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Abstract 

\Veb caching is a technique that temporarily stores Web objects (such as Hypertest 

documents) for later retrievd in order to irnprove the performance and scalability of the \Xreb. 

Layer 5 svitching-based transparent Web caching schemes intercept HïTP requests md 

redirect requests according to their contents. This technique not oniy makes the deployment 

and configuration of the cadiing system easier, but also ùnproves its performance by 

redirecting non-cacheable HTTi? requests to bypaçs cache servers. 

In this thesis, we propose a Load Balancing Layer 5 çwitching-based (LB-Lj) Web caching 

scheme that uses the msparent  Web caching technique to support distributeci Web caching- 

In LB-L5, information about pro. cache semer workload, networli link delay, cache content 

and access-h-equency is used to redirect H T l T  requests in order to ache\-e cache semer 

workload balance and better response tirnes. LB-L5 uses a weighted Bloom Filter to represent 

cache content and access-frequency information, which enables LB-L5 to implement access- 

frequency-aware cache cooperation. LB-L5 e.aends ICP, the mos t po pular Web caching 

protocol, to support communication benveen cache servers and Layer 5 switches, and ensure 

compatibility with existing Web cache systems. 

A number of simulation e.sperÛnents were conduaed under different HTI-P requesr 

intensities, nehvork link delays and populations of cooperating cache servers. Simulation 

results show that LB-L5 outperforms esisting Web caching schemes, n-melv ICP, Cacl-ic 

Digest, and basic L5 transparent Web caching, in terms of cache semer workload b a l m c i n ~  

and response tirne. LB-L5 is also shown to aciapr better to 1ligl-i HTlT  request intensitv than 

the otl-ier scl-iernes. 
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Chapter 1 

Introduction 

The World-\Vide Web P,2] (the IVeb) is an Intemet-based glo bal1 y distributed in fornation 

system that was orïginally developed at CERN (Conseil Européen pour la Recherche 

Nucleaire) for s haring in fornation arnong collaborating researchers. The Web uses Hy pertext 

for stcucturing information [1,2]. Hyperte.-T is test with links (called Hyperlinks) to other 

information, such as t e ~ t  and multimedia. The clients and senrers on the Web use the 

HyperTest Trans fer Protoco l ( H m )  to communicate [3,4]. -1 W'eb dien t accessrs 

information on a \Veb server by sending an HlTP request. 11e server parses d ~ e  request, 

retrieves the requested information, and retums it to the client. 

Since its hrst complete implementation in 1991 [2], the Web lias esperienced phenomenal 

gro\vth because of its tnendly user interfaces and effective information dissemination 

capability. However, the growd~ of rhe LVeb has contributeci signibc;mtly to tlir traffic on tlic 

Interne< and raised sevenl problems such as long HTTP request/response times, 1iea;iw LVrb 



Chapter 1. Introduction - 7 

server worlcloads and netsvork congestion [5]. These problems have mo tivated several pro jrcts 

on improving the perfo miance and scalability O t the Web. 

Web caching a technique that ternporarily stores Web objects (such as Hypertest documents) 

for later retrieval, is considered one of the most efficient approaches [GYT]. Web caching c m  be 

perfomed at Web prosies. A IVeb p r o 9  consists of application level software that accepts 

HTI?) requests from a set of clients, fetches the requested objects from originül YVeb sen7ers, 

caches the requested objects and sends these objects back to the clients. Prosv Rreb caching 

increases document availabiliy and enables domdoad sharing. Ir reduces overd access delay 

and swes network bandwidth by caching Crequently requested Web objects. 

In addition to local pros7 Web caching disaibuted cache cooperation, a rnechism tDr 

s haring documents benveen caches, cm hrther improve system performance b y providing a 

shared cache to a large user population [8,9,10yll,12]. In a cooperxire Web caching system, if 

a cache miss occurs at a local cache semer, the request can be fonvarcled to one of a set of 

cooperating servers. Therefoore, if any one of the servers has a cached copy of the requested 

object then the request will result in a cache hit. 

In the past few years, several W-eb ccaching schemes were proposed ;md widely deployed to 

support distributed cache cooperation. The pioneer project C E R !  [13], iirid its direct 

successor Harvest [Z-C], introduced the Internet Cache Protocol (ICP) to achie\-e pros! scn-cr 

çoopecation [15,l6,lï'l. After Harvest was commercialized in 1995, Squid [ l  SI becme its 

public domain successor. One of  the most recent improvements implemented in Squid is the 
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Cache Digest (CD) LVeb caching scheme [19], which uses a Bloom Filter [19] to represent the 

cache content and performs directory-based proxy cache server coopemtion. A sirnilar scheme, 

S u m m q  Cache [20], was proposed by Pei Cao in 1998- 

Recendy, Layer 4 and Layer 5 (L4/L5) switching-based transparent 'Cir& cicl~ing techniques 

have drawn lots of attention kom academic and industrial researchers [21,22,23,24,25]. IBM, 

- o m P o i n t  (acquired by CISCO in June 2000) and Alteon (acquired by Norte1 in July 2000) 

have announced L5 switches that c m  transparently redirect non-cacheable HTI'P requests to 

original Web servers and cacheable requests to caches by using TCP spoofing and TCP 

splicing techniques. Transparent Web caching not on- makes the deployment and 

configuration of the caching system easier, but also improves its performance by redirecting 

non-cacheable HTTP requests to bypass cache servers [21]. 

However, no Web caching sclieme has yet been proposed for the m s p a r e n t  \Vrb caching ta 

support dismibuted cache cooperltion, which is widely supported by prosy Web caching 

svstems and has proven ettective [8,9,10,12,17,18,19,26,32]. The thesis of this rexxch  is 

d u t  transparent Web caching c m  be cornbined with diseibuted cache coopemtion to provide 

improved cache performance. 

In this thesis, we propose the b a d  Balancing Laver 5 (LB-L5) sivitchinç-based \Vel~ c d 4 n ç  

scheme. LB-L5 uses transparent Web caching techniques to support distributcd Web caching. 

Moreover, cache server w-orkload, network link delay, cache content m d  access-frequency 

information, are used in LB-L5 to redirect H T ï P  requests in order to achieve cache sen-cr 
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worldoad balancing and better response cimes. LB-L5 uses a weighted Bloorn Filter to 

represent cache content and access-fkequency information, which enables LB-L5 to implement 

access- r e q u e n - v e  cache coo peration. In order to achieve bacba rd  compatib iiity witl~ 

esisting V7eb caching sptems, LB-LJ estends, but does not replace, ICP - the most popular 

Web caching protocol - to support c~rnrnunication between cache servers md  LS. nvitches. 

The rest of the thesis is organized as tfollo\vs. In Chapter 2 we provide a review of related Web 

caching technologies. We fvst describe the hierarchical and dis tributed pros7 Web cachinç 

models. LVe then introduce typical V e b  caching protocols representing query-basrd, hash- 

based and directory-based approaches. Finally, we discuss emerghg transpÿrent Weeb caching 

techniques, which use Layer 4 or Layer 5 switches to transparently redirect H m  requests to 

cache servers. 

Chapter 3 presents ün overview of &e proposed LB-L5 scheme fo11o~ved by a discussion of  

the design decisions. The use of a weighted Bloom Filter to represent cache content and 

access-kquency information is described. A detded description of the scheme and 

algorithw is aven, where Layer 5 switches and prosy cache servers coopemte by using 

estended ICP messages. 

A performmce evaluarion of LB-L5 Bs presented in Chapter 4. The adoptcd simulation mode1 

is described. Prosy nazes tiom the N L M R  cacl~ing project 127,281 are used to drive our 

simulator. Simulation esperiments a r e  conducted in order to study the cifeçt of nenvork link 

delq, HTll? request intensity, and the number of coopenting cache servers on the 
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performance of LB-L5. These results are compared to existing YVeb caching schemes, namely 

ICP, Cache Digesr, and basic Layer 5 transparent Web caching- The results show that LB-L.5 

outperïorms =isting schemes in terms of overall H m  request/response time and cache 

semer workload bdancing. Chapter 5 concludes the thesis, and provides some suggestions for 

hrther research. 



Chapter 2 

Web Caching Techniques 

In this chapter we provide an ovenyiew of various related Web caching techniques. Section 2.1 

describes the hienrchical, distributed, and hybrid Web caching models. Secxion 2.2 introduces 

query-based, hash-based and dlectory-based approaches ro p r o q  semer cooptration by 

describing a typical protocol of  each category. Section 2 3  discusses the emergmg tmnsp;irenr 

Web caching techniques with an  emphasis on the structure and function of Layer 4 md Lqer  

5 switching. 

2.1 Proxy Web Caching Models 

In esisting prosy Web caching systems, cooperativr pro? cache sen-ers are orgmized ritlier 

hie-hically, in a h l i y  distributed mesli, or in a hybrid structure. This section introduçcs tliesc 

structures and points out their advancages and disadvantages. 
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2.1-1 hYerarc1Fu'ccal Web Caching 

One category o t  approaches to cooperative LVeb caching sets up a caching hienrchy [11,14], as 

shown in Figure 2.1. LVkh hienrchical caching, caches are placed at multiple levels of the 

nebvork. For the sake of discussion, we assume that tlxre -are tour levels of caches: bottom, 

institutional, regional, and national. The client caches are at the bottom level of the hirrarchy. 

When a client cache does not satisfy a requesf the requesr is redirected to an institutional 

cache. If the document is not tound at the institutional level, the request is then tonvarded to 

the regional level cache, which in mm Çonvvds unsatisfied requests to the national level cache. 

If the document is not Coud at any cache level, the national level cache contacts the original 

Web server. When the document is Çound, either at a cache or at the server, it mvels down the 

hierxchy, leaving a copy at each of the intermediate caches. Further requesn For the same 

document mveI up the caching hierarchv und the document is tound at some cache le\-el. 

Cache Cache Cache Cache Cache Cache 
4 1-y r \ 

/ \ 

Figure 2.1 HierarchiGd Web Caching Mode1 
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Hierarchical Web caching was k t  proposed in the Harvest project [ly- Other esamples o f  

hiemchical caching include .4daptive Web caching [29] and Access Driven cache [30]. =i 

hiemchical architecture is bandwidth efficien~ particularly when some cooperi~ting cache 

servers do not have high speed connechvis.. In such a structure, popular Web pages c m  be 

efficiendy difhsed towards the demand. However, there are several problems associated with a 

caching hie rarch y: 

1. Every hierarchy level introduces additional delays. 

2. Higher level caches mav become bodenecks and may have long queuing delys. 

3. Multiple copies of documents are stored at  different cache levels. 

4. To set up such a hierarchy, cache serves need to be placed at key access points in the 

netsvork This often requires significant coordination arnong participating cache sen-ers. 

2.1.2 Discributeci Web Cachhg 

Recentiy, a number of researchers have proposed an alternative to liierarchical caching, cdled 

distributed caching [8,9,lO,l l,3 1,35,36]. In d i s~bu ted  Web caching systems, no intermediate 

caches are set up. There are only institutional caches that serve each other's misses. In ordrr to 

decide from wl-iich institutional a c h e  to retrieve a document, institutionai keep 

metadam information about the content of every otl-ier cooperating cache. -1-0 r n i k e  the 

distribution of the metadata information more efficient and scalable, a hierarcl-iical distril~u tion 

cm br used. Homever, the hierarchy is only used to distribute information about the location 

or the documents and not to store document copies. The smxture of the distributed \Vel> 
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caching mode1 is shown in Figure 2.2 

Figure 2.2 Distributed Web Cacl-iing Mode1 

With distributed caching most of the traffic is in the lower levels of the hiemrch y, wh ich are 

less congested. The nodes at the interrnediate levels only require Little additional disk spiice. In 

addition, distributed caching dlows better load sharing and more h l t  roler.uicr. Seved~eless,  

a Iqe-scale deployment of distributed caching may encounter several problems, suc11 ;fi l-iigh 

connection delays, higher bmdwidth usage, and administrative issues. 

There are severd approaches to distributed cacl-iing. The Hanest  [14] group designed the 

In ternet Cache Protocol (ICP), which supports discovery and retrievd OF documents t?om 

neighbouring caches, as well as parent caches [l4,15,16]. Another approach to dismbuted 

caching is the Cache k a y  Routing Protocol (CARP) [32], wl-iich divideç the C U - s p x c  

among an arr;iy of loosely-coupled caches and lets eacl-i cache store only the \Vcb objccts 
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whose URLs are mapped to it. 

Provey and Harrison [31] also proposed a disaibuted caching scheme. In their scheme, 

directorv servers that contain location hints about the documents kept at every cache replace 

the upper Ievel caches of the other schemes. h metadata hiervchy is used to make the 

disaibution OF these location hints more efficient and scalabie. Tewari et d. [8,9] proposed a 

sirnilar approach to implement a hlly distributed Internet caching systern where location hints 

are replicated locally at the institutional caches. 

In the central directory approach CRISP [33,34], a centrai mapping service interconnects ;i 

certain number of caches. Zn the Cachemesh system [35], cache semers establish a cache 

routing table among themselves, and each cache semer becomes the desipated semer for a 

number of  Web sites. Client requests are then fonvarded to the proper cache semer according 

to the cache routing table. In Cache Digest [19], Summary Cache 1201, and the Relais project 

[ j 6 ] ,  caches interchange messages i n d i c a ~ g  their cache contents and keep local directories to 

facilitate finding ob  jects in other caches. 

2.2.3 Hybrid Web C a c h g  

In a hybrid scheme, a certain number o f  prosy cache sen-ers coopemte at rvery levçl of ;i 

cachÏng hier,~cl-iy by using disaributed caching recl~niques. For exunple, ICP [25,1 G,l71 Lan l x  

useci for cache cooperation at every level of a caching hierarcl-iy. The requcsted obiecr is 

fetclied tiom the parent/neighbour cache semer tliac has the lowest round trip rime. 

hbinovich [3-/1 proposed to limit the cooperation between neiglibouring c x h e  sen-ers to 
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avoid obtaining documents fiom distant or slower caches. In this case, requested objects c m  

be retrieved directiy kom the original LVeb server at a Iower cost. 

