routing) or the entire path to the destination (known as
source routing). A brief description is presented on QoS routing strategies such as source

routing and distributed routing strategies.

The Chapter 3 will present a detailed overview of the three routing algorithms we have
selected as part of the forward routing stage for our proposed Integrated Routing
Protocol. The three algorithms discussed in Chapter 3 are: (1) Delay-Constraint Unicast
Routing (DCUR) algorithm, (2) Delay-Constraint Routing (DCR) algorithm, (3)

Distributed Delay-Constraint Algorithm (DDCA).

27

The approach of Integrated Routing Protocol (IRP) is presented in Chapter 4. Similar to
FRBS [HaA00], IRP is a distributed QoS-aware unicast delay-constraint routing protocol
that works in two stages: a forward routing stage and a backward setup stage. The
forward routing stage utilizes the above-mentioned three routing algorithms to find the
QoS paths and resources are reserved along those paths in the backward setup stage if
they follow the call admission criteria. The performance evaluation of IRP using a
comprehensive simulation model is presented in Chapter 5. Simulation experiments are
conducted in order to study the impact of call characteristics, such as network load,

bandwidth requirement, delay bound and call setup time limit on the performance of IRP.

28

Chapter 3

Problem Formulation and Network Model

This chapter aims to formulate the problem of routing and identify routing information
needed at each network node to achieve QoS over the Internet, in point-to-point
communication channel for real-time traffic subject to an end-to-end delay constraint in
connectionless IP networks. In literature, the unicast routing problem has been studied
extensively and formulated as a Delay-Constrained Least-Cost (DCLC) path problem.
This problem has been shown to be NP-complete [SRV97]. Several heuristics solutions
can be found in literature for the DCLC problem [Wid94, SRV97, SulL.98, ChN98c,

ZKMO01, BBBO1].

The rest of this chapter is organized as follows. Section 3.1 describes how flows are
handled in connectionless IP networks and how resources may be reserved for the
duration of the flow. In Section 3.2 the problem description, network model design and
routing information needed for QoS routing algorithms are presented. Section 3.3
describes our selected routing schemes by giving brief description and detail working

mechanism of each scheme. Section 3.4 concludes this chapter.

3.1 Establishing Connection in IP Networks
Applications with stringent demands for QoS may require connection-oriented service.

The need to reserve resources such as buffer space and bandwidth for each individual

connection in order to guarantee its QoS requirement has made the connection

29

establishment in high speed networks quite similar to call setup in circuit-switched

networks [Hwa93]. In this thesis we emphasize such applications.

When a call (flow) request arrives with its specified QoS requirement, the routing
algorithm chooses a path for the call from a set of possible paths and then proceeds as
follows. First, the source node invokes the Call Admission Control (CAC) function to
check if the new call can be admitted on the first outgoing link in the path. The call is
accepted on the link if sufficient resources (residual bandwidth) are available on the link
to meet the new call’s QoS demand, while maintaining the agreed-upon QoS for the
existing calls. If the call is accepted on the link, a certain amount of the bandwidth,
determined by the resource reservation (RR) procedure will be allocated on that link for
the duration of that call. The source node then passes the call request to its downstream
neighbor on the chosen path. This neighbor then passes the request to its downstream
neighbor if the QoS can be guaranteed at the next link also. This process continues until
either the request is successfully passed to the destination node or the request fails to
satisfy the QoS demand. In case of failure, the bandwidth that has been allocated for this
call must be released and another path if available will be tried, if the call setup time has

not yet expired. The call setup phase provides the guaranteed QoS required by the call.

3.2 Problem Description and Network Model
The algorithm that optimizes certain functions while providing a guaranteed upper bound

on end-to-end delay in point-to-point communication channel are known as Delay-
Constrained Least-Cost (DCLC) unicast routing algorithm. The Delay-Constrained

Least-Cost (DCLC) problem finds shortest least-cost path from source node s to

30

destination node d, such that the delay along the path does not exceed a delay constraint

Abound. Tt is a constraint minimization problem that can be formulated as follows:

3.2.1 Delay-Constrained Least-Cost (DCLC) Problem
The network is modeled as a directed? graph G = (V, E), where V is the set of nodes and

E is the set of links. Each link e= (i, j) € E is associated with nonnegative cost value
C(e) and a delay value D(e). The cost of a link can be assigned in various ways (e.g., link
utilization, available bandwidth, etc.). Given a delay constraint 4 the problem is to find a
path P from a source node s to a destination node d, i.e., P(s, d) such that to minimize the
cost of the entire path without violating the delay on the upper bound. Mathematically,
the DCLC problem is formulated as:

D(P) = ZeepD(e) <A

Such that:

C(P) = 2eerC(e)
Cost is minimized over all paths satisfying the first condition.
At time the connection is requested, a minimum cost (shortest) path connecting a pair of

end points is selected. Of course only paths consisting of edges with sufficient unused

bandwidth may be chosen [Wax88].

3.2.2 Routing Information
Delay-constrained routing protocols require the following information be present at each

node in the network. Each node v in the network maintains a delay table and a cost table

? Un-directed graph could also be used.

31

consisting of |V -1| entries (one entry for every other node). The entry for node u at node
v consists of:

e The address of node u;

e The delay of the least-delay path from v to u, i.e., D[P(v,u)];

e The cost of the above path, i.e., C[Pi4(v,u)]; and

e The next hop of u on the LD path from v to u,i.e., Id_nhop[Pia(v,u)].
Similar information is maintained in the cost table but with the LD path replaced by the
LC path.

e The address of node u;

e The delay of the least-cost path from v to u, i.e., D[Pi(v,u)];

e The cost of the above path, i.e., C[Pi(v,u)]; and

e The next hop of u on the LC path from v to u, i.e., lc_nhop[Pi(v,u)].
The information in the delay and cost tables can be distributed to nodes using distance-
vector (or link-state) protocols. In addition to cost and delay vectors, each node v
maintains a routing table and a table that holds invalid routing information such as loop
causing links and nodes. Every entry in the routing table corresponds to an established
path from a source s to destination d that passes through node v. Routing table entries are
created during the connection establishment phase for a session involving real-time
traffic that flows from source s to destination d. In addition to the routing information,
the routing table also holds information about the resources reserved for the connection
from s to d. When a real-time session terminates, the corresponding path is torn down,
and all the routing entries corresponding to that session are deleted. An assumption is

made that the cost vector and delay vector at all nodes are up-to-date, besides assuming

32

that the link cost, the link delays, the contents of cost vector, the contents of delay vector

do not change during the execution of routing algorithm [SRV97].

3.3 Selected Routing Schemes
This section describes the three routing schemes (DCUR, DCR, DDCA) we have chosen

for comparison with our proposed routing scheme. All these schemes are delay-
constrained unicast routing algorithms with one common objective, i.e., to minimize the

path cost under the delay constraint.

3.3.1 Description of DCUR Scheme
Salama et al. [SRV97] proposed the Delay-Constrained Unicast Routing (DCUR)

algorithm that was revised by Reeves and Salama [ReS00]. DCUR is a source-initiated
algorithm that constructs a deléy-constrained path connecting source node s to destination
node d. The path is constructed one node at a time, from source to destination. The
DCUR scheme checks, if there exists a least cost path that keeps the delay under the
constraint value. Then it is given two choices: either to select the next hop in LC path
direction (denoted as lc_nhop) or select a next hop in LD path direction (denoted as
1d_nhop). The source node (active node) after deciding the path direction sends request
to the next hop node in that direction. Every node initially attempts to forward the packet
to the next hop on LC path to the destination. However, if the least delay in the next hop

(Ic_nhop) is such that it is violating the delay constraint then the node attempts to forward

the packet to the next hop along the LD path towards the destination.

33

DCUR requires only a limited amount of computation. The algorithm, by restricting the
choice to only two nodes, fails to consider links that could potentially offer a better
overall cost-delay performance. In addition, because of its reliance on cost and distance
vector tables, the algorithm is dependent on the accuracy of these tables. For dynamic

networks whose link parameters vary frequently, this accuracy cannot be guaranteed.

Working Mechanism of DCUR Scheme
DCUR assumes that no routing loops can occur. Figure 3.1 shows the algorithm for

source node. At line 1, the source node initiates the path construction between a source
and destination node with delay constraint A. Lines (2-3) states, if the destination node is
already reached or the least delay value from source to destination violates A, then stop
routing execution and send a failure message as there exists no delay constraint path.
Otherwise, continue the forward routing process and initialize the required parameters
(lines 4- 8). The algorithm forces all the nodes to take the LC path if the delay constraint
is satisfied otherwise the LD path is used. At line 9, if the path_direction taken is LC
then it sets the next_node to lc_nhop from active_node towards d. If the path_direction is
LD, then next_node is set to Id_nhop from active_node towards d (lines 11- 12). If the
next hop node is the same on both LC path and the LD path from active_node to the
destination, then path_direction (by default) will be set to LD (lines 13-14). In line 15, a
Path_Construction message is send along the LC path. A Call_Setup_Req message for a
connection request is sent for this pair of s and d. Details of the Call_Setup_Req are

given in Chapter 4.

34

1. Inititate_Path_Construct (s, d, A) // DCURScheme
2. if (s ==d) or (D[Py(s,)] = A)

3. stop execution and send failure message

4. else //continue forward routing stage

5 active_node = s

6 prev_node = NULL

7. delay_so_far =0

8 cost_so_far =0

9 if path_direction = LC

10. next_node = lc_nhop(active_node, d)

11. if path_direction = LD

12. next_node = 1d_nhop(active_node, d)

13. if (Ic_nhop = 1d_nhop)

14. path_direction = LD //LD by default

15. send Path_Construction(s, d, prev_node, delay_so_far, cost_so_far, A)
// send Call_Setup_Req for s and d

16. end if

Figure 3.1 DCUR algorithm for source node

Figure 3.2 shows the DCUR algorithm for intermediate node. Lines 1 to 6 state that upon
receiving the Path_Construction message, a node checks if the destination node has been
reached, the routing table entry is created and DCUR_Path must be return with computed
path_ delay and path_cost. An ACK message is send to reserve resources for this pair of
source and destination nodes in order to establish a connection (as is shown in line 3).
The details of ACK message are presented in Chapter 4. Otherwise, the algorithm will
continue routing in the LC direction. The algorithm constructs the path hop-by-hop. At
each hop, a delay is computed from the active_node to the next node along least cost

(Ic_nhop) path (line 13 and 14) and tested as follows:

35

If (delay_so_far + path_delay + D[P(Ic_nhop, d)] < A)
Where path_delay is:

path_delay = D[Pi(active_node, lc_nhop)] //along lc_nhop
Similarly, for the same node, cost is computed along lc_nhop (line 15). If the path
satisfies the delay-constraint along lc_nhop, then active_node creates routing table entry
and sends Path_Construction message to next_node along LC (line 20). Otherwise,
path_direction is switched to LD (line 22). If least delay (Id_nhop) path direction is taken
(lines 24-32), delay and cost are computed in similar fashion as along the lc_nhop, except
that this time it is for 1d_nhop. Routing continues along 1d_nhop direction, creating
routing table entry and sending Path_Construction messages, until destination node is

reached.

The path constructed by existing distance-vector protocols are guaranteed to be loop free
if the contents of the distance vectors at all nodes are up-to-date and the network is in
stable condition. However, up-to-date cost vector and delay vector contents and stable
network conditions are not sufficient to guarantee loop-free operation for DCUR. In
DCUR, each node involved in the path construction operation selects either the LC path
direction or the LD path direction, or all nodes choose the LD path direction, then no
loops can occur, because the resulting paths are the L.C path or LD path respectively.
However, if some paths choose the LC path direction while others choose the LD path
direction, loops may occur. Loops can be removed using loop-elimination mechanism.
The message complexity of DCUR is O(V?), where V is the number of nodes in the

network.

36

e o B

[\ I e e e e e e e
e T AT S el =

21.
22,
23.

24

25.
26.
27.
28.
29.

Path_Construction(s, d, prev_node, delay_so_far, cost_so_far, A)
if (active_node == d) // we’ve reached destination already
/lcreate routing table entry and d enters backward setup process by sending ACK to s
path_delay = delay_so_far
path_cost = cost_so_far
return DCUR_Path(s, d, active_node, path_delay, path_cost, A, path_direction)
else //continue forward routing process
if (Ic_nhop = 1d_nhop)
path_direction = LD // path direction by default is set to LD
else
path_direction = LC //path direction is force to set at LC
. end if
. if path_direction = LC //then compute delay and cost along LC path
path_delay = D[P\(active_node, lc_nhop)] //along lc_nhop
path_cost = C [Py(active_node, Ic_nhop)] //along lc_nhop
delay_so_far = delay_so_far + path_delay + D[P\ (Ic_nhop, d)] <A
if (delay_so_far + path_delay + D[P,(Ic_nhop, d)] < A)
cost_so_far = cost_so_far + path_cost + C[P,.(Ic_nhop,d)]
//create routing table entry and continue routing along lc_nhop
send Path_Construction(s,d, prev_node, delay_so_far, cost_so_far ,A)
// send Call_Setup_Req for s and d
else
path_direction = LD // switch to 1d_nhop if Ic_nhop no more satisfies A
end if
. if path_direction = LD //then compute delay and cost along LD path
path_delay = D[Py(active_node, 1d_nhop)] //along 1d_nhop
path_cost = C[Pj4(active_node, 1d_nhop)] //along 1d_nhop
delay_so_far = delay_so_far + path_delay + D[P}4(1d_nhop, d)]< A
if (delay_so_far + path_delay + D[Py(I1d_nhop, d)]< A)

cost_so_far = cost_so_far + path_cost + C[Pyy(1d_nhop, d)]

37

30. //create routing table entry and continue routing along 1d_nhop

31. send Path_Construction(s,d, prev_node, delay_so_far, cost_so_far ,A)
// send Call_Setup_Req for s and d
32. endif

Figure 3.2 DCUR algorithm for intermediate node

3.3.2 Description of DCR Scheme

Sun and Langendorfer [SuL98] proposed distributed Delay-Constrained Routing (DCR)
algorithm, which is similar to DCUR with some differences. When DCR finds and
selects the LC path, it gives that information to the next node so that the next node does
not check again for LC path. The DCR may generate the same path as DCUR but it is
less complicated and efficient in terms of path selection algorithm than DCUR, because,

it does not check for the LC path every time.

Working mechanism of DCR Algorithm
The DCR scheme also finds routes in hop-by-hop fashion like the DCUR scheme. Figure

3.3 shows the algorithm for source node. At line 1, the source node initiates the path
construction for a pair of source and destination nodes with required delay constraint as
A. Lines 2-3 state that if the destination node is already reached or the least delay value
from source to destination dose not follow the A, i.e., if D[Pi4(s,d)] > A, then stop routing
execution and send a failure message, as there exist no delay constraint path. Otherwise,
continue the forward routing process and initialize the required parameters (lines 5- 8).
The source node further checks (line 9) from its cost vector if delay along least cost path

from s to d satisfies the delay constraint, i.e., if D[Pi(s,d)] < A then sets (line10)

38

next_node to lc_nhop from source to the destination. The path_direction is set to LC

(line 11). A Path_Construction message is send along the LC path (line 12).

[—

R T AN e

21.

p—
S

13.
14.
15.
16.
17.
18.

19.
20.
20.

Initiate_Path_Construct(s, d, A) //DCRScheme
if (s == d) or (D[Pyy(s,d)] > A)
stop execution and send failure message
else // continue forward routing stage
active_node = s
prev_node = NULL
delay_so_far =0
cost_so_far=0
if D[Pi(s,d)] <A
next_node = lc_nhop[Pi(s, d)]
path_direction = LC
send Path_Construction(s,d, prev_node, delay_so_far, cost_so_far ,A)
// send Call_Setup_Req for s and d
else
next_node = ld_nhop[Py(s, d)]
path-direction = LD
delay_so_far = D(s, Id_nhop[Pi(s, d)])
cost_so_far = C(s, Id_nhop[Py(s, d)])

send Path_Construction(s,d, prev_node, delay_so_far, cost_so_far ,A)

// send Call_Setup_Req for s and d
end if
send Path_Construction(s,d, prev_node, delay_so_far, cost_so_far ,A)

// send Call_Setup_Req for s and d
end if

A connection request (i.e., Call_Setup_Req) for this pair of s and d will establish a real

Figure 3.3 DCR algorithm for source node

time channel. Otherwise (lines 13-17), s reads next hop node on the least delay path from

39

its delay vector and sets next_node as 1d_nhop from source to destination node. A
path_direction is set to LD. A Path_Construction message is send along the LD path
(line 18). A Call_Setup_Req message for a connection request is sent for this pair of s

and d. Details of the Call_Setup_Req are given in Chapter 4.

Figure 3.4 shows an algorithm for intermediate nodes in the DCR scheme. Lines 1-4
state that upon receiving the Path_Construction message, if destination node has been
reached, a routing table entry is created and DCR_Path must be returned. An ACK
message is send to reserve resources for this pair of source and destination node in order
to establish a connection (as is shown in line 3). The details of ACK message are
presented in Chapter 4. Otherwise, the active_node continues forward routing and

constructs DCR path hop-by-hop.

If the path_direction is LC or if delay_so_far + D[Pi(active_node ,d)] < A then the
active_node reads the next hop node on the least cost path (Ic_nhop) towards d from its
cost vector and sets the next_node to Ic_nhop[Pi(active_node, d)] and path_direction =
LC (lines 6-9). The cost_so_far is computed as well for the same path. If the path
satisfies the delay-constraint along lc_nhop, then active_node creates a routing table entry
and sends Path_Construction message to next_node along LC (line 10-11). A

Call_Setup_Req message for a connection request is sent for this pair of s and d.
However, if the path_direction is LD in the received Path_Construction message instead

of LC, then the active_node reads the next hop node on the least delay path (Id_nhop)

40

towards d from its delay vector and sets the next-node to 1d_nhop[Pi«(active_node, d)]

and path-direction = LD (lines 13-16).

1. Path_Construction(s, d, prev_node, delay_so_far, cost_so_far, A)

2. if (active_node == d) // we’ve reached destination already

3. /lcreate routing table entry and d enters backward setup process by sending ACK to s

4. return DCR_Path(s, d, active_node, delay_so_far, cost_so_far, A, path_direction)

5. else //continue routing process

6. if (path_direction = LC) or (delay_so_far + D[P\(active_node ,d)] < A)

7. next_node = Ic_nhop[P(active_node, d)]

8. cost_so_far = cost_so_far + C[P\(active_node ,d)]

9. path_direction = LC

10. // create routing table entry and continue routing along lc_nhop

11. send Path_Construction(s, d, prev_node, delay_so_far, cost_so_far, A)
/I send Call_Setup_Req for s and d

12. else

13. next_node = ld_nhop[Py(active_node, d)]

14. cost_so_far = cost_so_far + C[P\s(active_node ,d)]

15. delay_so_far = delay_so_far + D[active_node, 1d_nhop(active_node,d)]

16. path_direction = LD

17. /I create routing table entry and continue routing along 1d_nhop

18. send Path_Construction(s, d, prev_node, delay_so_far, cost_so_far, A)
// send Call_Setup_Req for s and d

19. endif

20. // create routing table entry and continue routing along ld_nhop

21. send Path_Construction(s, d, prev_node, delay_so_far, cost_so_far, A)

/! send Call_Setup_Req for s and d
22. end if

Figure 3.4 DCR algorithm for intermediate node

41

The cost_so_far is computed as well for the same path. If the path satisfies the delay-
constraint along Id_nhop, then active_node creates routing table entry and sends
Path_Construction message to next_node along LD (line 18). Routing continues along
1d_nhop direction, creating routing table entry and sending Path_Construction messages,

until the destination node is finally reached.

If the destination d receives path-construction message it means the delay-constrained
path has been successfully constructed. The destination node d sends an ACK message
back to source node s to reserve resources (RR) on the way back towards the source
node. When source node receives ACK message, it marks the end of the routing and call
setup process. A connection is setup on a least-cost least-delay path from s to d with

desired QoS resources.

3.3.3 Description of DDCA Scheme
Zhang et al. [ZKMO1] proposed a distributed heuristic called distributed delay-

constrained algorithm (DDCA). DDCA is based on the relay strategy3. In essence,
DDCA is an extension of the DCR algorithm by [Sul.98], which uses a similar procedure
to construct a delay-constrained path from a source node to a destination node. The
reservation message travels along the LD path until reaching a node from which the delay
of its L.C path satisfies the delay constraint. From that node and on, the message travels
along the LC path all the way to the destination. In DDCA, each node in the network

maintains a delay table and a cost table. Similar tables are maintained in algorithms

3 The node that connects two super edges on the selected path is called the relay node, where the super edge
is defined as a connected segment of the path on which all routers use the same routing metric (either delay
or cost) for packet forwarding.

42

DCUR and DCR, each consisting of |V -1| entries (one entry for every other node). The
routing information maintained at each node are described in Section 3.2.3

Working mechanism of DDCA Algorithm
The DDCA algorithm initially checks the feasibility of the LC path from s tod. At line 1

in Figure 3.5, the source node initiates the path construction for a pair of source and
destination nodes with total_cost and required delay constraint as A. Lines 2-3 state that
if the destination node is already reached or the least delay value from source to
destination does not follow the A, i.e., if D[Pi(s,d)] > A, then stop routing execution and
send a failure message, as there exist no delay constraint path. If D(Pi.(s,d)) < A, the
algorithm returns this path [Pi(s,d)]. Otherwise, the algorithm checks if a feasible path is
available (by verifying that D[Pi4(s,d)] < A) and continue forward routing process and

initialize the required parameters (lines 6- 9).

The source node sets next_node to l1d_nhop from source to the destination (line10). The
path_direction is set to LD (line 11). Initial values computed for delay_so_far and
cost_so_far along 1d_nhop are shown in lines 12 and 13. A Path_Construction message
is send along the LD path (line 14). Otherwise (lines 15-19), s reads next hop node on
the least delay path from its cost vector and sets next_node as lc_nhop from source to
destination node. The path_direction is set to LC. A Path_Construction message is send
along the LC path (line 20). Similar to DCUR and DCR schemes, Path_Construction
messages are generated and send from source s to d along LD and LC path_direction and
Call_Setup_Req messages are send for pair of s and d to establish real-time connections
with the required QoS parameters. Details of connection establishment can be found in

Chapter 4.

43

1. Initiate_Path_Construct(s, d, total_cost, A) /DDCA Scheme

2. if (s ==d) or (D[Pi(s,d)] > A)

3. stop execution and send failure message

4. else //continue forward routing stage

5. if D[Pi(s,d)] <A

6. active_node = s

7. relay_node = NULL

8. delay_so_far=0

9. cost_so_far = C[P4(s, d)]

10. next_node = ld_nhop{Py(s, d)]

11. path-direction = LD

12. delay_so_far = D(s, Id_nhop[Pi4(s. d)])

13. cost_so_far = C(s, Id_nhop[Py(s, d)])

14. send Path_Construction(s,d, relay_node, delay_so_far, cost_so_far, total_cost, A)
/I send Call_Setup_Req for s and d

15. else
next_node = Ic_nhop[Pi(s, d)]

16. path_direction = LC

17. delay_so_far = D(s, lc_nhop[Pi(s, d)])

18. cost_so_far = C(s, lc_nhop[Pi(s, d)])

19. send Path_Construction(s,d, relay_node, delay_so_far, cost_so_far, total_cost, A)
/I send Call_Setup_Req for s and d

20. endif

21. send Path_Construction(s,d, relay_node, delay_so_far, cost_so_far, total_cost, A)

// send Call_Setup_Req for s and d
22. end if

Figure 3.5 DDCA algorithm for source node

Figure 3.6 shows the algorithm at intermediate nodes in the DDCA scheme. Lines 1-4
state that upon receiving the Path_Construction message, if destination node has reached,
a routing table entry is created and DDCA_Path must be returned. An ACK message is
send to reserve resources for this pair of source and destination node in order to
establishment a connection (line 3). Otherwise, the active_node continues forward

routing and construct DDCA path hop-by-hop.