2.2 Cooperative Proxy Web Cachïng Protocols 

To support distributed cache server cooperation, various prococols are used in existing Web 

caching sys terns. In this section, we intmduce three ap proaches for cache coo pention, namely 

query-based, directory-based, and huh-based approaches. We describe a typical protocol for 

each approach. 

2-21 Query-Based Approach - ICP (kternet Cache Prorucol) 

ICP [15,16] is the most popular protocol that uses the query-based technique to coordinate ii  

set ofcoopenting proxy Web caches. The caches can be o r p i z e d  either hierarchically or in a 

discnbuted model. ICP is an application layer protocol running on top of CDP (User 

Data- Protocol). Both Hanest [14] and Squid [la] use ICP to coordinace pro- \Veb 

caches- 

In a distributed pro- Web caching system, ICP work as foIlows. A client sends a request to 

its configured pros7 cache semer. If that cache server cmnot fiid the requested objecr in its 

own cacl-ie, it broadcasts an ICP query message to al1 the other cooperating cache semen. I f a t  

l es t  one cooperating cache semer has the object, the contigured cache semer srnds an ITITL' 

request for the object to the Fust semer tint responds to the query with an ICP hic mess:Lge. 

Upon receiuing the objecc die configured cache semer stores a copy in its cache, and tlicin 
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sends die object back to the requesting client. If no cooperatïng cache semer responds to the 

query with an ICP hit message before a the-out perïod, the contigured c;~che server fetches 

the requested object from the original LVeb server. 

222 I)irectory-Based Approach - Cache Digest 

Although query-based approaches, such as ICP, work weil when cooperating prosy cache 

servers are located close to each other, the que ry/response delay becomes significant in a wide 

area nenvork. Directory-based approaches allow cache sen-ers to d e  information about their 

cache content available to peecs in order to avoid the query/response delai. 

However, using an uncompressed directory of cache content c m  result in hugc merno? 

consumption on the cache semers and hi& directory update tdfic on the nenvork. For 

esmple, if we use the entire list of cache keys (URLs) to represent the c;icl.ie content of n 

prosy server holding 1 million objects, and the average URL length is 50 bytes [19], the 

directory will be 50 megabytes. If we have 16 cooperating cache servers, ljs50=750 

megabytes memory mil1 be allocated in each proxy semer for keeping siblings' directo- 

information. YIUS, compressed representations of the cache content directory have been used 

in seveml proposed approaches [8,9,19,20]. 

Summuy Cache [20] and Cache Digesr [19] ;ire ve? similar üpproaclirs. Both use :i Hloom 

Filter to represent the directory of cache content. The major difference benvern dicm is du t  

Summary Cache estends ICP to update the directory, while Digest Cache uses ICITI' to 

mu-tskr directory information. 
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Bit Vector 

Figure 2.3 Bloorn Filter 

-4s s11own Li Figure 2.3, a Bloom Filter is an amy  of bits, some ofwliich are set to 1 and the 

rest are 0's. To add an e n q  to t l ie Bloorn Filter, several independent hiisli funcrions are 

computed for the entry's key (URL). The haçh values specik which bits in die filter are set to 

1. To check i fa  specific entry is in the hlter, we use the sarne hash hnstions to cornpute hash 

values for the entry's lq, and check the corresponding bits in the filter. I f m y  one of die bits 

is set to 0, the e n q  is not in the filter. If al1 the bits are set to 1, then we cm predict diat the 

entry is in the fiter. A detailed description of the Bloorn Filter is presented in Cliapter 3. 

The saIient tèature o f a  Bloom Filter is that there is a  de off betsveen the prediction accur,iqr 

and die size of the filter. By adjusting the number of bits allocated for each cntq and die 

numbrr of hash functions, a low hlse prediction prohbility is acliievrd in die Sunima. Cache 

P O 1  - 
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223 Nash-Based Approach - C m  (Cache Array RouaBg Proroc@') 

-4nother cxtegory of Web cache cooperation approaches use hash-based KITP request 

redirection to avoid the inter-pros? query/response delay. Cache h r a y  Routing Protocol 

(Cr\RP) [32] is a typical enmple. 

ChRP was designed by Microso fi Corporation and the University of Pennsylvania. In C . W ,  

a prosy cache semer detemiinistically redirects H?TP requesn to neighbouring caches by 

using a rnapping h c t i o n  that maps the hash values of the requested LrRLs to cache semer 

LDs. Ail reques ts For the same URL are redüected to the same cache semer. Each cache sen-er 

stores oniv the LVeb ob je- whose URLs are mapped to it. 

In CARP, HïTP requests are reduected to cache semers without explicit knowledge of the 

cache content on these servers or the network link delay to tiiese serves, It implicitly considers 

cache hit rate by redirecting the same requests to the same cache semer. C-%RP works \vell for 

1ntra.net hierarchies, but l a s  so for loosely-coupled Internet cache peers [19]. 

2.3 Transparent Web Caching Techniques 

Transparent Web caching uses network devices to redirect H ï T P  mftic to cache sen-ers. T l ~ e  

technique is called transparent because Web browsers do not h w e  to bc esplicirly configurcd 

to point to a cache semer, that is the caches are mmsparenr to the browsers [3q. 

2.3.1 L#-Sdtchurg-.Z3ased Transparent Web Cachhg 

.A Layer 1 switching device cm be used to redirect TCP/IP packets destined to H'iTP ports to 
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cache servers, and forward al1 other network t r d i c  directly to the WAN router. They are 

called Layer 4 (L4) nvitches because their switchïng decisions are based on information in the 

TCP header, and TCP is a protocol for Layer 4 in the OS1 7-layer mode1 [22]. 

L-bswitching-based transparent Web caching systems partition the client's \Veb requests inro 

separate hash buckea. The hash hunction maps the TCP session's desbnahon address into a 

hash bucket, effectively mapping specific Web semer URLs to specific caches. Most of these 

hash h c t i o n s  operate on subnet boundaries, and typically map the ceplicas of a Web semer to 

a single cache. 

Client 
Traffic 

Figure 2.4 Transparent Caching supported by an L4 sw-itch (adop ted from [22]) 

NetCache Apptiances 

Figure 2.4 shows NetCache Appliances NCI to NC3, an Ateon's Layer 4 switch, a router, and 

a subnet l3O.lj. 1 .'. Suppose a client requests hm:/ /\WQT\-.cs.aueensu.ca frorn Web semer 

130.15.1.100 and that the L4 switch's hash hnction m~ps  the entire 130.15.1.0 sulmrt to 

NetCachr pro. server nc2. The client establishes a TCP session with NerCache nc2. 

thinking that it has established a conncction \vit11 the VYeb server 130.15.1.100. i\ -ietCaçhc 

p r o y  server accepts al1 connections routed to it, regardless of the desrinarion address. In 

WAN 
Router 

Layer 4 Switch 
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accepting these connections, the NetCache pros7 server masquerades as the remote Web 

server. 

2.32 LS-SmCVItchitzg-Based Transparent Web CachiBg 

\Sihile L4 nvitches are optimimized for the aanspoct layer, they are completely unaware of' the 

Application Layer (Layes 5 - 7), which h the Intemet includes protocols such as H T ï P  *and 

FTP. Layer 5 sivitches are nemorliing devices that provide high speed switchïng of trd-tic. 

InFormation in the TCP and H'TT'P request header is used to malce routing decisions based on 

the actual content, for esample URL, being requested, and manage request/responsr t-lows 

from beginning to er,d [23]. 

The HlTP request header, which includes the URL, cornes from the client browser, bu t  the 

client does not send this und  the TCP connection is set up. For a direct connection brnveen ;i 

client browser and a \Veb server, the normal flow is shouin in Figure 2.5. 

Client sena TCP SYN + 
c- Server s e n d s  TCP SYN ACK 

Client sen& TCP ACK + 
TCP session is setup 

Client s e n d s  HlTP Request + 
f----- Senrer s e n d s  H l T P  Respome 

t---- Server sends TCP FIN 

Client sends TCP FIN ACK ------ i 

Figure 2.5 Normal H T i T  rraftic tlow (adopced from 1231) 

A Layer 5 witch sits benveen the client md the Web serves In order to o h i n  the I - t I T '  
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request header, the switch performs delayed binding (or TCP spoo h g ) .  Delayed binding 

means diat the witch, after receiving the initial TCP siT\I, sends t h e  SyN -+CK prior to 

establishing the TCP session to the semer, thus "tricking" the çlienr browser into sending it's 

KT173 request. -\fier receivhg die HTTP request, the Laver 5 switch h;as JI of die in tomarion 

it needs to make routing decisions based on the content being requested, and cm select the 

best site and semer to service the request The swïtch then initiates a riew TCP connection to 

that server and sen& the KiTP request. The Web semer responds back to the client via the 

Layer 5 nvitch. In the flow rmitching stage the Layer 5 switch is provcding Network Address 

Translation and wire-speed Forwarding of packets for al1 mffic going b=etween the \Xreb Semer 

and the client (TCP splicing). In the finai stage, the Web switch tears down the connection, 

freeing resources aliocated for the flow. These steps are shown in Figure 2.6. 

2.4 Summary 

In this cl-iapter, we reviewed =Uious related Web caching techniques. In Section 2.1, we 

described the hierarchicai, distributed, and hybrid Web caching models and pointd out the 

advanngeç and disadvantages of each model. 

In Section 2.2 query-b-ased, ha&-baçed and drectory-based approaches to pro- c;iclie s e n w  

cooperation, were reviewed by describing a typical protocol of eacl-i category. -\lthough que?- 

baseri approaches work well when cooperating pros7 cache servers ; r e  located close to eic1-i 

other, the inter-prosy query/response deIay becomes signifiant in a wide arci ncnvork. 

Directory-baçed approaches dlow cache servers to make information about tl-ieir ~ ~ h c  



Chap ter 2. Related LVeb Caching Techniques 18 

CO ntent available to peers in order to avoid inter-prosy query/response delqs. ThereFore, d ~ e y  

requüe an efficient cache content representation. Has h-based approaclies deterministi~xll y 

redirect HTTi? requests to cooperating caches by using a mapping hnction that maps the hash 

d u e s  of the reques ted URLs to cache semer IDs. In hash-based approaches, HTTP requests 

are redirected to cache servers without esplicit knowledge of the cache content on these 

semes or the network link delays to these serves. Thus, they work less efficiently for loosely- 

coupled Intemet cache peers. 

1 Client sends TCP SYN 1 
f--------- Wsb Çwitch sen& 

TCP SYN ACK 

I Client sends TCP ACK ------ + 
to Web Wtch  

Client sen& H l T  --------- -+ 
Request to Web switch -- 

Web Switch detemines best sitefserver for the requested content based on 
the information in the TCP and HrrP headers. server load. and con&?~~~âila brI11y. - , 

- - - A A .- - - 
Web Svntch rends ---------- i 
TCP S M  10 selver 

f---------- Server sends TCP 
SYN ACK to m t c h  I 

Web % t h  sends ---------- + 
HTTP Request 

Stage 2: Wirespeed HlTP Flow Switching 

+--------- Sewer sends KlTP 
Response 

+--------- Web swtch sen& 
HlTP Response 

+------------- Web wtch sen& 
W P  Response 

Stage 3: HlTP Flow Tear down 

+----------- Sewer senas TCP 
FIN or TCP RST 

+---------- Web Wtch sen& 
TCP FIN orTCP RST 

Figure 2.6 Layer 5 Switching traffic flows ( d o p  ted kom [23 1) 
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In Section 2.3, we introduced transparent Web caching techniques and desnibed the function 

of Layer 4 and Layer 5 switching. Layer 4 mritching-based transparent Kfeb caching cm 

transpxently redirect ail HTïP wffic to cxhe servers. Layer 5 switching-based transparent 

Web caching redirem HTIF requests acco rding to their content In Layer 5 nvitching-bsed 

transparent Web caching, non-cacheable H ï T P  requests are redirected to bypass cxhe  

servers. Transparent Web caching not only makes the deployment and configuration OF the 

caching system easier, but also Lnproves its perfomance. However, no trmsparent LVeb 

caching scheme supports distributcd cache cooperation, which is widely supported by pro-. 

Web caching sys tems and has proven eEective. 



Chapter 3 

LB-L5 Web Caching 

Esisting L5 switching-based Web caching schemes use TCP spoo f i g  to inspect the content of 

the HTïP header of a client request, and then rediren non-cacheable requests to bypass tilt 

cache secvers. This increases the cache hit rate and improves system perfonnimce becausr only 

cacheable requests are directed to caclie: servers. Eiisting approaches, liowewr, do not support 

distributed Web caching. A Layer 5 fivitch and its associated cache server cm only be placrd ar 

the gateway of  a network domain. This results in problems such as congestion/latenq caused 

by TCP spoofmg -and limited cache sharing between IWO or more domains. 

In this chapter, we propose a h l l y  distributed Web caching scheme chat estends the 

capabiliries o f  the Layer 5 svitching-based approaches to support distribureci \V& cxhing. 

Tlie goals o f  the proposed L5-based scheme are to balance pros7 cache sen-er worrkload and 

improvr rrsponst time for client requests. We cal1 the sclieme the LB-LS (Lod-Balancing 

Layer-5-switching-base4 Web caching scheme. 
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3.1 LB-L5 Web Caching Scheme Overview 

LB-LS uses infiormation about the proxy cache server workload, network link delay, cache 

c e server content and access-frequenq to redirect H l T P  requests, which in tum balances CT-h 

workload and reduces average response times. LB-L5 uses a rveighterl Bloom Filter to 

represent cache content and access-ttequency information, mhich enables LB-L3 to implemen t 

access-Frequency-aware cache cooperation. LB-L5 ertends ICP, the most popular Web 

caching protocol, to support communication between cache sen-ers and Layer 5 mitches, imd 

so is compatible with csisting iVeb cache systems. 