44

If path_direction taken is LD and if delay_so_far + D[Pi(active_node ,d)] < A, then the
active_node has found a relay_node. A relay_node is a node with better path cost than
LD path, i.e., if cost_so_far + C[Pi(active_node ,d)] < total_cost, therefore the next_node
is set to a relay_node (line 9). The path cost is computed as follows and this least cost
path will be returned: total_cost = cost_so_far + C[Pi(active_node ,d)].
Path_Construction message will be send along this path. However, if the active_node is
not a relay_node (lines 14-16), delay_so_far and cost_so_far will be computed along the
LD path as follows:

delay_so_far = delay_so_far + D(active_node, 1d_nhop)

cost_so_far = cost_so_far + C(active_node, 1d_nhop)
A Path_Construction message is send in search of a better path in the LD path direction.
If the path_direction is LC (line 19) and if delay_so_far + D[Pjg(active_node ,d)] < A,
then the active_node has found a relay_node. A relay_node is a node with better path
cost than LC path, i.e., if cost_so_far + C[Pis(active_node ,d)] < total_cost, therefore the
next_node is set to a relay_node (line 22). The path cost is computed as follows and this
least cost path will be returned: total_cost = cost_so_far + C[Pi(active_node ,d)]. If LD
path violates delay constraint (line 20) then delay_so_far and cost_so_far are computed
along LC path as follows (lines 25-26):

delay_so_far = delay_so_far + D(active_node, Ic_nhop)

cost_so_far = cost_so_far + C(active_node, Ic_nhop)]

45

S

e A

11.
12.

13.

14.
15.
16.
17.

18.
19.
20.
21.
22
23.
24.
25.
26.
27.

28.

29.
30.

31.
32.

Path_Construction(s, d, relay_node, delay_so_far, cost_so_far, total_cost, A)
if (active_node == d) // we’ve reached destination already

/lcreate routing table entry and d enters backward setup process by sending ACK to s

return DDCA_Path(s, d, active_node, delay_so_far, cost_so_far, total_cost, A,
path_direction)
else // continue forward routing process

if path_direction = LD

if delay_so_far + D[P(active_node, d)] < A //active_node is a relay_node
if cost_so_far + C[P,(active_node,d)] < total_cost //path is better than LD path
relay_node = active_node

total_cost = cost_so_far + C[P(active_node,d)]
end if
/lcreate routing table entry, return DDCA_Path and continue routing along
1d_nhop

send Path_Construction(s,d,active_node,delay_so_far,cost_so_far,total_cost,A)
/1 send Call_Setup_Req for s and d
else //active_node is not a relay_node
delay_so_far = delay_so_far + D(active_node, 1d_nhop)
cost_so_far = cost_so_far + C(active_node, 1d_nhop)
send Path_Construction(s,d,relay_node,delay_so_far,cost_so_far, total_cost, A)
/I send Call_Setup_Req for s and d
/I continue forward routing along 1d_nhop
end if
else //path_direction = LC
if delay_so_far + D[Py(active_node, d)] < A //active_node is a relay_node
if cost_so_far + C[Pyy(active_node,d)] < total_cost //better path is found
relay_node = active_node
total_cost = cost_so_far + C[Pyy(active_node,d)]
end if
delay_so_far = delay_so_far + D(active_node, 1d_nhop)
cost_so_far = cost_so_far + C(active_node, 1d_nhop)]
/lcreate routing table entry, return DDCA_Path and continue routing along
lc_nhop
send Path_Construction(s,d,active_node,delay_so_far,cost_so_far, total_cost,A)
// send Call_Setup_Req for s and d
else // active_node is not a relay_node, terminate unsuccessfully
return DDCA_Path(s, d, active_node, delay_so_far, cost_so_far, total_cost, A,
path_direction)
end if
end if

Figure 3.6 DDCA algorithm for intermediate node

46

A Path_Construction message is sent in search of a better path in LC path direction. A
search for a better path continues in LC direction, however, it terminates unsuccessfully

(line 29-32).

Routing continues along 1d_nhop (lc_nhop) direction, creating routing table entry and
sending Path_Construction messages, until the destination node is finally reached. This
marks the end of forward routing stage. If the destination d receives Path-Construction
message it means the delay-constrained path has been successfully constructed. The
destination node d sends an ACK message back to source node s to reserve resources on
the way back towards the source node. When the source node receives ACK message, it
marks the end of the routing and call setup process. A connection is set up on a least-cost
least-delay path from s to d with desired QoS resources. The worst-case message

complexity of DDCA is O(|V)).

3.4 Summary
The main goal of this thesis is to test the viability of destination-controlled Delay-

Constraint Least-Cost (DCLC) QoS routing. For this purpose, we investigated three
proposed heuristics solutions for DCLC problem, namely DCUR, DCR and DDCA. All
the three heuristics work more or less in the same fashion, with the common objective of

cost minimization under certain delay constraint.

The DCUR scheme checks if there exists a least cost path that keeps the delay under the
constraint value. If there is such a path that satisfies the delay constraint in the least-cost

path direction, it selects the next hop in that direction otherwise the least delay path’s

47

next hop is selected. The routing entry of the path is saved in the routing table of the
active node and the path construction responsibility is delegated to the next hop. Since
once the least cost path node is found which satisfies the delay constraint there will
always be a least cost node along that path that satisfies the same condition. DCUR
hence selects an LC path at each hop until it finds the LD path node satisfying the delay

constraint condition. Afterwards, it selects the LD path.

The DCR scheme is similar to DCUR with a slight difference. When it finds and selects
the LC path it gives that information to the next node so that the next node does not check
again for the LC path. The path generated by DCR might be the same as DCUR but it is

less computationally expensive in terms of the path selection algorithm than DCUR.

The DDCA scheme makes use of the fact that by selecting the LC path nodes first (until
the LC path can no longer satisfy the delay constraint) and LD path later. This results in
the path that has less cost than the path generated by DCUR or DCR while still satisfying
the delay constraint. Otherwise, it selects the same path as the previous algorithms. The
routing algorithms should be able to efficiently manage the network resources such as
residual bandwidth, and buffer space. The cost of a link is taken as a function of link’s
bandwidth utilization. Cost performance should be the criteria for algorithms in

efficiently managing the residual link bandwidth.

48

Chapter 4

Integrated Routing Protocol Overview

Multimedia applications in high-speed networks require acceptable performance
independent of traffic conditions. To provide performance guarantees in delivering such
applications, resource reservation becomes indispensable. A good routing scheme must

be used to find a feasible path before any allocation of network resources can take place.

The routing schemes considered in this research (DCUR, DCR, DDCA) are mainly
focusing on the routing aspect of the problem while leaving the CAC and resource
reservation problems for future investigation. This thesis analyzes, compares and
interweaves the above-mentioned distributed QoS routing schemes with call admission
and resource reservation in order to find the most viable path finding algorithm among
the chosen schemes. We call this approach the Integrated Routing Protocol (IRP). IRP
operates in two stages; a forward routing stage and a backward setup stage. During the
forward routing stage, the routing information is forwarded from source towards
destination on feasible paths through call setup messages. A successful path generation
through each of the chosen candidate routing schemes in parallel marks the completion of
forward routing stage. The destination node collects information on feasible paths
through chosen distributed routing algorithms in its database. The backward call setup
stage starts after the destination node chooses a viable path for a single source and
destination node pair. The call setup messages include the latest CAC information on

links within the traversed paths. A viable least-cost path with the most available

49

bandwidth within the delay constraint is then selected. Connection setup attempts
resource allocation backwards towards the source node, such that the CAC criteria are
met. The performance measures studied through the simulation model are the call
acceptance ratio (CAR) and call blocking ratio due to lack of bandwidth (CBRLB) and
call blocking ratio due to delay bound violation. We also studied the effect of call setup

time limit on the IRP scheme.

The rest of the chapter is structured as follows. The problem definition of Integrated
Routing Protocol (IRP) is presented in Sections 4.1. Section 4.2 presents a detailed
overview of the IRP scheme through defining the messages exchanged between various
nodes in order to establish a real time connection. A pseudo-code description of the
algorithm integrated with call admission and resource reservation is presented. Summary

of the chapter is presented in Section 4.3.

4.1 Integrated Routing Protocol Problem Definition
A directed network is modeled as a set of N nodes that are interconnected by a set of E

communication links. Each node i has a routing table that has an entry for every other
node j. The distance-vector algorithm maintains the routing table. It is assumed that
links have different cost and delay values in each direction. The end-to-end QoS
provision is depicted as follows: when a source node s wants to send a data packet with a
certain QoS requirement to a destination node d, it issues a Q0S connection setup request.
The system first identifies a feasible path between sending and receiving ends that can
satisfy the QoS requirement. Then the destination node checks the availability and

reserves resources along the path to establish the desired connection. After the

50

connection is established, the source node sends its data packets along that path to the
destination node. The reserved resources along the path guarantee the quality of service.
Resources should not be reserved during QoS routing because the routing may involve a
large portion of network instead of a single path from the source to the destination

[HaAOO].

The IRP scheme works in two stages; the forward routing stage and a backward setup
stage. The forwarding routing stage of the scheme assumes Py(s, d), P(s, d) and Ps(s, d)
are three (one for each of our candidate routing algorithms — DCUR, DCR and DDCA)
least-cost paths between single pair of. source node s and a destination node d that are
determined through call setup messages and meet the end-to-end delay requirements.
The destination node will collect information about all the three paths (P, P2, and P3)
determined by the respective schemes. Following a minimum cost criteria, the
destination node chooses a path with lowest cost as the best viable path that obeys the
delay bound constraint. The backward setup stage of the IRP scheme will be invoked by
the time the destination node receives the path information. It will send a call setup
message along the received path backward towards the source node. The call setup
message tests whether any one of the chosen paths P;, P; or Pz is able to meet the CAC
criteria and end-to-end delay bound requirements for the connection under consideration.
On finding such path, the destination node efficiently allocates resources from itself
backwards towards the source node along the selected path to establish a successful
connection. The problem of Integrated Routing Protocol (IRP) can be formally stated as

follows:

51

Given a connection and the path P between source node s and destination
node d, based on the available resources, determine whether the
connection can be admitted on the path P and if so, reserve the necessary

resources, assuming that the desired QoS is determined by the destination.

If a connection can be successfully established on the chosen viable path within the
specified call setup time limit, the control is transferred back to the destination node for
the selection of next best viable path. Resource reservation is attempted along this path
backwards towards the source node, within a connection setup time limit. In case of
failure in connection establishment phase, control will be transferred back to the
destination node with a failure message and will release the already allocated resources

along the partially established path.

The selection of proper routing metric is an important factor in QoS routing. The IRP
utilizes buffering and propagation delays as the delay metric and reserved bandwidth as
the cost metric. The delay experienced in the network consists of propagation delays and
buffering delays. The buffering delay on a link is assumed to be a dynamic metric that
changes as the link bandwidth changes. The buffering delay reflects the reserved
bandwidth and traffic characteristics on the network [AlO98], where higher network

loads can cause data streams transferred on the network to experience longer delays due

to increased buffering.

52

4.2 Integrated Routing Protocol Overview
The objective of integrated routing approach is to provide and evaluate alternate paths in

unicast routing in order to enhance the chances of call acceptance, success ratio, network
throughput and robustness. An overview of integrated unicast destination-control routing
algorithms with CAC and RR using the FRBS approach is described in detail in this

section.

4.2.1 Messages Exchanged by IRP
The following are the messages used in our proposed IRP scheme:

1. Call_Setup_Req (Call_ID, Req_B, A, U, delay_so_far, path_info): a unicast
setup message issued at the destination node towards the source node after routing
protocol finds a feasible path in order to establish a real time connection with the
following parameters:

o Call_ID: a system wide unique identifier is assigned to every call and is
maintained by a counter value, which increments by one every time a new
call request is issued at the destination node. There can be many
connection requests arriving at the same period of time. Messages
belonging to different requests are sent over the network simultaneously.
They are distinguished by their Call IDs, and no message interference will
occur among different requests.

o QoS requirements of a Call:

a. Req_B is the connection bandwidth requirement, which is
the bandwidth lower bound,

b. Ais the end-to-end delay bound and

53

c. M is the setup time delay.

o delay_so_far: the delay of the traversed path from the source to the
current node.
o path_info: the feasible path from source node to the destination

2. ACK (Call_ID, Req_B, block_links, path_info): a reservation message that
contains the connection required bandwidth (Req_B) and the path_info from the
routing table, which represents the path chosen to connect the destination node
with the source node for a specific connection begin identified by its Call_ID.
The ACK message will reserve the desired resources only if a node passes the
CAC test. Each time the ACK message is sent out it will check a list of
block_links so that to avoid loops and broken links. Where block_links is a table
storing information about broken links.

3. NACK (Call_ID, path_info, block_links): a negative acknowledgment message
when issued will release the resources along the path being stored at path_info. It
also contains block_links, which are assumed to be a list of all blocked links
encountered in earlier attempts to setup the connection. A NACK message is an
indication of resource reservation failure and triggers the destination to select
another feasible path. NACK releases the partially allocated resources before it

triggers the destination to select a new viable path.

IRP utilizes the following Call Admission Control (CAC) criteria:
1. (dly_so_far < A): where dly_so_far is the accumulative delay along the path till

the current node and is tested against the upper limit on the delay.

54

2. (b(e)+ Req _B < CB): where b(e) is the reserved bandwidth on a link and Req_B
is the connection QoS requirement which is tested against the upper limit on

bandwidth, i.e., Cost Bound (or CB).

If either of the CAC tests fails on a link, it will not be added to the path. Such failed links
will be recorded in a block_links table. The block_links table will be checked each time

an ACK message is sent out so as to avoid loops and broken links.

4.2.2 Operation of Integrated Routing Protocol
The Integrated Routing Protocol (IRP) utilizes the FRBS approach and works in two

stages, the Forward Routing Stage and Backward Setup Stage.
4.2.2.1 Forward Routing Stage
The forward routing stage starts when an application sends out a routing request and

proceeds as follows:

A pair of source and destination nodes will enter the routing process. The routing process
will be carried out by all of our chosen routing algorithms in parallel for the same pair of
source and destination nodes. All the three routing algorithms will choose a least-cost
path that follows the delay bound constraint and store their respective paths (P1, P2 and

P3) along with their respective costs (C1, C2 and C3) in a table at the destination node, as

shown in Figure 4.1.

55

h Destination

P1 Cc1

Destination Table

Figure 4.1 IRP at Forward Routing Stage

The forward routing process ends when all possible paths of all selected schemes are
forwarded through call setup request messages towards the destination node, requesting a
connection establishment. The Call_Setup_Req message carries the most up-to-date
CAC information on the links within the traversed paths.

4.2.2.2 Backward Setup Stage

The destination node will enter a backward setup stage upon receiving the
Call_Setup_Req from the source node. At the destination node the backward connection

configuration process proceeds as follows:

The destination node in IRP will have feasible paths stored at its database being selected
through all of the three distributed routing schemes. The most viable path selection

decision is made at the receiver end by looking up at its database. A least cost path that

obeys the end-to-end delay bound will be selected as the most viable path. The
destination node may delay the selection of a path for a waiting time period T. The

philosophy behind the waiting time period is that there may be some other paths under

56

generation process and coming towards the destination node to be stored at the routing
table [KhHO03]. We do not want to eliminate the possibility of such paths from
consideration. The waiting period is calculated based on the threshold limit of the
application and the call characteristics [AIO98]. An acknowledgement (ACK) message
will be sent out on the most viable path from the destination backward towards the source
node as shown in Figure 4.2, where P2 is selected as viable path. Desired resources are

allocated along the path P2 within the setup time limit # and delay bound constraint 4.

If a call request is rejected or the connection times out when the setup time limit expires
for a session while allocating resources backwards from destination towards source node,
a negative acknowledgement (NACK) message will be issued from the failed node. The
partially (or fully) constructed path will be torn down, and the resources allocated so far
will be released and made available for other flows. The control will be transferred back
to the destination from the node that encountered a failure, in order to select the next
viable path being generated by another scheme from the database at the destination node.
A new ACK message will be released for RR along this newly selected path. A
connection will be established when ACK message reaches the source node. The ACK
message is forwarded to every node in the reverse path in order to reserve requested
resources. If any link violates CAC condition, when the resources are reserved by other
connections, the algorithm control will go back to the destination node, after releasing
reserved resources from the path fragment that has been reserved during backward
process. The destination node then chooses another path, which does not contain

previously encountered blocked links.

57

m() 4 Destination

Destination Table

Figure 4.2 IRP at Backward Setup Stage
When the source node receives the ACK message, it knows that a reserved path has been
established to the destination. However, the destination node does not learn of the
connection establishment until it receives the first data packet. At this time the
destination node removes all of the unnecessary information corresponding to this

connection from its routing table.

The objective of routing prior to resource allocation is to select a path (that has been
determined by our selected routing algorithms) with best chance of satisfying the
resource requirement. After selecting such a path (viable path), resource reservation is
attempted successfully along the path, thus eliminating the chances of selecting paths that

would have otherwise been resulted in congested traffic.

4.2.3 Pseudo-Code Description of IRP
The following section presents a pseudo code description of our Integrated Routing

Protocol. Various control messages are exchanged between nodes along a path in a

distributed manner. The source node, intermediate nodes and destination node react

58

differently to messages exchanged in the protocol. The three control messages of the IRP
are Call_Setup_Req, ACK and NACK. Operation of each node is triggered by the arrival

of a control message.

4.2.3.1 Algorithms for Source Node
The source node algorithm at the forward routing stage is shown in Figure 4.3a. Line 1

represents the beginning of the forward routing stage where path construction will begin
by selecting a routing scheme. Lines 2-3 provide a test for the continuation of the forward
routing process. If the source node already reaches a destination or the least-delay value
from the source to the destination node exceeds the delay bound, then there exists no such
path that satisfies the delay constraint therefore execution of routing must stop.
Otherwise, the source node first checks if the call setup time (%) is exhausted. In that
case the setup message at the source node would discard the request (line10). The
routing begins to forward Call_Setup_Req message on the selected outgoing links, if the
call admission test is successful and the setup time is not expired (lines 5-6). The
outgoing links are selected by the routing algorithms (DCUR, DCR, and DDCA). These
algorithms are run in parallel to find the most feasible least-cost path. A connection
establishment request to the next available node is then sent out (line 7). The
Call_Setup_Req message carries the call QoS requirement, the delay and the maximum

setup time limit a call can tolerate and a list of all the nodes on the shortest path to the

destination.

Figure 4.3b shows the algorithm for source node during the backward setup stage. Lines

13-21 indicate that if the call setup time is not exhausted and there are enough resources

59

// Initiate path construction using the available routing schemes i.e., DCUR, DCR, DDCR
if (s == d)or (D[Pu(s,d)] = A) //least-delay value exceeds delay bound

stop routing execution
else // continue forward routing process

if (b(e) + Req _B < CB) and (dly_so_far < A) // CAC test
send Call_Setup_Req (Req _B, A, , d(next), path_info) to next

|

2

3

4

5. if (U not exhausted)
6

7

8 // next is determined according to routing schemes i.e., DCUR, DCR or DDCR
9

else
10. discard message
11. endif
12. end if

Figure 4.3a Algorithm for source node during forward routing stage
at the time of ACK message arrival at the source node then resources will be allocated on
the way back from destination towards source node, establishing a connection.
Otherwise NACK message (line 18) will be send along the reserved path fragment to

indicate the failure of the path (lines 22-24).

13. ACK (Call_ID, Req_B, block_links, path_info) received from node v on link e
14. if (u not exhausted)
15. if (b(e) + Req_B < CB) and (dly_so_far < A) // CAC test

16. Reserve Resources on e // establishing connection

17. else

18. send NACK (Call_ID, path_info, block_links) to node v // call failure
19. endif

20. end if

21.end ACK

22. NACK (Call_ID, path_info, block_links)
23. remove path info and release resources

24. end NACK

Figure 4.3b: Algorithm for source node during backward setup stage

60

4.2.3.2 Algorithm for Intermediate Node
Pseudo-code descriptions for the intermediate node in any reachable path during forward

routing and backward (connection) setup stage are shown in Figure 4.4a and 4.4b
respectively. Figure 4.4a shows an intermediate node at forward routing stage. CAC test
will be performed on every out going link, which is determined by our selected routing
schemes, i.e., DCUR, DCR and DDCA, such that the Call_Setup_Req message will
proceed only if the setup time limit is not exhausted and the local node has the required

resources. Otherwise, the Call_Setup_Req message will be discarded (line 13).

1. Call_Setup_Req (Req_B, A, p, dly_so_far, path_info) received from node v on link e

2. if (u is not exhausted)

3. e =outgoing link //selected by scheme DCUR, DCR or DDCA

4. if (b(e)+Req_B < CB) and (dly_so_far <A) //CAC test

5. send Call_Setup_Req (Req_B, A, p, dly_so_far + d(next), path_info) on link e

6. if current_node == destination_node //enter backward setup process

7. send ACK (Call_ID, Req_B, block_links, path_info) from node v on link e

8. else

9. send Call_Setup_Req (Req_B, A, W, dly_so_far + d(next), path_info) on
link e

10. end if

11. end if

12, else

13. discard message

14. end if

15. end Call_Setup_Req

Figure 4.4a: Algorithm for intermediate node during forward routing stage
If the CAC test is successful (line 4) and the Call_Setup_Req reaches a destination node,
it will enter the backward setup (connection configuration) stage (line 6). Each time a
Call_Setup_Req message (line 5) reaches the destination, the path information it carries

will be stored in the destination database. An ACK message will be send along the path

61

in order to establish a connection between sending and receiving ends (line 7). Otherwise
forward routing will continue and a Call_Setup_Req message that carries the call QoS
requirements and the shortest path QoS parameters, the accumulated delay so far till the

current node will be forwarded on link e to next node (see line 9).

In Figure 4.4b, lines 16-24 depict the case where Call_Setup_Req is received at an
intermediate node during backward setup stage. If setup time limit has not yet expired
(line 17) then the node checks at line 18 if the QoS requirements are met. The routing
process continues by sending an ACK message, reserving resources and establishing a
connection (lines 19-20 and lines 25-28). Meanwhile Call_Setup_Req are forwarded
(line 21) to the next node on the path after updating QoS parameters, i.e., accumulative
delay with that of the next link to be traversed. On the other hand, if reservation fails at
an intermediate node due to CAC conditions, i.e., required bandwidth and delay bound
are not met, a NACK message (line 30) is sent on the path and all the way to the
destination. Every node that receives the NACK message (lines 30-35) will remove the
path information from the routing table and release the previously reserved resources for
the connection. When the NACK message reaches the destination, it will trigger the
destination (see Figure 4.5b) to choose the next best feasible path from its database. The
NACK message is assumed to carry a list of all blocked links encountered in trying to

setup the corresponding connection on the previous path. The blocked list will be used

when selecting the next viable path to avoid previously blocked links.

62

16. Call_Setup_Req (Req_B, A, p, dly_so_far, path_info) received from node v on link e
17. if (u is not exhausted)
18. if (b(e)+ Req_B < CB) and (dly_so_far <A)//CAC test

19. send ACK (Call_ID, Req_B, block_links, path_info) to next on link e

20. /I connecting link e to nexte= link connecting next

21. send Call_Setup_Req (Req_B, A, , dly_so_far + d(next), path_info) to next
22. end if

23. endif

24. end Call_Setup_Req

25. ACK (Call_ID, Req_B, block_links, path_info) received node v on link e
26. if (U is not exhausted)

27. if (b(e)+REQ_B <CB)

28. Reserve Resources on e //establishing a connection

29. else

30. send NACK (Call_ID, path_info, block_links) to node v // call failure
31. endif

32. end ACK

33. NACK (Call_ID, path_info, block_links) to node v

34. remove path info and release resources

35. end NACK

Figure 4.4b: Algorithm for intermediate node during backward setup stage

4.2.3.3 Algorithms for Destination Node
A pseudo code of the algorithm for the destination node at forward routing and backward

setup stages are shown in Figures 4.5a, and 4.5b, respectively. In Figure 4.5a, lines 1-5
shows completion of the routing stage. The destination node stores all the path
information in its database and waits for a specific time period T before it enters a
backward setup stage. The philosophy behind wait time period at the destination node is
to assure that all path information has reached and been stored at the destination database.
At the same time it also ensures that none of the paths that have been found are omitted
from consideration as viable path before the destination node selects the viable path and

enters a backward setup stage.