In addition to the transparency of existing L5 switching-bÿsed schemes, LB-L5 provides the 

tollowing benefits: 

1. B a h c e d  cache server workload. In LB-L5, d e n t  requests are duected with the 

intention of balancing the workload of  cooperating cache servers. 

2. Reduced response time. In a hlly distrïbuted scheme cache servers cm be placed 

closer to clients. The number of  hops for clients to access die caches is reduced. 

Moreover, LB-LS GUI baIance rvorkIoad m o n g  coo perating ~ ~ c l - i c  sen-ers ;ind use 

network Iink delay information to redirect the: htcp request in ordrr to avoid Iiigh-cost 

remote hits. 

3. Improved cache s h a ~ g .  The cooperation among distrit-iutecl cache sen-ers c m  

hcrease the ovemll 11it rare by allowing more clients to &are cac11t.s- 

4. Reduced possibility of congestion caused by TCP spoofmg. Layer 5 switcl-ies c;m 
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be distributed within the network- Theref-ore, the number of  TCP tlows e;~cl-i switch 

needs to hmdle is reduced. 

5.. Avoidance of a single point of failure. When a cache semer stops running the L3 

nvitches c m  redirect client requests to other cache serves. 

The pioperties of LB-LS are sumrnarized as follows: 

Fuily distributed architecture 

As s h o w  in Figure 3.1, LBL5 uses a h11y distributed architecture. H ï T P  requests from a 

duster of clients are f i t  inspected by a L5 switch, which then redirects the requests to one of 

a set of cooperating prosy cache servers or to the original \.eb serven. 

Figure 3.2 LB-L5 Web caching architecture 
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In LB-LS, to redirect client requests to the most suitable cache semer, a L5 nvitch sliould 11ilk-e 

information about the cache content and the worlcload of every coopemting çaclie senxr, as 

well as the nenvork link delay between the L5 nvitch and eve. cache semer. The compressed 

cache content information is generated and published periodically to the L5 nvitclies by cache 

servers. The L5 switches also query cache server worlrload and masure nenvork link delay by 

using ex~ended ICP messages. h detailed description O f the cache content rep resentiitio n 

method and the use ofextended ICP messages are provided in Section 3.2- 

Balance between cache content distribution, workload and nenvork Iatency 

LB-L5 uses a weighted Bloom Filter to represent the cache content and the access trequencies 

of cached objects at  a cache semer. The weighted Bloom Filter is srnaller in size tlim a 

cornpiete directory of cached objects. Moreover, it reflects the characteristics of the requests 

handled bir the semer since we use the weighted Bloom Filter to c i q  cache object access- 

trequency information. 

A Bloom Filter is used to represent cache content in the Cache Digest [19] and Summary 

Cache [20] schemes. Every cached object is rissigned a tï~xed numbrr of bits in the hltrr. In the 

weiglited Bloom Filter, cached objects are assigned different numbers of  bits acçording to ti~rir 

access frequencies. This enables the filter to carry access-frequency informarion, ünd more 

üccurarely indicate whether an object is in a cache. A description of the weighted Bloom Filrer 

is prsented in Section 3.2.1. 

n i e  access-kqurncy information of  cached objects is one factor tliat intluences LB-LS's 
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HTTP request routing Lnction. In cases where several cache sen-ers have the requested object 

cnched, and have similar workload and nenvork link delay, L5 switches redirect the request to 

the cache server where the requested object h;is highest access-Frequency. Because cxhed 

objects with lower access Çrequencies will espire and be evicted sooner, the routing drcision 

based on object access-frequency is helphl to reduce caching of redundant copies. 

Other h o r s  of LB-LS's ICITD request routing hinction are the cache sen-er workload ;uid 

the necwork link delay. LB-LS does not purely emphasize the cache hit rate, because in a h l l y  

distrïbuted environmen< a rernote hit or a hit on a very busy cache server c m  be slow-er than 

fetching the requested objects Erom the original Web server. Thus, LB-L> makes routing 

deçisions bg considering the combined effects of cache content (hit rare), cache sen-er 

workload, and nenvork Iink delay. 

In LB-LS, the workload of a cache server is measured by  the nurnber of concurrent ?'CI' 

sessions establishrd to the server. L5 switches use extended ICP messages to query work1o;id 

infornation, and, at the same rime, measure netsvork link delaÿs by the message round trip 

time betsveen the switch and a cache server. 

Backward compatibility 

LB-L5 estends, but does not replace, ICP (Internet Cache Protocol), which is the most 

popular protoc01 in misting K'eb cacl~ing systems. Unused OP Codes in ICP are used for L13- 

L5 messages. This r d e s  LB-L5 cache servrrs can cooperate witli switches ;md/or cache 

secvers that arc not LB-LEI aware, and LB-L5 messages nmsparent to these s\x~itchcs md/or 
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cache servers. Because Cache serves in LB-LS hlly support [Cl?, LB-L5 is bacla-ard 

compatible with ICP aware Web caching systems. 

3.2 LB-L5 Detailed Description 

The following sections contain a detailed description of the LB-L5 scheme. We firsr introduce 

the weighted Bloorn Filter, =-hich is used to represent cache content and access-frequenq 

infomation. \Ve then describe the ICP estension, -and esplain how to use e.stcnded ICI' 

messages to exchange cache content information, query prosy semer workload and measure 

the network link delay. FinalIy, we provide pseudo code for the algod-irns describuig the 

coopention oE L5 nvitches and cache servers. 

3.2.1 Cache Conten r Represenra tion 

The use o f a  Bloom Filter to compactly represent cache content \vas proposed in Cache Digest 

[19] and Summary Cache [20]. In these schemes, every object in a cache is represented in a 

Bloom Filter by using a Exed set of hash hinaions to cornpute hash values for its key (LIRL), 

and thrn setting correspondlig bits of the filter to 1. To check i l  ü specific object is in the 

cache, the same set oflxish tunctions are computed -and comesponding bits ;ire chrçkd.  I f  one 

or  more of the bits is O, then the object is not in the cache. But if al1 bits are 1, we have isvo 

cases: 

1) truc prediction: thle object is in the cache; 

2) hlse prediction: the object is not in the cache while the filter indicares it is- 
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By adjusting the filter size and the number of hash hnctions, Summary cache achieves a tdse  

prediction probability around 4.7% or  lower [20]- 

However, a desirable property of a cache content representation for LB-L5 is the ability to 

c a q  access-frequency information. -4s mentioned in the previous section, this info-~tion is 

used to route the H m  requests. In LB-L5, if an object is cached at more than one cache 

semer havlng sirnilar values for worlrload and network Iink delay, requests for the object 

should be directed to a semer where the object has the highest access-frequency. This routing 

policy helps to reduce the duplication of object caching because cached objects with lower 

ascess-frequency will espire and be evicted sooner. 

Our cache content representation, mhich we cal1 the meigl~ted Bloorn Filter, is based on 

signature bles proposed for general text file renievd by Fdoutsos [39]. .-\ signature file is 

hindarnentally the same as a Bloom Filter. l i e  signature file method builds a weiglited Bloom 

filter that uses a varying number of hash tüntions for objects wid~  difkent  access 

frequencks. 

The weighted Bloom Filter divides id1 cache objects into different s e s  and assigns a weight to 

each set according to their access-tiequencies. The weight o f  a set is the nurnber of hash 

hnctions that should be used to compute hash values for the key (URL) of ;ui objrçr 

belonging to the set, or  die number of  bits set to 1 in the filter for the object W e  d l  this 

methoci weighted Bloom Filter beçause it assigns a weight to e x I l  ç;iclie-obieçt sct- *J3c 

weighrerl Bloom Filter assigns a 11r:lvier wriglit to a set with higher ;icccss-frequenc~ l'hus, 
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objects with higher access frequencies are represented widi more bits set to 1 in the filter. i t  

die t h e  o f  looking up an ob je- the number of b is  set to 1 indicates die acccjs-frequenc- 

rank of the object. 

.An esample of using the weighted Bloom Filter to represent cache content infornation is 

shown în Figure 3.2. In this e-sample, a cache server divides dl a c h e  objrcts into two sets 

iiccording to their access kequencies. The filter size is 16. cc~v~. ! .ahoo.com" belongs to a high 

access-fkequency set, SI, whose weight is 6. ccunvw.beowulf.org" and Ys-xnv-dc-Iolii-nct" belong 

to a low access-fkequency set, S, whose weight is 4. 

Case (a) in Figure 3.2 illustrates how to use the weighted Bloom Filter ro represent cache 

content. \Ve cornpute G hash hnctions for the key of  every object in S, (4 for objrcts in SJ, 

and set the corresponding bits in the filter to 1. Figure 3.2 (cases b-e) describes the procedure 

of loolring up an object h-orn a particular cache and its access-frequency r.mk \Ve first 

compute the 4 hash hc t ions ,  and check the corresponding bits in the filter representing die 

cache content. If one or  more of the 4 bits is 0, the object is not in the cache. Othewise, we 

compute the additional G - 4 =2 hash hnctions and check die corresponding bits. I l b o d ~  bits 

are 1, we can predict that dlis object is in the cache and belongs to die high access-tkquency 

subser. On the otl~er hand, i f m y  one of the 2 bits is O, the object is in the cache but bclongs to 

the low access-kequency subset. 
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a)cache content regtesentation: 

Object üRL Access freq. Set Weight Representation 

W M .  yahoo . corn high 
www.beowulf-org low 
www-delphi-net low 

weighted Bloom Fil ter 
1001 0110 1101 0010 

b ) look ug www. yahoo . c m  

Steps 

1-check if it is in S2 
2,check if it Ls in SI 
2.1 compute additional hash 
2.2 check 

Weight Representation Resul ts 

4 1000 O100 O001 O010 (in S2) 

6-4=2 0001 0010 0000 O000 
(in S1) 

(in the cache, high access f req. 1 

Steps 

1-check if it is in S2 
2 ,check if it is in S1 
2.1 compute additional hash 
2.2 check 

d) look up www.whouse1. corn 

Steps 

1-check if it is in S2 

Weight Representation Resul ts 

4 1000 O100 1001 0000 (in S2i 

6-4=2 0010 0001 O000 O000 
(not in SI) 

(in the cache, low access freq- 

Weight Representation Results 

4 O001 O010 1001 0000 (not in S2) 
---------------------------------- 

(net in the cache) 

e)look up www.whouse2.com (false grediction) 

Steps Weight Representation Results 

1-check if it is in S2 4 1001 O110 0000 0000 (in S2) 
2.check if it is in S1 
2.1compute additionalhash 6-4=2 O100 0000 0000 O010 
2.2 check (not in SI) 

---------------------------------- 
(in the cache, low access freq.) 

Figure 3.2 Cache content representation based on weighted Bloom Filter 
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The weighted Bloom Filter c m  be used to represent cache content and cxty cache access- 

tiequencv information at the sxne  time. In addition, i t  gives lower fdse prediction pcobability 

thm the basic Bloom Filter used in Cache Digest and Surnmary Cache. By using the weighted 

Bloom Filter to represent cache content, LB-L5 c m  support directory-based HTT'l? request 

routing in order to avoid the query/cesponse delay in query-based schemrs such as ICP. 

Meanw-hile, the access-trequency information carrïed in a weighted Bloom Filter enables LB- 

L5 to support access-ftequenq-aware cache cooperation, which helps to reduce the 

duplication of  object caching, since cached objecs with low access-frequencv will espirr and 

be evicted sooner. A detailed analysis of the weighted Bloom Filter is presented in Appendk 

A. 

The hash hnctions used for building the weighted Bloom Filter are based on M D 5  [-IO], wl~icli 

is also used in Surnrnq  Cache and Cache Digest. MD5 is a one-way hash hnction drsignrd 

by Ron Rivest MD stands for Message Digest; the algorithm produces a 128-bit Iiash d u e ,  or 

message digest, for an arbitmry-lengd~ input message. M D 5  has a good collision-cesistant 

property, mhich means that it is difficult to find two nndom messages sharing a cornrnon Iiasli 

\-due. The collision-res is tant propecty maltes MD 5 suitable for building the weiçh ted Bloom 

Filter, since we wa.nt ditiiërent ob jects to ha\-e diftkrent representarions. 

The hash hnctions used in LB-L5 take groups of bits from the 128-bit MD3 11ash value o f a  

URL. This method was recommended by Cao in Surnrnary Cache 1201. The cornputarional 

overhead of M D 5  is negligible compared widl the user and system CPU over l~ed  incurred b!r 
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caching [20,41]- The M D 5  algorithm is described in Appendix B. 

3.2.2 K P  Extension 

-b [CP message i n & & - s  a 20-bpe header and a variable-sized p-load, w-hiich ~ p i c a l l ~  

contains a tJRL. Figure 3.3 shows the ICP message format- 

Options 

Padding 

O 31 

-- 

Sender Host Address 

r 
OP Code 

Payload (Variable Size) 

- - -  

Figure 3.3 ICP Message Format 

Request Number 

Version 

The contents of the header are as follows: 

OP Code: the type of message. For example, a query message's QP Code is 

ICPQUERY, a reply message's OP Code is ICP-MISS or ICP-HIT. 

Packet Length 

Version: ICP version to maintain bacLavard compatibility. 

Packet Length: the tom1 size of the ICP message. 

Request Number: an opaque integer identifier to match quedes md responses. 

Options: bitfield to support optional Eeatures and new additions to ICP. 

Padding: unusrd. (In Harvest, Options and Padding fields are slatcd to bc used for 
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au tho rizatio n.) 

Sender Host Address: ociginally intended to hold the IPu4 address. Howewr, since the 

originating address is also avdable kom the socket API, diis field is redundant and 

oken unused. 

Table 3.1 shows the currentlg defmed ICP OP Codes. The spacious OP Code Reld and the 

variable length payload allow ICP to be easily estended. 

Value Name 
O IcP-OPINVALID 
1 ICI?-OP-QUERY 
2 IcP-OPHIT 
3 m - o ~ m s  
4 ICI?-OPERR 
5-9 UNUSED 
10 ICI?-OP-SECHO 
11 ICP-OP-DECHO 
12-30 UNUSED 
21 r n - o r M I s s - N o  FETCH 
22 rcP-OPDENIED 
23 ICP-OP-HIT-OB! 

Table 3.1 ICP OP Codes 

LB-L5 defines the following tour new ICP messages for updating content kquency 

disnibution information and querying cache semer workloiload information: 

ICP-UPDATE-CONTENT: usrd b y cache serers to in form L5 switchcs of chmges nt- rl~cir 

cache content and access-frequency. 

ICP-WDATE-CON~E-ACK: used by L5 nvitches to acknowledge an updatc of cache 

content and access- fiequency information. 

ICP-QUERY-WORI(LOAD: used by L5 switches to q u e l  cache senw workic~;id. 
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ICP-WDATE-WORKLOAD: used by cache servers to mnver a workload query [rom a L3 

s t - i  tcl-i. 

These tour new ICP messages are ilssigned the OP Codes 12 to 15, respectively. 

Figure 3.4 shows the procedure for updabng cache content information mith extended ICI' 

messages. Each cache server periodically computes its cache content information and 

publishes it to every L5 nvitch. To do this, a cache server multicxts an estended ICP message, 

ICP-ZTPDATE-CONTENT, to the L5 switches. The OP Code is set to 

ICP-JPDATE-CONTENI and the content information and a timestamp are put in the payload 

field of the message. 

When a L5 mitch receives an ICP-UPDATE-CONTENT message and successtülly updatcs the 

content information of the sending cache sen-er, it sends an ICP-WDATE-CONTENT-ACK 

message back to the cache sen-er to acknowledge the update. If the cache senFer receives 

ICP-UPDATE-CONTENT-ACK responses from dl L5 nvitches before it times out, then the 

update is successhlly completed. Othenvise, the cache server sends out the 

ICP-IPDATE-CONTENT message, with the s m e  timestamp, to al1 L5 m-~tches that did not 

respond. -\fier sending the second ICP-UPDATE-CONTENT message, the cache semer 

finisheç this round of updates, that is, it does not mait for another response. A L5 switch ma)', 

however, receive hvo ICP-UPDATE-CONTENT messages with the s m e  timestxnp t?om a 

partÏcular cache semer. In this case, only the  tlrst one 1s accepteci. 
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Cache server 1 L5-1 L5-2 L5-3 

ICP-UPDAT 

Re-send (with same 
and finish this round of update 

1 1 v I 

Receive the 
;econd message 
with same TS 

Figure 3.4 Updating cache content information with estended ICP messages 

Figure 3.5 shows the procedure of  a L5 nvitch querying workload information with extendecl 

ICP messages. Each L5 smitch peciodically queries al1 cache serves  for workload information 

by mulhcasting ;m ICP_QUERY_WOMCLOAD message to dl cache semen. Every time a L j  

nvitch sends out an ICP-QUERY-WORKL.OAD message, it kcreases the timestamp fo or r v e 7  

cache semer by 1. I n e n  n cache server receives an ICP-QUERU-WORELOAD message, it 

sends back an ICP-UPDATE-WORKLOAD message, with in workload informarion 2nd the 

timestamp proridrd by the switch in the payload field o f  rhe ICP-QUERY_WORN.OAD 

message. 

If the L5 switch receives ICP-UPDATE-WOFUCLDAD messages from al1 cache servrrs bcfore it 

tirnes out, this round of queries is success~ulIy completed. Othenvise, it resends the 
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ICP-QUERY-WORKLOAD message to al1 the cache servers that had no t responded, ünd w ~ ~ t s  

for responses und it receives ICP-UPDATE-WORKLOAD messages from these cache semers 

or m e s  out. 

In a round ofworuoad queees, a L5 switch sends out at most &.O ICP-QUERY-WORKL.OAD 

messages to a cache semer- If a cache server fails to respond to ~o consecutive 

ICP-QUERYYWORgL.OAD messages, the L5 switch ses  the semer's worlrload to be infinite, in 

order to avoid redirecting client requests to this cache semer. Upon receiving an 

ICP-I.JPDATE-WOR~LX)AD message kom a cache server Mth a neiver timestarnp than in 

previous ICP-UPDATETEW0R]BIX)AD messages hrom that server, or if the previously recorded 

worl-doad for the cache semer is infiite, the L5 switch updates the workload information of 

the sending cache server. 

L5 Switch 1 CServerl CServeR CSewer3 

? 
ICP-QUERY-WORKLOAD T 

I 
I 

ICP-UPDATE-WORI(LOA0 
b wm receved mg's TS 

CServeB: Time out 4 

message out of order, only 
accept message wit 

CServeR: 
failed to answer two query 
messages. set its workload to 
infinity 

Figure 3.5 Qurrying workload in formation wi th estendrd ICP messxges 
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3.2.3 W Saitches worhg wich Extended ICP 

In the LB-LS scheme, the Layer 3 switch uses cache server worldoad, netsvork link drlav, cache 

content and access-kequency information, in addition to the HTI7? header intomiÿtion 

inspected kom the content of client requests, to route a request to the most suitable cache 

server or  its destination Web server. The information is O btained as to 110~~s: 

Cache content and access-frequency intormation: Cache con tent and access-trequenw 

infimation is obtained and represented with a rveighted Bloom Filter Ily eac11 cache 

server. It is sent to each Layer 5 nvitch using the estended ICP message 

ICP-UPDATE-CONTENT. 

Cache semer workload information: A Laver 5 svitch o b ~ u n s  the workload intomtion 

fiom a cache server bu sending each cache server an ICP-QUERY-WORKLOAD message, 

which is ansvered by the receiving cache semer with an ICP-UPDATE-WORIILORIILOQD 

message, whose payload field carries the semer's workload information. The workload of a 

Num - of - TCP - Sessions 
cache semer is rneasured as , w-here ~ ~ l c n l _ o f _ ~ ~ ~ ~ e ~ - s i o ~ f ~ -  ti 

Max - TCP - Sessions 

the nurnber of current TCP sessions established at the server, and MK-TCP-S~W~O/K is the 

misimum number of'TCP sessions that GUI be hmdled by the senter. 

Nenvork link delay intorrnation: There are several proposed approachcs to me;isurins 

nenvork latency. One category OF approaches uses tools such as ping, tcicerou te, and Zonc 

nansfer [rom a DNS server [42]. Another category of approaches uses nenvork senices 
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such as SONAR [43], IDhL4PS [M] and ReMoS [45]. However, we did not  hnd an? 

commonly supported ûpproach to obtain instantmeous latenq infornarion. In LB-L3, the 

message round trip time between a Layer 5 sn-itch -and a cache sen-er is uscd to meisurc 

the network latency. This message round trip tirne Licludes the propagatîon dela?, packet 

transmission delay and nebvork access dela).. 

Upon receiving a H T l T  request, a L5 m-itch malies a routkg decision as follows: 

1. If the request is non-cacheable, the switch redirects it to the original Web semer. 

2. For every cache semer, the mitch estimates the tirne needed for htching the requested 

ob ject kom that server as follows: 

2.1 The switch computes hash values for the request's URL, ;md then checks the 

weighted Bloorn tilters representing the semer's cache content ro see if  the semer 

has the requested object in its cache. 

2 2  The switch then estimates the time (ï) needed for fetching the requested obieçt 

from the semer as: 

2.2.1 IF the requested object is available at  the cache server, tlien T includes die 

Nne for connecting to the server, sending the request from the switch to the 

cache semer, sexching for the object at the server, moring the obiect from 

disk to memory, and sending the object from the srrver to the switch. 

2.2.2 If the object is not available at the cache server, then the timc for tlic c;iclic 
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semer to tëtch the ob ject kom the CVeb server is added- 

3- The switch then pre-selects a set of cache serves d u t  have a reasonably short response 

tune. A threshold c m  be used for this purpose- 

4- The witch chooses the cache server from the pre-selected set that has the highest 

frequency for the requested ob jects, and redirects the request to the senier. 

To make the routing decisions and redirect client requests, a L j  nvitch mainnins the following 

information for every cache sen-er? 

IPAddress: IP address of the cache server. 

ContentDistribution: a weighted Bloom Filter representing the cache content of the 

cache server. 

WorkLoad: the workload O F  the cache server 

NetworkLatency: the message round trip tirne between the cache semer and die switch. 

WorkLoad-QuqTime: the tirne the last ICP-QUERY-WORgLOAD message mas sent 

to the cache semer. 

WorkLoad-QueryeryResponse_Time: the time of die mos t reccn tly rcrreivcd 

ICP-UPDATE-WORKLOAD message from the cache semr .  

WorkLoad-QuqTS: the times t m p ,  represented wi th a sequence number, ~ u r i e d  in 

the most recent ICP-QUERY-WORKLOAD mcssagc sent to d-ic ~ i c h c  scn-cr- 

Last-WorkLoad-UpdateMsg-TS: tl-ie timestmp, represcntecl witli il sequence numlxr, 



carried in the most recent ICP-WDATE-WORgLOAD message received t'rom the 

cache server- 

A L j  switch uses an i m y ,  CacheServerArray, to store the above information about al1 

cooperating cache sen-ers. As described in Figure 3.6, a L5 switch has a proçess to receive ICP 

messages from the cooperating cache servers and update the workload and nenvork Ihk deiay 

information of these servers. Upon receking an ICP message, the ICP-message-receivhg 

process fisr locates the sending server in its CacheSemer-ka7 according to t l ~ e  message's 

Sender-ddress (lines 2-7, and then processes the ICP message according its OP Code. 

If the message is ICP-UPDATE-CONTENT, the L5 switch updates the content information of 

the semer sending the messase, md sends the semer m ICP-TJPDATE-COhTTENT-ACK 

message (using the timestamp tiom the ICP-ZTPDATE-CONTENT message) to achowledge 

the update (lines 9-14). If the message is ICP-UPDATETEWORKLOAD, the L5 sivitdi updates 

the G-orkload inlorrn;inon of the semer if the message carries more reccnt workload 

information or  if the previously recorded workload information is not valid (lines 15-20). An 

ICP-UPDATE-WORgLOAD message (from a cache server to a L5 switch) is an irnmediate 

response to an ICP-QUERY-WORKLOAD message (kom a LS switch to a cache semer). -A L3 

switch uses these m-O messages to measure the message round trip timr henveen the switçh 

and a a c h e  sen7er (lines 21-23). 

L5 switc1-i periodicaiiy queries the workload information of ai1 cacl-ie serverç by sending 

ICP-QUERY-W0RgLOA.D messages to the servers. As describeci in Figure 3.7, a LS sw-itdi 
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increments the workIoad query tirnestmp and records the query sending time before sending 

an ICP-QUERY-WORKLOAD to a cache server (lines 4-6 and 14-16). The timestÿmp is used ro 

match up the query and responding messages. Recordhg the query send time facilitates 

measuring the message round trip time benveen the switch and the cache server. in a round of 

quenes, a L5 switch sends at most nvo ICP-QUERY-WORKLOAD messages to a particular 

cache server. If a server does not respond to tsvo consecutive queries, the LJ switch sets the 

workload and nenvork Iink delay to infinity (lines 25-28). Theretore, a L5 switch c m  avoid 

redirecting client requests to non-responding server. 

1. Process OnReceiveMessage(rnsg: IC2Xessage) 

2 .  for i:= 1 to NumOfCacheServers do 
3 .  if ( CacheSenrerArray[i] - IPAddxeçs == mg. SenderAddress 1 then 
4 .  cserver := CacheServerArray[il 
5 .  break 
6. endif 
7.  endfor 

8. switch (msg . OPCode) 
case IC PUPDATE-CONTENT : 

if( rnsg-TS > cserver. LastÇontentUpdabzMsg-TSI then 
cserver-ContentDistribution := rnsg.ContentDistribution 
cserver.last-Content-UpdateMsg-TS := msg-TS 
SendMessage(1CP-UPDATE-CONTENT-ACK, msg-TS, 

CS erver -1 PAdders s 
endif 

case ICP-UPDATE-WORKLOAD: 
if((rnsg.TS > cserver.Last-WorkLoad-UpdateMsg-TS) 

OR ( cserver-WorkLoad == INFINITE  1 then 
cserver-Workload := msg-WorkLoad 
cserver.LastWorkLoad-UpdateMsg-TS := msg.TS 
cserver . WorkLoad-Query-Response_Time : = t i m e  ( 1 

endif 
if (msg.TS == cserver.WorkLoad-Query-TS) then 

cserver.NetworkLatency := 
cserver.WorkLoad~Query~Response~Time - 
cserver.~ork~oad-Query-Time 

endif 
endswit ch 

end 25. - 

Figure 3.6 The algorithm O F  the ICP-message-receiving process on il L5 svitch 
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1. Procedure QueryWorkLoad O 1 
I 

2. for i:=l to NumOfCacheServers do ! 
3 .  cserver := CacheServerArraytiI 
4 .  cserver . WorkLoad-Query-TS += 1 
5 .  cserver . Workload-Queririme r = time ( 
6. SendMessage ( ICP-QUERY-WORKLOAD, cserver . W~rkLoad~Query~TS, 

cserver - IPAddress) 
7. endfor 

8, SendTime := t h e 0  
9.  Wait until ( tirne() > ( SendTirne + TIME-ûUT-THRESHOLD)) 

10. flagSendAgain:= FALSE 

Il. for i:=l to NumOfCacheServers do 1 
cserver := CacheServer~rrayiil 
if ( cserver . Workload-Query-ResponseTime c 

cserver,WorkLoad_QueqfI!ime) then 
cserver.WorkLoad-Query-TS += 1 
cserver.WorkLoad-QueryTirne := time0 
SendMessage ( ICP-QUERY-WORKLOAD, cserver 

cserver . IPAddress) 
flagSendAgain :=TRUE 

endif 
endf or  

SendTime := tirne0 
Wait until ( tirne() > ( SendTime + TIME-OUT-THRESHOLDI 

for i:=l to NumOfCacheServers do 
cserver : = CacheServerArray [ i 1 
if (cserver . Workload-Query-Response-Time c 

cserver . WorkLoad-QueryTime 1 then 
CS erver - WorkLoad : = INFINITE 
cserver .NetworkLatency : = INFINITE 

endif 
endfor 

1 31. end 1 

Figure 3.7 The algorithm of querying cache semer workioad infom;i:ion 
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3.2.4 Cache Servers worfig ~ + r % 2  Extended ICP 

To cooperate with Layer 5 nvitches, cache serves must be extwided to supporr neiv [CP 

messages, and use these messages to inform the L3 srvitches about d ~ e i r  cache content and 

workload in Eomatio n. 