63

Call_Setup_Req (Req_B, A, p, dly_so_far, path_info) received from node v on link e
if (u is not exhausted) and current == destination // d has reached
wait until 7is reached
// d stores path info in its database and enters backward setup stage
end if
end Call_Setup_Req

Figure 4.5a: Algorithm for destination node during forward routing stage

16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

NACK (Call_ID, path_info, block_links) receives from node v
remove path info and release resources
if (1 is not exhausted) and (T exhausted) // d has reached, wait until 7is reached
select best viable path
send Call_Setup_Req (Req_B, A, p, dly_so_far, path_info) on link e
end if
end NACK
Call_Setup_Req (Req_B, A, u, dly_so_far, path_info) received from node v on e
if (b(e) + Req_B < CB) and (dly_so_far <A) //CAC test
send ACK (Call_ID, Req_B, block_links, path_info) to next on link e
// connecting link e to next
send Call_Setup_Req (Req_B, A, W, dly_so_far + d(next), path_info) to next
end if
end Call_Setup_Req
ACK (Call_ID, Req_B, block_links, path_info) received from node v on link e
if (b(e)+Req_B < CB) and (u is not exhausted) //CAC test
Reserve Resources on e //establishing a connection
else
remove call information from database
send NACK (Call_ID, path_info, block_links) to v // call failure
end if
end ACK

Figure 4.5b: Algorithm for destination node during backward setup stage

64

Figure 4.5b shows the destination node at the backward setup stage. When the NACK
message reaches the destination from node v, it will trigger the destination to choose the
next best feasible path from its database (lines 6-9), after a wait time period and if the call
setup time is not exhausted. A Call_Setup_Req will be send out along the chosen viable

path (line 10).

As the first Call_Setup_Req message (lines 13-18) is received at the destination, the
connection configuration stage starts on the already chosen feasible path from the set of
paths from the destination database (line 9). The destination chooses a least cost path
meeting the delay bound for establishing a connection. Then, it sends an ACK message
(line 15), which carries the selected path information, backward on the chosen path to
start reserving the required resources. Upon receiving the ACK message (19-20), the
CAC criteria will be tested. Reservation continues (line 21) on the selected path until a
source node is reached, where at this point all links on the path have been reserved and
the connection has been established successfully. The connection configuration process
will continue until one of three things happen; the destination succeeds to connect to the
source node, there are no more viable paths available at the destination database, or the
setup time limit is exhausted and the connection is timed out. The reservation process is
completed once the ACK message reaches the source node connecting the destination on
a unicast path. The destination on the other hand, will know about the connection
establishment when it receives the first data packet. In case of CAC test violation, all call

information from database will be removed (line 23) and NACK message (line 24) will be sent

out.

65

4.3 Summary
This chapter introduced our proposed new approach of Integrated Routing Protocol

(IRP). IRP establishes real-time connection using forward routing and backward setup
approach. During the forward routing process, feasible paths are found and during the
backward connection setup process sufficient network resources such as network
bandwidth, buffer space, etc. are reserved at each network node for the connection so that
the required quality of service can be guaranteed. If a call request is rejected when setup
time limit expires for a session while allocating resources backwards from the destination
towards source node, the partially (or fully) constructed path is torn down, and the
already allocated resources so far will be released and made available for other
connections. Cost and delay are considered as the routing metrics. Cost is taken as a
function for efficiently measuring network resource (bandwidth) utilization, while delay

is taken as the queuing delay and propagation delay along the path experiences.

66

Chapter 5

Performance Evaluation

The performance of IRP algorithm is analyzed and compared with the performance of the
individual implementations of DCUR, DCR and DDCA algorithms. A discrete-event
base simulator is developed using the Visual C++ programming language. The simulator
randomly generates a network graph over a square grid area using average node degree of
four. Background network traffic is randomly generated on edges to show varying real
life networking conditions. Information on network nodes (routers) is periodically
exchanged among neighboring nodes, using the Distance-Vector protocol. The
performance evaluation depends on the accuracy of network state information that
changes frequently due to dynamic nature of distributed routing. Controlling how often
the updates are sent could reduce the volume of information updates. Yilmaz and Mata
[YiMO02] suggest updates can be sent periodically, or triggered by a change that is bigger
than a specified value or clamp down timers. Furthermore, choosing what to advertise
can also control the volume of updates. For instance, can we advertise information only

in the link of a node that triggered the update or all the links of the node in a graph.

The rest of this chapter is organized as follows. Section 5.1 explains the simulation
model adopted in this study. Section 5.2 describes the experimental settings used in this
simulation. Section 5.3 describes the performance evaluation metrics that are taken into
consideration, which includes call acceptance ratio (CAR), call blocking ratio due to lack

of bandwidth (CBRLB) and call blocking ratio due to setup time expiry (CBRSTE). The

67

effects of network traffic load, connection required resources, networks density and call
setup time limit on the performance of distributed destination-controlled IRP scheme are

investigated and reported in Section 5.4. Section 5.5 concludes this chapter.

5.1 Simulation Model
The simulation model consists of two components: the network model and the

background traffic mode.

5.1.1 Network Model
The simulations are based on network topologies generated using a modified version of

the Waxman Model [Wax98] as proposed by Salama [Sal96]. Networks of different
densities (nodes 20 and 30) are randomly generated over a square coordinate grid area,
generating uniformly distributed values for x and y coordinates in a plane. Edges are
introduced between each pair of nodes with probability P(u,v) that depends on distance
between nodes u and v. The distance between nodes u and v is computed through well-
known Euclidean metric, denoted as dist (u, v). The edge probability is defined as:
P(u,v) = (8 * exp(-dist (u,v))/(&@* L)) , where L is maximum distance between nodes &
and, B are tunable parameters in the range (0,1]. The parameter ¢ controls the density of
short edges in the network such that increasing ¢ increases the number of connections
between far away nodes. The parameter £ controls the average node degree, such that
increasing £ increases the degree of each node. A random number, r, is generated such
that 0 £ r <1. If r is less than P(u,v) then an edge is added between nodes. A connected

digraph is created with an average node degree of four. The edge cost and edge delay are

68

uniformly distributed within the specified range. The edge delay is made proportional to

the Euclidean distance of the edges in the coordinate plane.

5.1.2 Background Network Traffic Model
The background network traffic is modeled in the simulation by assigning a value for the

reserved bandwidth on links. The reserved bandwidth on the link reflects the network
load, such that higher reserved bandwidth values represent higher network loads. The
reserved bandwidth comprises of three values, i.e. minimum, maximum and the nominal
assigned bandwidths. Each link in the network is randomly assigned any of these three
values. The nominal assigned bandwidth on a link serves the purpose of the network load
of our interest. When the network graph is generated, all the links in the entire graph are
flooded with nominal assigned bandwidth as the desired network load. This is assumed
to be background traffic and is randomly updated to reflect changes in link loads. A
change in a link load updates the cost of this link, the buffering delay and ultimately
resulting in updating the link delay. Traffic updates are periodically advertised to
immediate neighbors using a distributed version of Bellman-Ford distance vector

protocol.

5.2 Experimental Settings
All simulation experiments conducted are divided into two sets in order to simulate

networks with different densities. The first set of experiments is for networks of 20
nodes and the second set consists of a network of 30 nodes. The simulation results are

achieved with 10% confidence intervals and 90% confidence level (see Appendix A).

69

Each simulation result is observed as an arithmetic average of five consecutive simulation
runs. Each run consists of 4000 requested calls. For each run, a new graph is generated
with a different topology using different values for zand B. Source and destination
nodes are picked randomly from the set of randomly generated nodes. Each link e is
assigned a bandwidth (cost) and a delay parameter. The bandwidth parameter is
associated with the available bandwidth on the link, such that the higher available
bandwidth reflects higher value. The delay parameter is the sum of the perceived
buffering delay, transmission delay and propagation delay over the link [Rou00] and

[RoHO1].

In IRP the destination node collects arriving setup messages within a route selection
waiting time period (1), which is a predefined timer for selecting the best-cost path during
forward routing stage. After the waiting time period elapses before selecting viable path,
the destination node releases the ACK message. The backward stage starts with an ACK
message that is forwarded backward towards the source node along the best-cost selected
path. If a link on the selected path breaks due to either of three reasons, i.e., delay
violation, lack of resources availability or setup time expiry, the ACK message is
discarded and a negative ACK message i.e., NACK is sent backward along the path
fragment to the destination. The destination node will then choose another path, which
does not contain any previously broken links. When the source node receives an ACK
message, it knows that a path has been established to the destination and then start
transmission. On the other hand, the pure implementation of DCUR, DCR and DDCA

algorithms need not to wait before releasing the ACK message. This is due to the fact that

70

these algorithms generate a single path for a pair of source and destination node. Since
there is no chance of an alternate path, the ACK message is rather released immediately

by the destination node after it receives the first Call_Setup_Req message.

5.3 Performance Evaluation Metrics
The three network performance metrics studied in this research are:

The Call Acceptance Ratio (CAR): CAR represents the proportion of calls accepted (a
feasible path connecting the sending and receiving ends is found within a setup time

limit, p).

The Call Blocking Ratio due to Lack of Bandwidth (CBRLB): During the connection
setup process, sufficient network resources (bandwidth) are reserved at each network
node so that the user required quality of service could be guaranteed for data transmission
time. However, in case of a failure in finding the desired resources within the traversed
path, a call is blocked due to lack of resources (bandwidth) and is called CBRLB.

The Call Blocking Ratio due to Setup Time Expiry (CBRSTE): A call is blocked due
to setup time expiry if a call request fails to establish a connection within p. The
connection is said to have timed out when p expires during a session, while allocating
resources. The partially (or fully) constructed path will be torn down and already

allocated resources will be released which will be made available for other connections.

71

54 Simulation Results
We examined the effect of network load, connection bandwidth requirement, delay

bounds, waiting time period and call setup time limit on the performance of the proposed
IRP scheme. The simulation results obtained for IRP are analyzed and compared with
the results of DCUR, DCR and DDCA algorithms. Various experiments are conducted
under different network traffic conditions to evaluate the performance measures of
interest, i.e., call acceptance ratio (CAR), call blocking ratio due to lack of bandwidth
(CBRLB) and call blocking ratio due to setup time expiry (CBRSTE). It is expected that
IRP, which chooses the best path chosen by the DCUR, DCR and DDCA algorithms

should have a higher CAR and lower CBRLB than any of the three routing algorithms.

The first experiment studies the CAR for IRP and compares it with the CAR of DCUR,
DCR and DDCA algorithms for lenient delay bounds (Figure 5.1) and strict delay bounds
(Figure 5.2). The second experiment shows the CBRLB for lenient delay bounds (Figure
5.3) as well as tight delay bounds (Figure 5.4). The third and fourth experiments were
conducted to study the effect of CAR (Figures 5.5 and 5.6) and CBRLB (Figures 5.7 and
5.8) for all four algorithms under a single plot for light and heavy bandwidth requirement,
as well as for both lenient and tight delay bounds using varying traffic conditions. The
results on the left hand side in all the plots are the results obtained at network of size 20
nodes while that on the right hand side are the results obtained at network of size 30
nodes. The call setup time limit in these first four experiments was taken very large, so
that it has no effect on call blocking probabilities. However, we studied the effect of call
setup time limit in the last two experiments for IRP. Results for these experiments are

shown in Figure 5.9 and Figure 5.10.

72

Figure 5.1 shows the CAR for DCUR, DCR, DDCR and IRP for four values of required
bandwidth (Req. Band values of 15, 20, 25 and 30) under a lenient delay bound of 200
ms. Figure 5.1a shows the CAR for DCUR scheme at relaxed delay bound for networks
of 20 nodes. When the connection required bandwidth is light (Req-Band =15) the CAR
is 90% and decreases slowly with the increase in network load. At medium connection
requirement (Req. Band 20 and 25) the CAR at light loads is over 80% but gradually
decreases with the increase in network load, whereas, at very high load, CAR abruptly
lowers down to 50 %. For high required bandwidth (Req. Band =30), the CAR is below
70% for lighter loads but as the load increases, feasible paths with high bandwidth
requirement gets harder to find, hence resulting in lower call acceptance ratios. Figure
5.1b and Figure 5.1c show the CAR for DCR and DDCA schemes, respectively. It is
evident from the results in these figures that call acceptance deceases for higher network
loads particularly when the connection QoS requirement is high. This is because it is
hard for these algorithms to find least-cost paths that meet the delay constraint. On the
other hand, the IRP (Figure 5.1d) shows 95% call acceptance at lighter load and low
connection requirement. It achieves a significant call acceptance of 75% at light load
with high connection requirement. The performance of IRP remains stable over 55% and

does not degrade abruptly at high network loads.