To cooperate with L5 Mntches, a cache semer maintains the following inComation For ev- 

L5 switch: 

IPAddress: IP address of this cache semer. 

Content-Update TS: the timestmp, represented with a sequence number, carrieci in the 

most recent ICP-LWDATE-CONTENT message sent to this L5 switch. 

Content-Update-AdcMsgJS: the timestmp, represented witli a sequence numbrr, 

çarrïed in the most recent ICP-UPDATE-CONTENT-ACK message reçeived frorn this 

L5 svitch. 

A cache server uses an array, SwitchAmay, to store the above ininmation about al1 

cooperating L5 nvitches. As described in Figure 3.8, a cache server has a process to rrceiw 

ICP messages kom the cooperating L5 switchrs. Upon receiving m ICP message, the process 

hrsr loçates the sending L j  switch in in Srnitch-\rray according to the mcss;ige'e's 

SenderMdress (lines 2-7), and then processes the ICP messxge according its OP Code. II rhr 

message is ICP-UPDATE-CONTENT-ACK, the cache server records the achowledgemrnr 

timestmp, which is used to check if the content update o n  the slvitch is suçcess~ully hnirlicd. 

l f  the message is ICP-QUERY-WORgLOAD, the cache semer responds with an 
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ICP-UPDATE-WOEUCLOAD message uskg the timestmp from the L j  switch, so t h  the 

switch cm keep track of the query and the response (lines 11-12). The cache semer's workload 

inforrnxtion is put in the payload field of  the responding message. 

1. Process OnReceiveMessage(msg: ICPMessage) 

2 ,  for i:= 1 to NumOfSwitches do 
3 - if ( Swi tchPirray [ i 1 . IPAddress == msg , SenderAddress ) then 
4 ,  sw : = SwitchArray [il 
5 - break 
6. endif 
7, endfor 

8. switch (msg. OpCode) 
9 - case ICP-UPDATE-CONTENT-ACK : 

10. sw.Content-Update-AckMsg-TS := rnsg,TS 
II. case ICP-QUERY-WORKLOAD: 
12. SendMessage(1CPUPDATE-WORKLOAD, msg-TS, sw-IPAddress) 
13. endswitch 

Figure 3.8 The aigorithm of  the ICP-message-receiving process on a cache server 

Each cache sen-er peri~dicall~ publishes its cache content information to evecy ~ o o p r r ~ ~ t i n g  L5 

nvitch. Sirnilar to the aigorithm used in a L5 nvitch, a cache semer also uses a sequcnce 

number as a tirnestarnp to keep tnck of ICP-UI?DATE-CONTENT ÿnd 

ICP-UPDATE-CONTENT-ACK messages. As described in Figure 3.9, a cache server miy srnd 

out one o r  n.-O ICP-WDATECONTENT messages to a particular L3 switch in every round of 

content updare, but it only increases the timestamp of this switch by 1 (line 4)). This is because 

a L5 nvitch might receive ~ v o  ICP-UPDATE_CONTENT messages in the same round- ?bus, if 

a L5 switch receives nvo ICP-UPDATE-CONTENT messages midi a %lme timeswrnp, ir  ciin 

sirnply ignore the second message. 
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1- Procedure UpdateContentDistribution(content:WEIGHTED~BLOOM~FILTER~ 

2. for i:=l to NumOfSwitches do 
sw : = SwitchArray[i] 
sw-Content-Update-TS += 1 
SendMessage(ICP-UPDATE-CONTENT,sw.ContentUpdateTS sw.IPAddress 

endf or 

SendTime := t h e 0  
Wait until ( tirne0 > ( SendTime + TIME-OUT-THRESHOLD)) 

for i :=1 to NumOfSwitches do 
sw : = SwitchArray[i] 
if( sw-Content-Update-TS I = sw-Content-Update-AckMsg-TS) then 

SendMessage(ICP-UPDATE-CONTENT,sw.ContenttUpdate~TS 
sw - IPAddress ) 

endif 
endfor 

end 

Figure 3.9 The algorithm ofupdating cache content information 

3.3 Summary 

In this chapter, we inrroduced the h a d  Balancing Layer 5 PB-L5) switching-basrd Wrb 

caching scheme. LB-L5 uses a weighted Bloom Filter to represrnt cache content in order to 

support directo-based cache cooperation. The weighted Bloom Filter has nvo salient 

properties. Fint, the weighted Bloom Filter c m  be used to represent cache content and c;irry 

cache access-frequency information at the same time. Second, the weighted Bloom Filrer gkes  

lower hlse predicxion probability than the basic Bloom Filter used in Cache Digsr 2nd 

S u m m q  Cache. By using the weigl~ted Bloom Filter to represrnt cache conrenr 1.13-L.3 c m  

support directory-based HTTP request routing in order to avoid t l~c quer\;/responsc dchy 

esisting in query-based schemes such as ICP. Memwliile, thc access-tkqurncy informiirion 

carried in a weigh ted Bloom Filter enables LB-L5 to support access-tieqwncy-mure cache 
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cooperation, mhich helps to reduce the duplication of ciiching. 

LB-L5 uses cache content and access-frequenq information, cache sen-cr w-orkload 

infomation and network Iïnk delay information to route HlTP requesrs to one OC a set of 

cooperating cache servers. This routing policy mzkes LB-LS suitable to support distributrd 

Web caching since it aooids fetching objects kom remote o r  busy cache sen-es wlienrrrr a 

less espensive copy c m  be found. LB-L5 achieves backward compatibility with existing Web 

caching rnethods by e ~ ~ e n d i n g  ICP, the most popular Web caching protocol, to tacihate 

communication between the cache servers and the switches- This means that LB-L5 cache 

serven c m  cooperate with switches and/or cache serves that are not LB-Lj aware, and diat 

LB-LS messages are transparent to these switches md/or cache servers. 
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Performance Evaluation 

In this chapter, we evaluate the pertormance of  our proposed LB-LS Web çaching sçheme. 

The results are compared with those of ICP, Cache Digest, and basic L5 transparent \Veleb 

caching. Section 4.1 esplains the simulation model adopted in this snidy? whvhid~ includes the 

network model, proxy traces and the simulation sohxare implernenk~tion. The effects of 

nenvork link delay, H m  request Litensity, w d  the number of cooperating pro' sen-ers on 

the performance of the Web caching schemes are reported in Section 4.2. Findly, Section 4.3 

provides a summary of the results O btained in the simulation study. 

4.1 Simulation Mode1 

\Ve fint describe d ~ e  simulation model, includhg the ncnvork model and tlic p r o y  triiscs cised 

to genemte 1-ITTP request traffic. The simulation of the Web cacl~ing schcrnes il; rhen 

descnbed, followed by the necessary p ~ ~ e t e r  senings and the simulation s o h v x e  srnimire. 



Chap ter 4. Pertorrnance Evaluation 46 

In rhis study, a 6 . ~ 1 1 ~  distributed cache coopention architecture is simulated. Tlx nenvork 

mode1 for a c h  of the four sknulated \Veb caching scliemes is shown in Figure 4.1. In the LCP 

-md Cache Digest schemes shown in Figure 4.1 and @), respectively, e ~ h  pro? cache 

semer accepts HTTP requests fiom a cluster of clients, and has a link to evecy other 

cooperating prosy semer. In the basic L5 md LB-L5 Web caching schemes shown in Figure 

4.1 (c) and (4, respectively, a L5 nvitch transparently intercepts H'ITP requests h m  a cluster 

of clients. The L5 nvitch redirem a cacheable request to a cache semer. Non-cacheable 

requests are routed directly to the Web semer. The ciifference between the basic L5 and LB-L5 

is that LB-LS suppom distributed cache cooperation. In the LB-L5 scheme, a L5 nvitch c m  

make routing decisions and redirect a H'TTP request to one of a set of cooperating 

servers. 

Web Server s 
@) Cache Digest 
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(c) Basic L5 (d) LB-LS 

Figure 4.1 The nenvork mode1 for the Web caching schemes 

4.1.2 Proxy Traces 

\\;é use publicly nvailable p roq  m c e s  from the National Laboratory for Applied Senvork 

Research (NLWR) 127 cache serves to generate HïTP requests in the simulation. NL-LVR 

netsvork topology is shown in Figure 4.2. The proxy races [rom BO (Boulder) -md UC 

(Urbiuia-Champaign) are used in the simulation. 

The pro- hace files are in the Squid native format. r\n entry in the trace tiles 1x1s the 

to llowing fields: 

Timestamp: the time when the client socker is closed. -ïhr torrnit is "Griis rime" 

(seconds since Januaty 1, 1970) with rnillisecond resolution. 
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URL: the URL of the reques ted ob jea. 

HierarchyData/HostName: a description of how and wliere the requested object \vas 

tétched. 

ContentType: the content type of the request object. 

In Our eïperiments, pro- trace files are used in two ways: raw-trace md controlled. In the 

mi,--trace data sinuiations, the traces are used to simulate the requests from client clusters. In 

the conuolled-parameter simulations, we modifjr the traces to enmine the et5ect.s of dilterent 

parameters. LVe condense or espand the traces with different factors (shorten or  enlarge the 

intennl between requests proportïonally), and use different nenvork link delays and different 

numben of cooperating cache serÿers to investigate their eftects on the prrf-brmance of Wei) 

caching schemes. 

4.1.3 Web Caching Schemes 

We evduate the performance the ICP, Cache Digest, basic L5 and LB-L5 Web çaching 

schemes. We compare LB-La with ICP because it is the most popular Web caching p rotocol 

in esisting Web caching systerns. In addition, LB-L5 is compared with Cache Digest beçause it 

is also used in the NLASR nenvork together with ICP. The pertommce cornparison of LB- 

L5, ICP, and Cache Digest can show the improvement achieved by adopting the L5 switch to 

support distributed caching. Moreover, LB-L5 is compared with the basic L5 scheme to 

investigte to what esrent the ivork1o;id bdancing and cache çoopemtion features ot' LB-L5 

improve upon the pertormmze of the basic L3. 
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Figures 4.3 to 4.5 illustrate the basic H?Tl? request processing procedure in LB-L5. A non- 

cacheable H?TP request is redirected to a Web server as shown in Figure 4.3. 

Web Client L5 Switch Proxy Cache Web Server 

Figure 4.3 Non-cacheable HTTP requestç in LB-LS 

Cacheable HTIT requests ;rre processed as shomm in Figures 4.4 md 4.5. The sxvitch redirects 

a cacheable request to one of a set O t cooperatïng cache s e r v e s  If the receiving cache semer 

tïnds the requested object in its cache, it replies with a HlTP response message and the object 

(Figure 4.4). Othenvise, it krches the objects Çrom a Web server (Figure 4.5). 

The detaiied 1-ITTP request processing t7ow cham of the tour Wet, cachins schemes are 

described in Appendk C. These flow cliiirts -are drxwn according to the scherne dcscriprions in 

ICP [15,16], Cache Digest [19], basic L5 [23] and LB-LS. The simulation method is also used 

by Chiang to mode1 and evduate hiecnrchicd Web a c l ~ i n g  schemes [-4G]. -L%ç p;ir.imetecs uscd 

in the simulation, suc11 as the request processing time at pros7 sert-ers and the round trip rime 



Chapter 4. PerFormance Evaluation 5 1 

benveen sibling proxy servers, are summvized in the nesrt section. 

Web Client L5 Switch Proxy Cache W eb Server 

Figure 4.4 Cacheable H-iTP GET requests in LB-LS (prosy cache l-iit) 

Web Client LS Switch Proxy Cache Web Server 

Figure 4.5 Cacheable H T l T  GET request in LB-LS (prosy cache miss) 
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4.i.4 S.ular ion Parameter Sethgs 

The pimeters  used in the simulation are chosen according to dan  measured by Rousskov 

[17,4S] and BM's  technical report o n  its L5 nvitch [237. These pÿrameten ;ire summarized in 

Tables 4.1 and 4.2. 

Connect ~C-WS 

Connect W - ~ C  

Connect SWJVS 

Connect w c s c  

Connect wcsw 

Disldccess pc 

Processing WS 

Processing 
ws~-rïmeouc 

Processing 
ws-GIMS 

Relay p - -  

Rep - - I ~ s  - .- 

The dapsed cime since a pro? cache sen& TCP-SIX CO a Web server to diel qïClmc 
JJ\,111J 

proq receiviri~ TCP-SYN--ACK h m  the Web server - ______ - - - I-_ - - - 
Theelapsed tirne since a L5 switch sen& T m - S m  CO a p rov  cache semer to the 
suitch receivlig TCP-SSN-ACK fmm the cache semer 

10-450ms 
- 

The ehpsed cime since a L.5 switch sen& TCP-SITU' CO a Web semer to the swicch 
receivini TCP-SkN-ACK Gom the Web semer - - 

The elripsed time since a Web client sen& TCP-SYN to a pcoy cache semer to 
the client receiviog TCP-SYN-ACK from the cache semer 

0-30ms 
- -  

The eiapsed rime since 3 Web client ~ends TCP-SYN CO a L5 switch ro the clien 
receivixq TCP-StX-ACK I?om the switch 0-30ms 

- 

The cime it takes a pro'cy a c h e  s m e r  CO retrîeve a cache object fmm disk co 
rnernory 100ms 

- ---- - -  
The t h e  it cakes :i Web semer between receicing a request md retuuiing die tirs 
byte of the rcquested object 35Oms 
The time it t&es a p r o q  semer to abort an outgoing HTI-P connecrion setiip 
request for a Web server 25000ms 

The cime it t h  3 Web server between teceiokig a GINS reqiiest and renirnlig 
the &SC byte of rhe reqiiested obiect 250ms 

n i e  rime it tkes n proq  cache semer CO day a t-esponse to the requesting ppvty ISOms 
---- 

The time it takes a prolcy cache s e r v e ~  to reply a object in memory to die 
requescing p q  15Oms 

- - 
The tirne it cakes a pro. cache server to reply a "30k not modified" message SOms - --  
The the it tkes a Web semer to reply an object in manozy to the requeskg p q  1 
-- - -- - - - - - -- - -  
The rime it t k e s x 5  nvitch CO make a rouclig decision 5Oms 
-- - ,  . - , . n  . . . .  - - 

The round trip &ne between a proy ccnch semer and n Web serrer 13001~1s --- - . - 

n i e  murid trip time benveen a L5 swiccti =id ri pro- cridic sen-er 1-10---1(10ms 

r - - ---- - - - - - -. - - - 
TCP-Splicing "le &e ir r a k a  a [c, s\vkch's port controk to ~ : ~ l n t e  K P  seqiiena nimiber 
s\v r -- - .. I I 

Table 4.1 Simulation parmeters (Time values) 

Source 

A V q i n g  according CO distmcr. 

:\ssumed vduc. 
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Nomindl 
Parame ter Source \;;due 

Table 4.2 Simulation panmeten (Probability values) 

We assume that the request processing time at a pro'ry cache server, which includes the timc to 

search for a requested object in a cache and the disk access time for moring the object from 

disk to memory, is proportional to the nurnber of concurrent requests. Th i s  assumption is 

supported by the data collected by Rousskov [-Il as shonm in Figure 4.6 

ResponseTime vs. Number of Concurrent Requests 

Number of Concurrent Requesrs 

1 * ProxyResponseTime = Predicted ~ r o x ~ ~ e s p o n s e ~ i m e  i 

Figure 4.G Prosy response time vç. number of concurrent requests 

-1I-ie predicted response time plot in Figure 4.6 is obtained through linelr represston xdysiç 
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using the least squares method to fit a line through a set of observations- 

4.1.5 Simulation Soffware Implernentatih 

The simulator used in this thesis conducts discrete event driven simulation. It is developeci 

using the Java prognmming language. The simulation sohvare consists of  the following sis 

major components: 

Client Cluster: responsible for simulating a cluster of clients. Ir grnerates H-ITP 

request dfic using the request logs tiom p r o q  trace files. 

Basic L5 and LB-L5 Switch: responsible for sirnulating the basic L5 switch and 

LB-L5 switch. The basic L5 switch redirects a cacheable request to its associateci 

cache semer and a non-cacheable request to a \Veb sen-er. The LB-Lj switch 

supports ex~ended ICP messages and communicates widi coopcrating cache 

servers. It redirects a cacheable request to one OF a set o f  distributed cache srn-ers 

based on the cache content and access-frequency in forrnatio n, semer workload, 

and network link delays. 

ICP/CacheDiges t/L5/LB-L5 Prosy Servers: responsible for simularing a pros' 

cache senier. They use the L a t  Rccently Usecl (LRU) replacement ;ilgorithm tti 

maintain their caches. The basic L5 prosy s e m r  does not  support s;ic!x 

coopention. Therefore, it only performs the LRU cache m;tn;igemrnr Lnçrion. 

Other prosy cache servers perforrn additionai tunctions. The ICP prosy sen-er 

uses the ICP pcotocol to support query-based cache cooperation. T l ~ e  Ciiche 
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Digest uses a Bloom Filter to represent cache content and supports directo-- 

based cache cooperation. The LB-L5 pro. server uses a weiglired Bloom Fïlcer to 

cepresenc cache content It uses estended ICP mess;igrs to communicate witi~ LB- 

L5 nvitches to publish w-orHoad, cache content and access-Frequençy infom~rÏon. 

Web Server: responsible for simuiaàng a Web server. It accepts 1-ITTP requests 

and then sends back H T ï P  responses and requested objects- 

Netnrork Link responsible for sirnulating a network link connecting p r o y  semers, 

L5 sivitches, Web server and client clusters. It passes messages From one end to 

the other with a specified link delay. 

Event Manager. responsible for simulation event queuing imd dispatching. ;\Il 

simulation events are handled by the event man-,iger. 

The detailed sohvare structure and class description of  the simulator are @\-en in i\ppendLx D. 

4.2 Simulation Results 

In this section, we describe and analyze raw-trace data and controlled-paruneter simulation 

experiments. In the raw-trace data simulations, pros7 traces are used to genente H'TTP 

requests to drive the simulation. In the controlled-p=meter simulations, pro' traces are 

çondensed or espanded using different factors (the interval behveen requests is shortened or 

enlxged prop~rtionall~) to simulate difFereiit HTiT request intensities. The network link dchy 

(including propagation delay, packer transmission delay and nehvork açcess  del;^^) ;nd  r l ~ c  

number of cooperating p r o q  cache servers are other parameters uusd in both rmv-tr;icc d;ir:i 
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and controlled-p-meter simulations. 

4.2.1 Ra tv-trace D a  ta SUnu1stion.s 

In the caw-trace data simulations, we use the pro- mces Çrom prosy sen-ers on the NLitNR 

nenvort. The pros7 traces used in the simulations are described in Table 4.3. 

i m-ne P r o s - S  Location NumO tReques ts Date 
BO 1 Boulder 11621 1 Sept. 16,2000 
tic Grbana-Champaign 374093 Sept. 16,2000 

Table 4.3 Prosi  traces used in raw-trace data simulations 

The nvo pro. senrers are at the root level OF the NLANR netsvork. They accept 1 - I T I T  

requests From prosies at lower levels. Approsirnately 90 prosies use BO1 as their parent sache 

and 60 use UC- \Ve choose H?TP requests from network domains by the client IP addresses 

loged in the trace Tiles, so that itve c m  simulate the cache cooperation among diti-erent 

4.2.1.1 HTTP request intensity and response time 

The number of  HTTP requests received by a pro. determines the worklo;id o t  the pros?. -As 

we shall see, the response time of a prosy cdche semer follows the HTTP request intrnsity. 

3[ranwhile, if a scheme adapts d l  to high F-IT[i '  requcst inrensitirs, ir slio~ild li:i\-c :1 h m r  

response time cun-e. 

c ~ t :  semers Figure 4.7 plots the HTTP request intensity in an e~periment, where four pro' cl -1 

cooperate in a 2Chour duration (The results af'ter simulation m m - u p  time, 0:OOam - 6:OO;un. 
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are adopted). The request intensit~ ranges kom 127 to 1043 messages pper minute. The average 

intensity is 465 messages per minute. 

The average response times undçr different lin% delays are shown in Figures 4.8 - 4.1 1 .  The 

simulation resuln show that LB-L5 outpertorms the other three schemes, and has a better 

adaprabili~ to high E-ITIT request intensities. 

Under a small lin% delay (5 milliseconds), as shown in Figure 4.8, LB-L5 outperforms ICP b y 

314'0, Cache Digest by 23'/., and basic L5 by 13% on average. However, under vety large link 

delavs, LB-LYS performance is similar to that of the basic L5 scheme. LB-L5 avoids 

redirecüng requests to remote cache serves when the response time improvement is less d ~ m  

the cost. .As shown in Figure 4.11, when the link delay is 200 milliseconds, LB-L5 outprrfoms 

LCP bv 419'0, Cache Digest b y 174'0, and basic L5 by only 2'/0 on average. 

The results also show that LB-L5 11% a better adaptability to high H??-P request intensity, 

especdlv for small link delays. As shown in Figure 4.8, under a peak request intensity (time of 

day =19:50) LB-L5 outperforms ICP and Cache Digest by 53'10, and basic LS by 28OA 
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Number of HïTP requestç per minute 
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Time 

Figure 4.8 --iverage response time at Iink delay =5 ms 
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Response time (Link delay=50 ms) 

.-- - pp -- -- - - - . - 

Figure 4.9 Average response time at link delay =3 m s  
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Response tirne (Link delay=100 ms) 

Time 

Figure 4.1 0 Average response tirne at link delay =IO0 m s  
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Response time (Link delay=200 ms) 

-- - -- - - - - - -. - - - . . 

Figure 4.1 1 Average response time ar link delay =200 ms 

4.2.1.2 Hit rate 

The cache hit rates of the tour scl-iemes under a link del. of 50 miIliseconcis (;ibout the dcla!. 

of  a 100 kilometer network link) are shown in Figure 4.12. The results show d ~ a t  [Cl' ;ichievrs 
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the highest hit rate. The average hit rates for ICP, Cache Digest, basic L5 and LB-LS are 

22.799'0, 22.20°,'0, 17. 16% and 21.07°/~, respectively. 

The results show that ICP has the highest hit rate, since it k a query-baçed protocol. m e n  an 

ICP p r o q  server receives a request and cannot h d  the requested objrct in its own cache, it 

ÿsks al1 cooperating cache serc-ers for that object. Therefore, if any one of a set O t cooperating 

servers has a cached copy of the requested object then the request \vil1 result in a cache hit. In 

the directory-based Cache Digest, the directocy update del. prel-mts a proxT semer from 

having the most up-to-date information about the cache content on cooperating srrvers, and 

thus decreases the hit rate. The basic L5 scherne does not support cache shwïng, and, 

therefore, its hit rate is the lowest of al1 the scl-iemes. Like Cache Digest, LB-LS is a directory- 

based approach, so the directory update delay is one o f  the reasons for its lower hit rate. The 

second reason for LB-LYS lower hit rate is that it sacrifices hit rate wl-ien it is cost-eftéctive not 

to redirect a request to a remote semer o r  a semer that hm a hi& workload. 

LVe have a hypothesis that using a weighted Bloom Filter to represent cache content improl-es 

cache hit rate, because the weighted Bloom Filter has lower hlse predicrion probability chan 

the basic Bloom Filter used in ICP and Cache Digest. I-Ioweuer, the [lit r;itc. improl-cment 1s 

offset because LB-LS sacrifices hit rate to balance semer workload imd to al-oici remotc cache 

hits. The combined eftect oY these hctors on LB-L5's hit rate needs f u d ~ e r  study. 

AIthoug1-i simulation results show tl-iat LB-L5 has a Iower hit rate tlim ICP and Cache Digest, 

ir k;is a better response time. This is because LB-L5 takes into consideration o d ~ r r  tktors 
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affecting the performance of Web caching systems, such as nenvork link delay, HTTP request 

intensity and p r o q  semer workload balancing. The effects of these k t o r s  are t-urther 

inves tigated us ing controlled-parameter simulations in the nes- setion. 

Cache Hit Rate (Link defay=50ms) 

-- - 

Time 

Figure 4.12 Hit rate cornparison of ICP, CD, basic L5, and LB-LS 
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4.2.2 Con trofled-parane ter S ' u h  tr'ons 

ln this section, we study the performance o f  the proposed LB-LS Web cac11ing scheme in ;i 

controlled-parameter environment. LB-L5 is again compared with ICP, Cache Digest, iuid 

basic Lqer  5 transparent Web caching. 

The parameters used in the esperiments are network link del*, HTTT request incensin, ;uid 

the number of cooperating cache serves. These parameters are set as foollows: 

Nenvork link delay. in the experiments, the network link delays are varied from 5 to 200 

milliseconds, which represent a wide range of link distance and/or nemork congestion 

leveIs. 

HTTP request intensity: the ditterent HTTP request intensities are simulated by 

condensing or expanding proliy traces with a controlled factor (shorrening or  enlarging the 

intervd between requests proportionally), and then using the modited traces to generatr 

H?TP requests. In the esperiments, the HTïP request intensities are set irom 50".~? to 

25Ei.  The intensity range is chosen according to the previous w - t n c e  dara simulation 

results, where the p d  request intensity (1043 requests prr minute) is about 22-1*,0 of the 

average request intensity (465 requests per minute). 

Number of cache servers: vie vary the number OF cooperating cache serves from a small 

number (2) to a l i ~ g e  number (12). 

In the simulation e~periments, results are sampled every minuce in 30-minute duntions :ifter 

warm-up time. Simulations are run large enougl~ times to obtain go0,% confidence Ir\-el with 

10°/'o confidence intervds. Plots in tlis section do not show the confidence intervals because 

tliey are too small. 
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4.2.2.1 Effect of network link delay 

Figure 4.13 pl06 the response time versus nenvork link delay. The esperiments are conducted 

with ditferent H?TP request intensities and different numbers of  cooperating pros7 cache 

serven. We firs t note that LB-L5 outperfoms the other schemes for dl d u e s  of link delay 

and HTlT request intensities. 

Escept for the basic L5 scheme, the response &es of the VVeb caching schemes increase as 

the network link delay increases. However, the extent to which the times increse is ditferen t 

in each scheme. The response tirne of  the basic L5 scheme is not affected by link de-. sincr it 

does not support cache server cooperation. 

ICP is highly affected by the nenvork lhk delay since i t  is a query-based scheme. .As descril~ed 

in Chapter 2, if an ICP prosy cache server cmnot h d  a requested object in in own cache, i i  

queries al1 other coopentïng cache servers to fiid a cached copy of the ob ject. As the nenvork 

link delay increases, the inter-prosy query/response tirne inçreases. As shown in Figure 4.13 

(e.2), the response tirne o t  ICP increases up to 370 milliseconds as the link del. increases 

trom 5 to 200 milliseconds. 