Network size also affects the call acceptance ratio. As the network size grows, the
propagation delay between end nodes increases. Finding the desired delay constraint
paths in dense networks reduces the probability of call acceptance in DCUR, DCR and

DDCA schemes (Figures 5.1e-5.1g).

73

100

75

50

CAR (%)

25

CAR (%)

100

75

50

CAR (%)

25

(a) CAR for DCUR at DB 200 Nodes 20

TY T I I Y v T T IersIY

—&—Req. Band 15 === Req. Band 20
wmnfyes Req. Band 25 —@=— Req. Band 30

30 35 40 45 50
Average Network Load

(b) CAR for DCR at DB 200 Nodes 20

wegpuu Req. Band 15 =={==Req. Band 20
sy Req. Band 25 —=@==Req. Band 30

30 35 40 45 50
Average Network Load

(¢) CAR for DDCA at DB 200 Nodes 20

T T T T T T I v Ivr YTy

wwsdpuss Re). Band 15 «={J== Req. Band 20
=y Req. Band 25 =—@=— Req. Band 3(

30 35 40 45 50
Average Network Load

(d) CAR for IRP at DB 200 Nodes 20

g Req. Band 15 «f == Req. Band 20
=—f/r—Req. Band 25 «=@=Req. Band 30

30 35 40 45 50
Average Network Load

() CAR for DCUR at DB 200 Nodes 30

75

50

CAR (%)

25 | =—@=wReq. Band 15 =={= Req. Band 20

==fr=—Req. Band 25 ~—@=—Req. Band 30

Average Network Load

(f) CAR for DCR at DB 200 Nodes 30

wagpun Req. Band 15 =={==Req. Band 20
«=fy=Req. Band 25 —@==Req. Band 30

CAR (%)
un
(]

Average Network Load

(2 CAR for DDCA at DB 200 Nodes 30
100

75

50

CAR (%)

25 st Req. Band 15 =={3==Req. Band 20
«=fy—Req. Band 25 —@—=Req. Band 30

0 '] 'l A [A L A A A

I B AR N NS NEL SRNEE EA SN

30 35 40 45 50
Average Network Load

(h) CAR for IRP at DB 200 Nodes 30

25 ——&— Req. Band 15 —{}— Req. Band 20
wfr=-Req. Band 25 =@ Req. Band 30

o A L A] A '] A A 2

30 35 40 45 50
Average Network Load

Figure 5.1 Call Acceptance Ratio vs. Network Load at Delay Bound 200

74

However, IRP performs better (Figure 5.1h) comparing to counterpart schemes due to the
fact that IRP provides alternate path choice, henceforth resulting in higher call acceptance
even in dense networks. The proposed IRP algorithm clearly outperforms DCUR, DCR
and DDCA algorithms in call acceptance probabilities for all four values of required

bandwidths at various network densities, traffic load when the delay bound is lenient.

Figure 5.2 shows CAR for all the schemes at tight delay bound. Comparing Figures 5.1a,
5.1b and 5.1c with Figures 5.2a, 5.2 b and 5.2c reveals that as the delay bound increases,
achieving higher CAR becomes harder in all the three schemes. This is because most of
the calls are blocked due to delay constraint violation. Whereas, IRP yields higher CAR
of 95% for both relaxed (Figure 5.1d) and 90% for tight delay bounds (Figure 5.2d) at
low connection requirement than DCUR, DCR and DDCA (Figures 5.1a-5.1¢ and
Figures 5.2a-5.2¢c) for small networks (nodes 20). As the network size increases, in case
of tight delay bounds (Figures 5.2e-5.2g), the CAR starts degrading significantly for
heavy connection requirement as the network loads increases for all the three schemes.
However, IRP still shows better results (over 20% CAR) comparing to DDCA (Figure
5.2g) where CAR is below 10%, while DCUR and DCR shows better results (near 20 %
CAR) than DDCA. The low CAR in these schemes is due to high delay violation, as
dense networks experiences longer propagation delays that result in higher delay

violations and low call acceptance ratios.

75

100

75

50

CAR (%)

25

() CAR for DCUR at DB 90 Nodes 20

R\.

s Req. Band 15 =={3== Req. Band 2C
ety Req. Band 25 ==@== Req. Band 3C

Average Network Load

(b) CAR for DCR at DB 90 Nodes 20

g Req. Band 15 === Req. Band 20
wfyewe Req. Band 25 «=@=Req. Band 30

30 35 40 45 50
Average Network Load

(¢) CAR for DDCA at DB 90 Nodes 20

~—— Req. Band 15 === Req. Band 20
e=fy—Req. Band 25 «~@=—=Req. Band 30

TTTT IS IV TT v IT Yy So Y

30 35 40 45 50
Average Network Load

(d) CAR for IRP at DB 90 Nodes 20

o—o\’__.§.é

-~ Req. Band 15 —{3— Req. Band 20
== Req. Band 25 ~—@— Req. Band 30

30 35 40 45 50
Average Network Load

100

75

50

CAR (%)

25

100

75

50

CAR (%)

25

(e) CAR for DCUR at DB 90 Nodes 30

wagpue Req. Band 15 === Req. Band 20
=== Req. Band 25 =@ Req. Band 30

T™TTTVIT T I s Is T rTee

30 35 40 45 50
Average Network Load

(£) CAR for DCR at DB 90 Nodes 30

o= Req. Band 15 =={J==Req. Band 20
«—fr—Req. Band 25 —@=—Req. Band 30

30 35 40 45 50
Average Network Load

(g) CAR for DDCA at DB 90 Nodes 30

suudpues Req. Band 15 ={== Req. Band 20
~fy—Req. Band 25 —@=Req. Band 30

30 35 40 45 50
Average Network Load

(h) CAR For IRP at DB 90 Nodes 30

@ Req. Band 15 === Req. Band 20
[—&—Req. Band 25 —@==Req. Band 30

30 35 40 45 50
Average Network Load

Figure 5.2 Call Acceptance Ratio vs. Network Load at Delay Bound 90

76

The second experiment studies the call blocking probability due to lack of resources.
Higher traffic loads yield higher CBRLB, at the same time, heavier connection QoS
requirement yields higher CBRLB too. Figure 5.3 and Figure 5.4 show the CBRLB for
all schemes at relaxed as well as tight delay values respectively. In Figures 5.3a-5.3d all
schemes including IRP show similar low trends of CBRLB at low bandwidth requirement
(under 1 %) which has little effect on call acceptance, suggesting that all the schemes
easily find feasible paths that have low resource requirements. As the connection
requirement and network load increase the CBRLB for DCUR, DCR and DDCA show
increasing trends (Figures 5.3a-5.3d), whereas IRP (Figure 5.3d) achieves low CBRLB
both at light as well as heavy connection requirements. As it can been seen that at 30 %
network load, in IRP only 20% calls are blocked due to lack of resources when a high
connection requirement is needed (Figure 5.3d) while DCUR (Figure 5.3a) and DDCA
(Figure 5.3c¢) reject 25% of calls and DCR (Figure 5.3b) rejects 30% of calls due to lack
of recourses. As the network load increase from 30 % to 50 %, IRP still maintains low

CBRLB (45 %), whereas DCUR, DCR and DDCA show over 50 % CBRLB.

Clearly, IRP outperforms DCUR, DCR and DDCA in achieving low call blocking ratios
both at high and low connection requirements as well as at light and heavily congested
network loads. IRP outperforms the counterpart algorithms in dense networks too. As it
can be seen from Figures 5.3e-5.3g at low bandwidth requirements the CBRLB tends to
increase up to 5% for high network loads and at heavy bandwidth requirement CBRLB

increases up to 55 % due to the fact DCUR, DCR and DDCA need more resources to

71

establish successful connections. On the contrary, IRP (Figure 5.3h) shows more than

10% lower CBRLB at heavy connection requirements and high network load.

Figures 5.4a-d and 5.4e-g shows CBRLB for DCUR, DCR and DDCA algorithms for
small and large networks respectively for tight delay bound. It is observed that the delay
constraint has little effect on call blocking ratio due to lack of bandwidth for small
networks (but networks density has a significant effect on CAR). In large networks due
to longer propagation delays, the link delay increases and hence more calls are blocked
due to delay violation rather than lack of resource availability, resulting in low CAR.
Nevertheless, DCUR, DCR and DDCA result in low CBRLB (Figures 5.4e-5.4h) as
compared to call blocking at relaxed delay (Figures 5.3e-5.3h). IRP achieves lower
CBRLB for nodes 30 as well as nodes 20 networks (Figures 5.3d, 5.3h and Figures 5.4d,
5.4h) compared to other schemes (Figures 5.3a-5.3c and Figures 5.4e-5.4g). IRP has the
advantage of alternate paths availability over DCUR, DCR and DDCA algorithms,

resulting in higher CAR and ultimately lower CBRLB.

Figure 5.5 and Figure 5.6 show the call acceptance ratio versus network load under light
and heavy bandwidth requirement, respectively. The figures combine the results of IRP
with DCUR, DCR and DDCA algorithms for both light and heavy bandwidth

requirement at various network loads.

78

CBRLB (%)

CBRLB (%)

CBRLB (%)

CBRLB (%)

75

50

25

75

75

50

25

75

wh
o

(o]
W

(a) CBRLB for DCUR DB 200 Nodes 20

ot Req. Band 15 =~ Req. Band 2C
=ty Req. Band 25 =—@—Req. Band 3C

L BN BN B am B A Bm B M ua Em Em)

40

45
Average Network Load

35

(b) CBRLB for DCR DB 200 Nodes 20

sy Req. Band 15 =={==Req. Band 2C
mmgye= Re(. Band 25 =—@=— Req. Band 3C

35 40 45 50

Average Network Load

(¢c) CBRLB for DDCA DB 200 Nodes 20

wmdpese Re. Band 15 == Req. Band 20
efy==Req. Band 25 —~@==Req. Band 30

TT I T I T AT T

35 40 45
Average Network Load

(d) CBRLB for IRP DB 200 Nodes 20

—— Req. Band 15 =~{3-Req. Band 20
wmepyes Req. Band 25 =—@==Req. Band 30

35 40 45 50

Average Network Load

CBRLB (%)

CBRLB (%)

CBRLB (%)