In Cache Digest, when a prosy cache server cannot find d ~ e  requested object from its own 

cache, it searches the digests of a11 other cooperating sen-ers, and if i t  fin& the object then ir 

ktclies die object t'rom other caclie senrer. nie Cache Digest scheme dues nor involve inter- 

p r o q  query/response. Fetching an objrct t'rom a remote semer. Iiowel-er. makes rlic f-1-1-17' 

request rrsponsc time still susceptible to nenvork link delay. As sliown in Figure 4.13 (c.2). rhc 

response time of Cache Digest increases up to 64 milliseçonds as the link delay incrrases irom 

5 to 200 miheconds. 
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Figure 1.1 3 EfÇect of  link delay on response time 

The basic L5 scl-ieme is not attècted by nenvork link delays because ir does not supporr 

dis~ibuted cache cooperarion. O n  the oti~er h;md, the response timc of LB-LJ is ~ ~ ~ i r l ! .  

at't-ected bv link delay. Khen the link rielair is srnall, LB-L5's rouring desision is lxised miinl!. 

on the cache content md workload int-omat;on of cache senrers. 1-I?TP requests c m  bc 

redirected to any one o f  the coopenting cache servers to increase caslie hit rate or to Ixi1;incc 
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server worldoad. As the iink delq increases, the response thne irnprovement achieved by 

redirecring requests to remote cache serves decreases. Therefore, when the Iink dclay is 1-ey 

large, LB-L5's performance closely resembles the basic L5 scherne. As shown in Figure 4.13 

(e.2), die response Nne of LB-L5 increÿses up to 730 milliseconds as the link delay incrases 

trom 5 to 200 milliseconds. However, LB-L5 -d~- outpertoms the odier schrmrs. 

Simulation results show that performance advancige of LB-L5 over the other schemes is rven 

more apparent when the request intensity is high. This is because, as the request intensiv 

increases, the irnbalance of the server worldoads increases, which means tliat the performance 

improvement achieved by LB-Lj's semer workload balancing increases. -45 shown in Figure 

4.13 (a.2), when the request intensity is 50°/o, the response tirne of LB-Lj is lower tlim that OC 

[CP, Cache Digest, and the basic L5 schemes by up to 560, 353, and 250 rnilliseconds. 

respectively. Figure 4.13 (e.2) shows that under a cequest intensity of 230°,G, the rcsponsr time 

of LB-L5 is lower thm that of ICP, Cache Digest, and the basic L5 scheme, u p  to 1966, 1422, 

and 895 milliseconds, respectively. The effect of request intensity on d w  response timç undcr 

diffrrent link delys is hrdier studied in the nest section. 

4.2.2.2 Effect of request intensity 

Figure 4.14 plots the response tirne versus HlTP request intensity under different link delays. 

l i e  esperiments are conducted for different numbers of cooperating cache sen-ers. \Ve tirsr 

note thar regxdless of the netsvork link delay, die H l T T  request response tirne for ;dl \YTel> 

cacliing schemes incrmes as we increase the request intensicy. hgain, LB-Lj outprrforms tlic 

otlirr three schemes under al1 combinations of requcst intensity -and link deEiy, as shown in 
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Figure 4.14. 

Simulation results dso show thac LB-L5 adapts better to hi& request intensities than the other 

schemes. As shown in Figure 4.14 (a2), under a small link delay (5 milliseçonds), LB-L3s 

response tirne increases by only 23'/0 as the request intensity increase Crom 50°A to 250%. The 

corresponding response tirne increases for ICP, Cache Digest and basic L5 are 114V0, 106%, 

and 77*/0, respectrvely. 

These results again retlect the performance irnprovement xhieved by LB-L5's server workload 

balancing. .4s the network link delay increases, the cost of redirecting requests to remote 

semers increases. Therefore, mhen the link delay is very large, requests ÿre less likely ro br 

redirected to remote serves and the response time of LB-L5 is s e 7  close to dut of the basic 

L5 scheme. This case is shown in Figure 4.14 (f. 1, f.2). 
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Figure 4.14 Effect of HTTP request intensity on response time 
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4.2.2-3 Effect of nurnber of cooperating cache servers 

Figure 4-15 plots the response times of the various schemes versus the nurnber ofcoopemting 

cache servers. These experiments are conducted under different request intensities m d  link 

The basic L5 scheme does not support cache semer cooperation. Therefore, it is not ai-tected 

by the number of cache servers and link delays. Increaçing the number of cooperating 

servers does not guaryitee perhrmance improvements in ICP and Cache Digest. This is 

because ICI) and Cache Digest try to achieve the best hit rate but do not consider cache server 

workload and netsvork linli delay. Simulation cesults show that the response times of ICP and 

Cache Digest increase as more requests are redirected to remote or  busy cache servers to 

acl-iieve higher hit rates- 

O n  rhe other hand, in LB-L5, as the number o t  cooperating a c h e  semers incrcases' LS 

nvitches are better able to redirect requests to bdance server workloads. T h u s  the performance 

gain increases. \\%en the link delüy is srnaIl, the performance improremenr is signific;mt- -As 

shown in Figure 4.15 (a.1, a2), the response tirne is reduced by 29% LIS the number o i  

cooperating cache servers increases from 2 to 12 However, under vecy large link delays, 

requests are not likeIy to be redirected to remote seru-ers. LB-Lj cannor g i n  the brnetits of 

semer workloxi balmcing and cache shanng in this case, as shown in Figure 4.1-5 (El ,  E2). 
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4.2.2.4 Effect of request imbalance 

The esperiments in this section snidy the server workload bdancing capabiliy of LB-L5 Four 

client clusters generating different intensities of  requests ÿre used in the simulations. F~gurc 

4.16 (a-d) plots the number of messages processed per minute by each pros- ache  sen-er for 

each scheme. Figure 4.16 (e) plots the standard deviations of these numbers. These 

esperiments are conducted under d i tkent  nenvork link delays. 

As sshown in Figure 4.16, server morliload is not balanced in ICP, Cache Digest or the basic L5 

scheme, since they do not have a semer workload balancing capability. LB-L5, on the other 

han4 ensures balanced server workloads when the network link delap is relarively small. -1s the 

network link delav increases, the cost of r e d i r e h g  requests to remote serves increases, -and 

the benefits of workload balancing demeases. LB-LJ woids redirecting requests to rrmo tc 

servers when the Iink delay is ver). large. 

Simulation results show that the sen-er workload bdcuicing capability of LB-LS is apparent 

when the network link delay is not Iarger than 72 milliseconds. Theretore, by bdmcing sen-er 

morkload, LB-LS cm achieve performance improvement for distributed cache systems 

deployed o n  a local area nenvork o r  a metropolitm area nenvork. 
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Figure 4.16 Workload bdancing in LB-LS 
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4.3 Summary 

In sumq ,  thk chapter evaicated the performance of the proposed LB-LS Web cicl-iing 

scheme. The performance ofLB-L5 was cornpared to that of ICP, Cache Digest, and the b-sic 

L5 Web caching scheme via simulation. In addition, the adopted nenvork model, simu1;ition 

experùnent setane,  and shulation sohvare impiemen~tion were described. Two types of 

simulation esperiments, raw-trace data and controlled-parameter, were conducted to 

investigate the eftects of network link delay, FfiTP request intensity, and the number of 

cooperating pro- servers on the performance of  the K'eb caching schemes. 

The simulation experknents showed that LB-L5 outperforrns ICP, Cache Digest, m d  the basic 

L5 scheme, with respect to HTTP request response tirne under various nework link delays. 

Reprdless of the HïTP request intensity, the response tirne of ICP, Cache Digesr, and LB-LS, 

increases as the nenvork link delay increases, whereas the basic LS scheme is not affecteci bv 

Iink delav. Under large link delays, the response time of LB-L5 is close to thiu of the basic La 

scheme, since LB-L5 avoids redirecting requests to remote servers when the cost is too 11igl1. 

The resuIts obtained Gom the esperiments conducted on the ef'tèct of HTTP request intensity 

skowed that LB-L5 adapts better to hi& request intensities t hm the other three schemes. 

Under 11igl-i request intensity, LB-L5's semer workload balmcing produces s igni t i~mt 

performance improvement. 

Likewise, LB-L5 demonstmted a better capability of supporting a c h e  cooperation th;m thc 
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other three schernG: As the nurnber of cooperating cache sen-ers încreases, LB-LS h;is more 

opportunities to redirect requests, which helps to balance server workloads -and increase cache 

s haring. These two factors mea .  that the performance improves. 

It is noteworthy that the eïperiments conducted to investigate LB-LYS semer rvorkload 

balancing showed rhat the workloads of cooperabng cache sen7en are wel1 balanced when d-ir 

link delay is not very large. Homever, the workload is not wel1 balanced when rile link delay is 

very large, since the cost of redirecting a request becomes too high. The obcainrd results dso 

retlected that LB-L5 does not over-emphasize any one of the hctors d u r  detrrrninr the 

performance of a Web cacl~hg system. 

During the simulation e~periments it was found that she cache hit rate of LB-L5 is n o  t as 11 igh 

as that of ICP and Cache Digest, aldiough it  is better than that OF the basic L5 schcme. The 

main reason is that LB-L5 sacrifices hit rate when the cost of redirecting a request to a remo te 

or high-workload server is too hi&. This again showed thac LB-L5 tries to give bdanced 

consideration to the multiple hctors affecting performance. Thus, we c m  conclude thar LB-L3 

is more adapnbIe than the other schemes. 



Chapter 5 

Conclusion 

5.1 Concluding Remarks 

Web achlig is considered one of the most effective approaclies to improving die 

performance imd scalabilip o t  the Web. The emerging Laver 5 switching-based transparent 

Web cacliing not only makes the deployment -md configuration o f  the caching sysrem cisirr. 

but also improves its pertômance bp redirecting non-cacheable HlTP requests to bypass 

cache servers. 

The main thesis OF this research is that transparent Web criching cm be cornhined with 

distributed cache cooperation to provide improved cache perForrnance. \Xe proposed die Load 

Balancing Layer 5 switching-bxed (LB-Lj) Web aching scheme, which uses rrmsparent \\;'el> 

caching techniques to support distributed Web caching. 

LB-L3 uses a weigl~ted Bloom Filter to represenr cache content in order to support direçtory- 
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based cache cooperation. The weighted Bloom Filter has nvo salient properties. Fint, the 

weighted Bloom Filter cm be used to represent cache content and c q  cache access- 

kquency infomation at the s m e  time. Second, the wei&ted Bloom Filter gives lower M s e  

prediction probability than die basic Bloom Filter used in Cache Digest and Sumrnary Cache. 

By using the weighted Bloom Filter to represent cache contenf LB-L5 c m  support directory- 

based E-ITïP request routing in order to avoid the query/response dela). esisting in query- 

based schemes such as ICP. Meanwhile, the access-fiequency information c'mied in ;i 

weighted Bloom Filter enables LB-Lj to support access-frequenq-mv-are cache cooperation, 

wliich helps to reduce the duplication of caching. 

LB-L5 uses cache content and access-kequenq infomation, cache sen-er morkload 

information and nenvork link delay information to route H ï T P  requesrs to one of a set of 

cooperating cache semiers. This routing policy makes LB-L5 suitablr to support distributed 

Web caching since i t  avoids fetching objects Çrom remote or busy cache seners d e n e v e r  ii 

less expensive copy c m  be found. LB-L5 achieves baclavard compatibility with esisting Web 

caching methods by extendhg ICP, the most popular Web caching protocol, to facilitate 

communication between the cache semers m d  the switches. 

-\ detded simulation modd waç developed to study tlx perforrmince of Ll3-1.5. LB-13 w i s  

compared with three esisting Web caching schemes, n-Lunely ICP, Cache Digest, iind Imic 

Layer 5 transp;uent Web cacliing. Tiiç results show t h  LB-LS outpçrtunns diesr csisting 

schemes in terms of H?TP request/response time and prosy semer workIo;id lxil~uicing. Ln-  
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L5 is also shown to adapt better to hi& HTTP reques t intensicy. 

5.2 Future Work 

While LB-Lj Web cadiing has a number of advantqes that enable it to outperfom rxisting 

schemes, several aspects of the research need M e r  investiption. The hasli hnctions used in 

LB-Lj to generate cache content representation are based on MD5,  w-hich is a one-way hÿsh 

hnction that produces a 128-bit hash value, or message d iges~  of  an arbitrary-lengdi input 

message. MD 5's collision-resismce pro perty malces i t  suitable for building the weighted 

BIoom Filter, since we ~ v m t  different objects to have different representations. However, we 

believe it is possible to f i d  a more computationally efficient hash tüncrion for d ~ e  \Veb 

caching contesr. This is because, first, MD5 was designed to process input messages of much 

larger s ize (n 5 12-byte blocl;';) thm a typical URL (50 bytes on average). Second_ the a~danclie 

effect, which is bringïng the previous blocls: hash values to the folloming blocks, in UD5 is 

used to strengthen ILlD5's one-way property and may be simplitied in Our case. In addition, ;i 

hash hnction that produces hash values reflecting die similarit). of input messages (dut is, 

URLs) may be used to more precisely represent cache content üccess characteristics. 

In LB-LS, the cache servers periodically publish the cache content and access-frequency 

information to die switches. Cising compression techniques and incremenral updates is 

possible, since rhe content ÿnd access-frequency information on a p;uticular cache sen-cr 

climges gradua11 y. 
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We have a hypothesis that using a weighted Bloom Filter to represent cache content improves 

cache hit rate, because the weighted Bloom Filter has a lower hlse prediction probability d ~ a n  

the basic Bloom Filter used in ICP and Cache Digest However, the hit Elte improvement is 

offset because LB-LS sacrifices hit rate to balance server workload and to in-oid remo te cache 

l-iits. The combined ettect of these factors on LB-LS's hit rate needs hrther snidy. 

With some modihcations, LB-L5 c m  be used in a Web semer cluster scenario. The \Sr& 

servers can either contain duplicated Web documents, o r  cm br  optimized for differenr 

document types. For esample, some Web semen c m  be optimized for image documents, 

while other Web servecs are optimized for text documents. This m a h s  the Web semer cluster 

easy to maintain, and possess better performance. A Layer 5 switch can be intewited into ;i 

Web semer clus ter to redirect incoming H-ITP requests to one O t the Weeb semen according 

to the tt-orkioad and the content information of the Web sen-ers. -i weigl-ited Bloorn Filter 

c m  be used to represent a Web semer's content and prekrence of the different sets of 

document requests. For esample, the LVeb server optimized for image documents c m  also 

contain some test documents, but it haç a better response time for image document requests, 

and thus prefers tlîese requests. 
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Appendix A 

Weighted Bloom Filter 

LB-L5 uses a weighted Bloom Filter to represent cache content Each cache semer divides al1 

cache objects into different sets and assigns a weight to each set according to rl-ieir access- 

frequencies. The weigl~t of a set is the number of has11 tünctions dmr should be used, oc the 

number of bits set to 1 in the filter, for an object belonging to the set. \Ye cal1 d i s  mrtiiod 

weighted Bloorn Filter because it assigns a weight to each cache-object set. 