CBRLB (%)

wh
(=

N
h

75

75

(e) CBRLB for DCUR DB 200 Nodes 30

wntpe Req. Band 15 s} Req. Band 20
== Req. Band 25 ——@=— Req. Band 30

35 40 45 50

Average Network Load

30

(f) CBRLB for DCR DB 200 Nodes 30

e Re . Band 15 «={}we Req. Band 20
=ty Req. Band 25 ~-@==Req. Band 30

35 40 45 50

Average Network Load

30

(© CBRLB for DDCA DB200 Node 30

wdpune Re. Band 15 «={J== Req. Band 20
wfyme= Req. Band 25 =—=@=— Req. Band 30

75

35 40 45 50

Average Network Load

30

(h) CBRLB for IRP DB 200 Nodes 30

wwp Req. Band 15 =={J== Req. Band 20
wefywen Req. Band 25 =@ Req. Band 30

40

45
Average Network Load

30 35

Figure 5.3 Call Blocking Ratio vs. Network Load at Delay Bound 200

79

(a) CBRLB for DCUR DB 90 Nodes 20

(e) CBRLB for DCUR at DB 90 Nodes 30

75 75
wntp—Req. Band 15 =={3— Req. Band 20 L o— Rog. Band 15 = Req, Band 20
3 e Req. Band 25 —@=—=Req. Band 30 S 50 i Req. Band 25 Req. Band 30
5 N
0 s
; e ._.___’0———0"“'.
b et |
30 35 40 45 50 30 35 40 45 50
Average Network Load Average Network Load
75 (b) CBRLB for DCR at DB 90 Nodes 20 (f) CBRLB for DCR at DB 90 Nodes 30
75
—&—Req. Band 15 —#—Req Band 20 —o— Req. Band 15—~ Req. Band 20
S wmyeem Rel. Band 25 «=@e= Req. Band 30 ~ 5 —&—Req. Band 25 —@— Req, Band 30
N’ @
2 =
2 >
o G
30 35 40 45 50 30 35 40 45 50
Average Network Load Average Network Load
75 (¢) CBRLB for DDCA at DB 90 Nodes 20 25 () CBRLB for DDCA at DB 90 Nodes 30
[=& Req. Band 15 =—#— Req. Band 20 ¢ Req. Band 15 —i— Req. Band 20
) so |~ Req. Band 25 =@~ Req. Band 30 & 50 «fy=Req. Band 25 —=@==Req. Band 30
3 | o
0 [%
©oas | A | ©
[/\
30 35 40 45 50 3% 4 s %0
Average Network Load Average Network Load
(d) CBRLB for IRP at DB 90 Nodes 20 (h) CBRLB for IRP at DB 90 Nodes 30
75 75
wes Req. Band 15 —4—Req. Band 20 ~~4¢— Req. Band 15 —#—Req. Band 20
Req. Band 2 Req. Band 30 -~ w—— R —— Req.
S 50 ==ty==Req. Band 25 =@ Req. Ban 9 50 Req. Band 25 Req. Band 30
3 3
& 2
8 &

30 35 40 45 50
Average Network Load

30 35 40 45 50
Average Network Load

Figure 5.4 Call Blocking Ratio vs. Network Load at Delay Bound 90

80

Networks of 20 and 30 nodes were generated for both lenient and tight delay bounds to
study CAR and CBRLB results. In Figure 5.5, the experiments are conducted under a
relaxed delay bound to reduce its effect on the call acceptance ratio and another time to
elucidate under a tight delay bound (Figure 5.6). As the network load increases while the
delay bound is relaxed, the call acceptance ratio decreases slowly for all routing
algorithms, which can be attributed to the fact that it is harder to find links with the
required QoS resources in highly congested traffic conditions. The network size also
affects the call acceptance ratio. With large networks, meeting a delay bound is harder
due to longer propagation delays. Therefore as the network size increases, the distance
between end nodes (propagation delay) increases and results in longer delays. Ultimately

finding paths with least-cost links that meet the delay bounds becomes harder to find.

As the delay bound is assumed to be tighter (Figure 5.6b and 5.6d), the performance of
DDCA decreases faster than IRP algorithm. The delay bound starts to have a major
effect on call acceptance ratio, which increases the difficulty of finding a path that meets
both the bandwidth and the delay requirement. This particularly is true in case of large
networks (Figures 5.6¢ and 5.6d). Nevertheless, IRP still outperforms the other three

algorithms at lighter loads.

IRP performs better in terms of call acceptance than DCUR, DCR and DDCA algorithms
because IRP provides alternate path option between end nodes. It is observed from the
results in Figures 5.7a-5.7d that IRP adopts well to call blocking probabilities and results

in high CAR. The lower CBRLB in IRP is the result of up- to-date information carried in

81

100

90

CAR (%)

80

70

100

80

60

CAR (%)

40

20

(a) DB 200 RB 15 Nodes 20

s DCUR s 7pms DCR
wanpos DDCR =@ IRP

30 35 40 45 50
Average Network Load
(b) DB 200 RB 30 Nodes 20
[—4—DCUR —i+—DCR
f —-t—DDCR —@—IRP
30 35 40 45 50
Average Network Load

100

CAR (%)

CAR (%)

90

80

70

100

80

60

40

20

(c) DB 200RB 15 Nodes 30

™ T T T T rTrrT ey

wunpmem DCUR e={3== DCR
sgpwe DDCA —@— [RP

35 40 45 50
Average Network Load

30

(d) DB 200 RB 30 Nodes 30

wngpuen DCUA i DCR
wwgjpwe DDCA ==@—=IRP

35 40 45 50
Average Network Load

30

Figure 5.5 Call Acceptance Ratio vs. Network Load at Delay Bound 200

100

CAR (%)

80

20

(@) CAR for DB 90 RB 15 Nodes 20

vty DCUR s s DCR
wodpee DDCA ~ wl@== IRP

L0 B S0 BN BN BN B BN B B BN Em a {

30 35 40 45 50
Average Network Load
(b) CAR for DB 90 RB 30 Nodes 20
—4—DCUR ={3—DCR
- st DDCA =@ [RP
30 35 40 45 50
Average Network Load

CAR (%)

CAR (%)

60

40

20

(c) CAR for DB 90 RB 15 Nodes 30

wwtpe DCUR ~ waelifeuse DCR
wie=DDCA =—@==]IRP

30 35 40 45 50
Average Network Load

(d)CAR for DB 90 RB 30 Nodes 30

™ T T I yItTITroyy

wwslpne DCUR ol 3 DCR
=t~ DDCA =@ IRP

30 35 40 45 50
Average Network Load

Figure 5.6 Call Acceptance Ratio vs. Network Load at Delay Bound 90

82

the Call_Setup_Req messages to the destination and also the ability of IRP to choose an
alternative path in case of resource reservation failure within traversed paths. When the
network load gets extremely high, the call acceptance ratio by DCUR, DCR and DDCA
decreases faster than IRP, as it excludes all links with insufficient bandwidth from

consideration when computing a shortest path.

For lenient delay bound, as in Figure 5.5a and 5.5c, the call acceptance for DCUR, DCR
and DDCA degrades for both light and heavy bandwidth requirement when the number
of network nodes increases. Whereas for tighter delay bounds and heavy bandwidth
requirement, as in Figure 5.6b and 5.6d, the call acceptance degrades faster (drops down
below 10%) in all the three schemes, whereas IRP maintains above 50 % CAR in small
networks and over 20% of CAR in dense networks. This shows that if a connection fails
on a feasible path in case of any of three schemes the entire scheme would fail. This is
not the case for IRP, hence the higher call blocking probabilities as shown in Figures

5.8a-5.8d.

Indeed, the alternate path choice is the reason IRP outperforms DCUR, DCR and DDCA

algorithms in terms of call acceptance probability

83

(a) CBRLB for DB 200 RB 15 Nodes 20 (¢) CBRLB for DB 200 RB 15 Nodes 30

10 10
ety DCUR ==L DCR [~#—DCUR -0-DCR
— [wwfpee DDCA =—@=— [RP
§ wnmggse DDCR emn@unss JRP § 3
5F ms)
: 2}
Q 3] 5
0 0 [A] A '] I 'l 2 1 A
30 35 40 45 50 30 35 40 45 50
Average Network Load Average Network Load
(b) CBRLB for DB 200 RB 30 Nodes 20 (d) CBRLB for DB 200 RB 30 Nodes 30
[suspos DCUR sselses DCR b
50 50
—_ [——t—DDCR ~#—IRP — L
g g |
Y: .
X o [@ DCUR ==h DCR
: k wwggme DDCA e=t@ew][RP
10 N 1 N 1 2 1 N 1 N 10) . X . . . X . N .
30 35 40 45 50 30 35 40 45 50
Average Network Load Average Network Load

Figure 5.7 Call Blocking Ratio vs. Network Load at Delay Bound 200

10 (a) CBRLB for DB 90 RB 15 Nodes 20 10 (¢) CBRLB for DB 90 RB 15 Nodes 30
s [——DCUR ={3=DCR [——DCUR —{—DCR
~ } ~—d— DDCA —@—IRP § F wi==DDCA =—@—IRP
3 s [m s |
a | 2 |
o [a |
o o .
0 —& 0
30 35 40 45 50 30 35 40 45 50
Average Network Load Average Network Load
50 (b) CBRLB for DB 90 RB 30 Nodes 20 (d) CBRLBfor DB 90 RB 30 Nodes 30
4 50 -
[—e—DCUR —{—DCR
~40 F ~ 40 [
£ S [—a— DDCA —8— IRP
3| .
2] L m
2% E —4-DCUR «~{3- DCR (&)
e DDCA @ [RP
10 u M 1 N 2 2 i " 1 M
30 35 40 45 50 30 35 40 45 50
Average Network Load Average Network Load

Figure 5.8 Call Blocking Ratio vs. Network Load at Delay Bound 90

84

The effect of call setup time limit, i, is studied in case of IRP scheme under a tight delay
bound as shown in Figures 5.9a and 5.9b. The call setup time limit has significant effect
on call blocking probability. Figures 5.9a and 5.9b show the call blocking ratio due to
setup time expiry (CBRSTE) for longer, moderate and tighter setup time limits in small
and dense networks, respectively. For longer setup time limits (u=150ms), none of the
calls is blocked due to setup time expiry. Setup time p = 85 ms yields lower CBRSTE in
case of smaller networks, as is shown in Figure 5.9a. However, in dense networks
CBRSTE is 40 % at light load for u =85ms and decreases with the increase in network
load as is shown in Figure 5.9b. It is because, at higher network loads, more calls are
blocked due to delay violation and lack of resources rather than setup time expiry. When
setup time limit is made tighter (L = 50), 50% calls are timed out at smaller networks as
is shown in Figure 5.9a. Since the setup limit is very short, the IRP is not able to take
advantage of alternate path availability and go back to the destination to select the next
viable path. Therefore, it results in high CBR due setup time expiry. Whereas, in dense

networks at u = 50, 40% calls may time out.

(a) CBRSTE for DB 90 RB 30 Nodes 20 (b) CBRSTE for DB 90 RB 30 Nodes 30

(o]
o
o

—= 50 ms
{85 ms
—— 150 ms

——50 ms
e} 85 ms
—Z/x— 150 ms

=)
(]

CBRSTE (%)
) IS
[} [an]

CBRSTE (%)
[\®] b
o <o

(=)
(o]

1 A 1 [

0 A Ay Ay 0 1
30 35 40 45 50 30 35 40 45 50
Avg. Network Load Avg. Network Load

Figure 5.9 Call Blocking Ratio due to Setup Time Expiry vs. Network Load

85

(a) CBRSTE vs. Call Setup Time Limit

0
o

—&— Load 30 %
- 1 oad 50 %

o))
O

CBRSTE (%)
N b
S O

50 60 70 80 90 100 110 120
Call Setup Time Limit

Figure 5.10 Call Blocking Ratio due to Setup Time Expiry vs. Call Setup Time Limit

Figure 5.10 shows CBRSTE versus call setup time limit (u) under delay bound of 90 for
low and high average network loads of 30 % and 50 % respectively. It is evident from
the figure that as p increase, the CBRSTE decreases, both under light and heavy loads.
However, at heavy load, more calls are timed out. This is attributed to the fact that at
very large setup time limits, IRP stabilizes and calls are accepted before they are timed
out where calls are rejected mainly due to failure in finding a path that meets the

bandwidth and delay constraints.

5.5 Summary
This chapter investigated the performance of the proposed Integrated Routing Protocol

through an extensive simulation model. Several experiments were conducted to evaluate

86

the performance of IRP and to compare it with DCUR, DCR and DDCA algorithms. The
simulation results showed that IRP outperforms DCUR, DCR and DDCA in achieving
high call acceptance. The ability of providing alternate path choices between end nodes
enhances the call acceptance ratio in IRP. At the same time, IRP is shown to have good
call blocking probability results as it carries up-to-date CAC information and select paths
with highest available bandwidth under the delay bound, hence avoiding selecting
congested paths that would ultimately end up in call blocking during resource reservation

process.

87

Chapter 6

Conclusions

The nature of applications needed to be transmitted over the Internet has changed
significantly during the past two decad. This has resulted in the development of today’s
high speed networking architecture, that supports wide ranges of communication-
intensive real-time multimedia applications. A key issue facing the network service
provider is that of providing QoS guarantees to users while utilizing network resources as
efficiently as possible. Network resources typically include link bandwidth, buffer space,
etc. The service provider has a number of controls using which network performance can
be tuned. These includes routing, bandwidth allocation, call admission control (CAC)
and resource reservation. Selecting appropriate paths, the routing function can efficiently
allocate network bandwidth (resources). Bandwidth allocation refers to the service rate
assigned to a source at a physical link. A higher service rate normally implies better
service (lower delays) but lower efficiency. The CAC function controls the acceptance of
calls into the network. A new call is admitted only if its QoS requirements can be met
while meeting those of all existing calls in the network. A good CAC algorithm should
result in the maximum possible utilization of resources. The challenge of providing QoS

has been accepted by many researchers, and they proposed several QoS routing solutions.
The main objective of QoS routing is to provide efficient utilization of network resources

while satisfying QoS requirements for every admitted connection.

88

In this thesis we investigated various QoS routing schemes and proposed a novel
approach of Integrated Routing Protocol (IRP) in IP networks, to meet multi-media
applications requirements while achieving efficient network resource utilization. We
interweave routing with CAC and resource reservation. IRP establishes a unicast
connection in two stages, a forward routing and a backward setup stage to find the most
viable path between source and destination nodes. The forward routing stage computes
QoS paths using distributed delay-constrained unicast routing algorithms described in
Delay-Constrained Unicast Routing (DCUR) proposed by Salama et al. [SRV97], Delay-
Constrained Routing (DCR) proposed by Sun and Langendorfer, [SuL98] and Distributed
Delay-Constrained Algorithm (DDCA) proposed by Zhang et al., [ZKMO1]. The routing
information is forwarded from source towards destination on feasible paths through
connection setup messages. The setup messages include the latest CAC information on
links within the traversed paths. CAC is used in routing to test if a path can support the
flow, while maintaining the QoS of the existing connection. In the backward setup stage,
the destination node selects a viable least-cost path with the most available bandwidth
that meets the delay constraint and begins resource reservation backwards towards the
source node, exercising CAC on each link along the path. CAC decisions are based on
the current network traffic load. The proposed approach requires each router to maintain

routing entries for each concerned routing metric (e.g., delay, cost, etc.).
A comprehensive simulation model was developed to study the performance of the

proposed scheme. The results were compared with those of the independent

implementation of each of the algorithms used. Various simulation experiments were

89

conducted under different traffic characteristics and network parameters. Since IRP
provides alternate path techniques in unicast routing, it maximizes the number of
accepted connections, while providing satisfactory QoS to existing connections and
treating all requested calls fairly. IRP integrates CAC, resources reservation with
routing. The reason for this integration is that multimedia traffic has special QoS
requirements that can only be met by appropriate admission control mechanisms, at the
same time reserving resources for admitted connections in advance is essential in order
guarantee the required services. Integration of routing with CAC, while reserving

resources in advance can result in higher call acceptance.

to

90

[AAP93]

[AIO98]

[Auk96]

[BBBO1]

[ChN98a]

[ChN98b]

[ChN9&c]

[GSAO1]

[FeGOO0]

[HaAO0O]

[Hou96]

References

B. Awerbuch, Y. Azar and S. Plotkin, “Throughput-competitive On-Line
Routing,” Proceedings 34™ JEEE Annual Symposium on Foundations of
Computer Science, Nov. 1993, pp. 32-40.

M. Al-Otaibi, “Routing and Resource Reservation in ATM Networks,” MSc.
Thesis, Department of Computer Science, Kuwait University, Kuwait, 1998.

Aukia, P, Oy, N., “Quality of Service Based Routing”,
http://www.tcm.hut.fi/Opinnot/Tik-110.551/1996/qos_rout.html

H. Bettahar, A. Bouabdallah, C. Beaujean, “A parameterized distributed
unicast routing algorithm with end-to-end delay constraint,” Proceedings
ICT2001-The 8™ IEEE International conference on Telecommunications-
Romania, 2001, pp.1-16.

S. Chen, and K. Nahrstedt, “An overview of quality-of-service routing for the
next generation high-speed networks: Problems and Solutions,” IEEE
Network, Special Issue on Transmission and Distribution of Digital Video,
Vol. 12, 1998, pp. 64-79.

S. Chen, and K. Nahrstedt, “Distributed QoS routing with imprecise state
information,” Proceeding of IEEE Seventh International Conference on
Computer, Communications and Networks, Lafayette, LA, Oct. 1998, pp.
614-621.

S. Chen, and K. Nahrstedt, Distributed QoS routing in High-Speed Networks
Based on Selective Probing,” Technical Report, University of Illinios at
Urbana-Champaign, Department of Computer Science, 1998.

D. Ghosh, V. Sarangan, and R. Acharya, “Quality-of-Service Routing in IP
Networks,” IEEE Transactions on Multimedia, Vol. 3, No. 2, 2001, pp. 200-
208.

A. Fei, and M. Gerla, “Smart Forwarding Technique for Routing with
Multiple QoS Constraints,” IEEE Proceedings of Globecom 2000, San
Francisco, CA, Vol.1, Nov. 2000, pp. 599-604.

H.S. Hassanein, and M. M. Al-Otaibi, “Destination-Controlled Routing with
Resource Reservation,” IPCCC 2000, pp. 405-411.

C. Hou, “Routing virtual circuits with timing requirements in virtual path
based ATM networks,” INFOCOM ’96, Vol. 1, 1996, pp. 320-328.

91

[Hwa93]

[HaZ00]

[IS198]

[KhHO3]

[KiNO0O]

[KoK99]

[LiM95]

[RoHO1]

[Rou00]

[ReS00]

R-H. Hwang, “Routing in High-Speed Networks,” PhD Dissertation,
Department of Computer Science, University of Massachusetts, USA, May
1993.

F. Hao, and E. Zegura, “On Scalable QoS Routing: Performance Evaluation
of Topology Aggregation,” INFOCOMM 2000 Proceedings, Vol. 1, 2000,
pp. 147-156.

A. Iwata, H. Suzuki, R. Izmailow, and B. Sengupta, “QoS Aggregation
Algorithms in Hierarchical ATM Networks,” IEEE Proceedings of the
ICC’98, 1998, pp. 243-148.

Z. Khan and H. Hassanein, “QoS-Constrained IP Routing,” Proceedings of
IEEE Canadian Conference on Electrical and Computer Engineering, May
2003.

L. King-Shan, and K. Nahrstedt, “Topology aggregation and routing in
bandwidth-delay sensitive networks,” IEEE Globecom 2000 Proceedings,
Vol. 1, 2000, pp.410-414.

T. Korkmaz, and M. Krunz, “Source-Oriented Topology Aggregation with
Multiple QoS Parameters in Hierarchical ATM Networks,” IEEE
Proceedings of the IWQo0S°99, 1999, pp.137-146.

C. Liu and H.T. Mouftah, “Virtual call admission control-A strategy for
dynamic routing over ATM network,” Proceedings IEEE International
Conference on communication ICCC’95), Seattle, 1995, pp.201-205

A. Roumani, and H. Hassanein, “A Scheme for QoS-Based Dynamic
Multicast Routing,” Proceedings of Sixth IEEE Symposium on Computers
and Communications 2001, pp. 132-138.

A. Roumani, “QoS-Based Multicast Routing,” MSc. Thesis, Department of
Computing and Information Science, Queen’s University, Kingston, Ontario,
Canada, Aug. 2000.

D.S. Reeves, and H.F. Salama, “A Distributed Algorithm for Delay-
Constrained Unicast Routing,”, IEEE/ACM Transactions on Networking,
Vol. 8, No. 2, 2000, pp.239-250.

[RFC1058] C. Hedirck, “Routing Information Protocol,” Internet RFC 1058,

http://ds.internic.net/rfc/rfc1058.txt , June 1988.

[RFC1583] J. Moy, “OSPF Version 2,” Internet RFC 1583, Mar. 1994.

92

[REC2386] E. Crawley, R. Nair, B. Rajagopalan and H. Sandick, “A Framwork for QoS-
based Routing in the Internet,” RFC 2386,
http://www.fags.org/rfcs/rfc2386.html

[RFC2676] G. Apostolopulos, S. Kamat, R. Guerin, “QoS Routing Mechanism and
OSPF Extensions,” RFC 2676, Aug. 1999, 50 pages,
http://www.ietf.org/rfc/rfc2676.txt

[Sal96] H.F. Salama, “Multicast Routing for Real-Time communication On High-
Speed Networks”, PhD Dissertation, Department of Electrical and
Computing Engineering, North Carolina State University, 1996.

[ShC00] K.G. Shin and C. -C. Chou, “A Distributed Route Selection Scheme for
Establishing Real-Time Channel”, IEEE Transactions on Parallel and
Distributed Systems, Vol. 11, No. 3, Mar. 2000, pp. 318-335.

[SGAOO] V. Sarangan, D. Ghosh and R. Acharya, “Distributed QoS routing for
Multimedia Traffic”, Conference on Global Telecommunications,
GLOBECOME 00 IEEE, Vol. 1, 2000, pp. 455-459.

[SuL98] Q. Sun and H. Langendorfer, “A new distributed routing algorithm for
supporting delay-sensitive applications,” Computer Communications, Vol.
21, 1998, pp.572-578.

[SMM98] R. Sriram, G. Manimaran, C. S. R. Murthy, “Preferred link delay-constrained
least-cost routing in wide area networks,” Computer Communications, Vol.
21, 1998, pp.1655-1699.

[SRV97] H.F. Salama, D. S. Reeves and Y. Viniotis, “A Distributed Algorithm for
Delay-Constrained Unicast Routing”, IEEE INFOCOM 1997, pp.84-91.

[TEL316] Data Network Design, http://www.tele.sunyit.edu/routing_principles.htm

[VPLI8] S. Verma, R. Pankaj, A. Leon-Garcia, “Call admission and resource
reservation for guaranteed quality of service services in internet,” Computer
Communications, Vol. 21, 1998, pp.362-374.

[WaC96] Z. Wang and J. Crowcroft, “Quality-of-Service Routing for Supporting
Multimedia Applications,” IEEE Journal on Selected Areas in
Communications, Vol. 14, No. 7, 1996, pp.1228-1234.

[WaC95] Z. Wang and J. Crowcroft, “Bandwidth-delay Based Routing Algorithms,” In
Proceedings of the GLOBECOM ’95 Conference IEEE, Vol. 3, 1995, pp.
2129-2133.

[Wax88] B.M. Waxman, “Routing of Multipoint Connection”, IEEE Journal on Selected
Areas in Communications, Vol. 6, No. 9, 1988, pp.1617-1622.

93

[Wid94] R. Widyono, “The design and evaluation of routing algorithms for real time
channels,” Techincal Report ICSI TR 94-024, Department of EECS,
University of California at Berkeley, 1994.

[YiMO02a] S. Yilmaz and I. Matta, “On the Scalability-Performance Tradeoffs in MPLS
and IP Routing,” Technical Report BUCS-TR-2002-013.

[YiMO2b] Yilmaz, S., and I. Matta, “Unicast Routing: Cost-Performance Tradeoffs,”
Technical Report BUCS-TR-2002-018.

[ZKMO1] B. Zhang, M. Krunz, H. Mouftah and C. Chen, “Stateless QoS routing in IP

networks,” In Proceedings of the IEEE GLOBECOM 2001 Conference-Global
Internet Symposium, San Antonio, Texas, Nov. 2001, pp. 1600-1604

94

Appendix A

Confidence Intervals

Normally, confidence intervals placed on the mean values of simulation results can be
used to describe the accuracy of the simulation results. Consider the results of N

statistically independent simulation runs for the same experiment: X, Xs, ..., XN. The

sample mean, X is given as:

M.

—_— X ;
X = 4=zl
N

The variance of the distribution of the sample values, S ? is:

Y (X, -Xx)*

SZ=i=1
* N -1

S X
The standard derivation of the sample mean is given by: —\/——
N

Under the assumption of independence and normality, the sample mean is distributed in
accordance to the t-distribution, which means the sample mean of the simulation runs fall
in the interval +¢& within the actual mean with a certain probability drawn from the t-

distribution.

where ta/z,N_1 is the value of the t-distribution with N-1 degrees of freedom with

probability « /2. The upper and lower limits of the confidence interval regarding the
simulation results are:
- S x ta /2,N-1

Lower Limit = X -
N

Sxta//2,N—1

Upper Limit = X + IN
N

95