The weighted Bloom Filter assigns a heavier weight to a set with bigher access-frequenq. 

Thus, objects with higher access Frequencies are represented with more bits set to 1 in the 

filter. At the time of looking up an object, the number of bits set to 1 indicates the access- 

ti-equenq rank O t the object. 

To analyze the hlse prediction probability and derive an optimum \veighr assignmenr, w e  

formalize the probkm using an approacli similar to du t  in [39]. 
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Assume that the set S of di possible objects in a cache is partitioned into n subsrts SI, 5 ,  . . .. 

S., mhicli ;ire dis joint and whose union is S, that is 

Let Dl be the number of obiects in Si, and D= Dl+ Dl.. .+ D, be the total number otobjeçrs 

in the cache. We def ie  the access probability for objects in Si to be Po and the weighr for SI to 

be IV,. Assume the filter length is F. 

In a filter r e p r e s e n ~ g  D objects, the probabiliv that a pdcular  bit is O 1s: 

I-ience, the probabilily thar a particular bit is 1 is: 

The FaIse prediction probability is: 
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To  find the optimum IVL for eacli subset Si such that the FaIse predicrion F, 1s minimizrd, Ive 

differentiate F, with respect to W,'s: 

a~~ - 1 - R  D~ 
Because - - -- aw, R F ~a 

Equation (4) is equivalent to 

P,R"I - P,R- - - - P,, R ' ~ ~  F, -_-_ --- - -. --- - K (I; is a constant independent of'i) 
D, 4 Dn D 

Su bs tituting equation (5) into (4), we have: 

From equations (1) and (6), we lime: 



Substituting equation O) into (6), we 

Substituting equation (7) into (3, we have: 

Substituting equation (9) into (S), sve have: 

n P, -  ln 2)' + CD,  ln- n 

Subs tituting equation (1 0) into (91, we give the optimum d u e s  for the W i ' s :  

L J 

From equation (5) and (IO), we give the solution For F,: 

r D 2 O, ln' 
F I )  , D, 

In D 
F, = e D D 
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The Bloom Filter used in ICP and Cache Digest is a special case of  the weiglited Bloom Filter- 

I f  we do not divide objects into subsets (n=l), equations (11) and (12) reduçr to the 

correspondhg formulas o i  the Bloom Filter witl~out weights, as shown in equations (13) and 

(1-9, res pectively. 

To compare the weighted Bloom Filter with the Bloom Filter without weights, let us first 

investigte Web access charncteristics. Resewchen have found that a small fclction of t l ~ e  

objects receix-es a large fmction of the accesses. More precisrly, HTJT requesr distril~utions 

follow a Zipf s distribution [49,5O751,j2,53,5.1,~ mir numbrr of  accesses for che ir" mosr 

N 
popular object is: R, = , . The Zipf exponent ~r reflects die degree of populüriry skrw, and K 

L 

represents the number of requests for the most popular object. In die reportrd Web access 

analysis, the esponent ranges korn 0.G to 0.8. 

For esample, we assume that 30','0 of objects receive 7O0<'o of  access requests. \'ire diride S into 

subset S, and S mith P,=0.7, P,=0.3, and D,/D,=3/7. The cornparison of the tdse prediction 

probability of these two Bloom Filters is sliown in TabIe 8.1 and Figure A l .  
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ted Bloom Filter 

W2 Fp 
0.652858908 0.272579682 
1.346006069 0.168591443 
2.039153269 0.10427137 
2.73230045 0.06-i-494046 
3-4254-47631 0.039889783 
4-1 18593811 0.024671964 
4.81 1741992 0.01 52.W692 
5.504389172 0.00913817 

Table A. 1 Weigl-ited Bloom Filter vs. Bloom Filter \vithout weigh ts 

1 + BloomFiker -A-- weighted Bloom Filter / 
Figure i1.1 Weigl-ited Bloom Filter vs- Bloom Filter witliout weighrs 
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MD5 Hash Function 

MD> processes the input te- in 512-bit bloch, which are divided into 16 32-bit sub-blocks. 

The output ot the algorithm is a set of four 32-bit blocks, which concatenate to form ;i single 

128-bit 1 1 ~  h value. The algorithm consists of following steps: 

Step 1: Pad the message, make the message length = 512 x n 

Fi r s~  the message is padded so that its length is jusr 64 bits short o f  being a multiple OF 312. 

This padding is a single 1-bit added to the end of the message, followed by as many zeros as 

are required. Then, a 64-bit representation of the message's lengti~ (before pdd ing  bits wrre 

added) is appended to the result. Ti~ese two steps serve to make the message lengdi an eesat 

multiple o f  512 bits in iength (required For the rest of the ülgorithm), while ensuring that 

different messages d l  not look the same after padding. 

S tep 2: InitiaLize chaining variables 

Four 32-bit çhaining variables are initialized: 
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A = 01234567 ( H e x )  
B = 89abcdef ( H e x )  
C = fedcba98 ( H e x )  
D = 76543210 ( H e x )  

Step 3: Main loop 

As shown in Figure B.1, the main [oop has four rounds. The loop continues for evey  512-bit 

block in the message. 

Input message Input message Input message 
(block 1 ) (block 2) (block 3) 

t 

Figure B.1 MD5 main loop 

Each round uses a diEerent operation 16 times. As shomn in Figure B.2, each opecirion 

pert-oms a nonlinear hinction on tl-iree variabIes of -4, B, C, m d  D. Then it adds the result to 

the fourth variable, a sub-block of the test and a constant. Then it rotates that result ta the 

rigl-it a variable number O F  bits md  d d s  the result to one of -\, B, L. or  il. T'iri;illy thc rcsulr 

replaces one of ,A, B, C, o r  D. 
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Msg Constant Sub block 

Figure B.2 One operation in one round in hm5 

There are four nonlinear h c t i o n s ,  one used in each operation (a dit-terent one for eacl-i 

round). 

n-iese tünctions are designed so t h  if the corresponding bits o f  S. 1' md Z are independenr 

and unbiased, then each bit of the result will also be independent and unbiased. The funcrion 

F is the bit-wise conditional: If X Sien Yetse 2. The tunction H is the bit-wise p-xity cpentor. 
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The Flow Charts of Web Caching Schemes 

In this study, we evduate the performance of ICP, Cache Digest, basic LS and LB-L3 W e b  

caching schemes. The HTTP request processing flow charts of the four schemes are shown in 

Figure B.1 to Figure B.S. These tlow chms are dmwn according to the schemr descriptions in 

ICP [l 5, 161, Cache Digest 11 91, t l~e basic L5 caching [Z], and LB-L5 as described in C11;iptrr 3- 

A similar simulation model was used by Chiang to model and enluate hiemchical \Yre1'eb 

cacl-iing schemes [46]. 

A s  shown in Figure C.1, in rrn ICP hilly distributed cache semer mesh, 1-ITTP requesrs 

generated by clients using the GET method are processed as foHows. \ m e n  a pros- cache 

srner receives ;i I-ITTP GET request, i t  searches its cache for the reqursrrd objccr. I f  tlic 

requested object is tound in the cache, the pros? cache semer returns the ol~jcct to t h  

requcsting client. Othenvisr, the pro- cache semer sends an ICP queq mcssilsc tu ;il\ thc 

siblings, wI-iic1-i in turn seacch tlîeir own caches for the requested object and rcply with ;in 1Ci' 
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HIT or MISS according to the search result If n-one of its sibling replies with an ICP KIT 

message, the pro. cache server fonvards the request to the original Web semer. if;ir l a s :  one 

of its siblings replies with an ICP HIT message, dae p r o y  semer tetclirs the rcquesred objrct 

irom the sibling whose reply cornes hrst, and then sends the requested object to the requescing 

client. 

H m  requests generated by clients using the G M S  (Ger If hloditied Since) rnedlod are 

processed as shown Figure C.2. The FfT?P GIMS request is used when a client has a cashed 

copp of the requested objen. The GIMS request carries a timestmp indicating when the client 

has cached the object. A prosz cache server o r  the origind Web semer should reply to the 

GIMS request with the requested object if and only if the object is modified ;iFrrr the 

timestmp. If the requested object har not been modified afier the timescmp, a sliort FI-133' 

message, Code 304, should be sent to the client. T i u s  HTTJ? G151S requests are processed 

difierently kom the GET requests afier the reques ted objects are found: an extra step is ~ikcsri 

to check if the object has been modified since the client cached it. 
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figure C.1 HTTP GET requests in ICP sçheme 
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Figure C.2 HTT'P GIMS requests in ICP scheme 

Unlike que.-bascd ICP, Cache Digest is a directo--based \Vr& caching scheme. \ T k n  :i 

pro. cache sen-er canno t tind a requested object in its c;ichç it se;uches the siblings' digests 

(the directocy of cache contents). If  the requested objecr is found in the digest of ;i sil~ling 

cache, the pros? cache semer requests the object trom the sibling. -\s described in Cliiiprer 2, 
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Cache Digest uses a Bloom Filter to represent the cache contents, which can introduce false 

prediaions, that is an object is shown in the Çdter but is not actually in the cache. I f  die sibling 

semer receiving the request does not h d  the requested object, then i t  tonvards the requrst to 

the original Web semer. The processing flow charts of KITP GET and GIhlS requests are 

sho~vn in Figure C.3 and Figure C.4, respectivel- 

i-igure C.3 HTTP GET requests in Cache Digest 
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k~gure C.1 I-ITTrP GIMS requests in Cache Digest 

In the basic L5 Web caching sclieme, every LS switch mmsparently inspects HTTP rcqucsu 

kom a client cluster. It redirects the caclieabie requests to its associatecl prosy cacl-ie semer, 

and non-cacheable requests to the original Web seners. The 1-ITT'P GET and GIMS reqwsr 
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processing Bow- ch-arts are shown in Figure C.5 and Figure C.6 respectively. 

Figure C.5 HTTP GET requests in the basic L5 scheme 
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Figure C.6 1-ITTP GIMS requests in the basic L5 scheme 

In LB-L3, the switch inspecn the H?TP requests in the s;me way as in the hsic L3 scliemc. 

The non-caclieable H ï T P  requests are cedirecteci to the original LVeb secvers. tlowevcr. llillic 
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cacheable HTTP requests are redirected to one of a set of coopemting cache sen-ers according 

the nvitch's routing decision, which is based on the cache content and workload infornation 

of cache servers, as well as the nehvork link del. between the routing switch m d  a c h e  

semers. Figure C.7 and Figure C.8 show the H?TD GET and GIMS requests processing tlow 

chats in the LB-LS scheme. 

Figure C.7 T i T P  GET requests in LB-L5 
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Figure C.8 HTTP GlkIS requests in LB-L5 



Appendix D 

The Simulation Software Structure 

The simulator used in tilis smdy uses discrete event driven simulation to simulatc [CP. Ciiche 

Digesg basic L5, and the LB-L5 Web caching scliemes. The simulation sotkVnv;ire is dcveloped 

using the Java programming Imguage. 

-4s shown in Figure C. 1, client clusters, L3 switches, pro? cache serves, Web sen-ers, and 

nehvork links are modeled and sirnulated with different simulation objects. Budi the 

communication betsveen objects m d  txks pertormed are modeled as simulation events. Every 

simulation object 1x1s an event handler to proçess received events, and c m  schedule events for 

its assoçiated objects. :il1 events are sent to the EventMmager module, \vIxre ex-ents are 

queued and then dispatcl~ed to handle ohjrcts according to rime ordering 
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Update Cache Distirbution 
and Workload 

Link 

Measure Link Delay 

tink 

Generate H'TTP requests 

) Web Server Object 1 

HTTP Response L J 
Link Link 

. m m  m.. 

tink tink 

m.. m.. 

r w a c h e  Object 
LRU Cache 

Update Cache Distribution 1 
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tink 
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Web Client Cluster Object 

Generate HITP requests 

i Event Manager 

Queuing & Dispatching 
events from al1 other simulation object 

Figure D.l Simulation sofnvare structure 

The simulation sohvare package consists of 31 classes. The major classes are describeri as 

tollo\vs: 

simu1;ition object classes implement tlîk interfilce, ;rnd process received events in tilcir own 
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Class ClientCluster 

Clss  CLerrtCIr(zter simulates a client cluster by reading prosy m c e  files ;md genmiring 1-ITT' 

requests. For esarnple, it c m  schedule a RracaV~~zLogE~~~y to itself for getting ;i log entry hom 

trace files and generate a HlTP request It c m  also schedule TpCG.WN- or H ~ ~ P - R ~ I ~ ~ J - L  evrnts 

For sending a request to a prosy semer. CkeiiîC.~-fer handles events Erom its ssoci;ited links. 

For example, TCP-ria, H T i l - ~ o t m  for processing messages Erom p r o y  servers. 

Class L5Switch 

Class L-jSü,trh simulates a basic L5 switch. It conducts TCP Spoot-Tng to inspect the HTn'  

requests from a client cluster, and rhen directs cacheable requests to its associ;ited cache sefi-er 

and non-cacheable requests to the LVeb senrer. L i S ~ ~ i r c h  c m  lxmdlr evenr; [rom its associated 

links- For esarnple, it hmdles TCPJYNand HTTP-Rt,qiies~-t events From a Iink to ii CLril/C'lics/ri; 

and TCI)-xK md H77T-Rc.po111e events t-rom a link to a VeUSc~rw: It also schedules events 

For its associated links. For example, it schedules T o - - x K  and HTTP_Rvur  events to a 

iF>bSemr, and TffCPriarand HTP-RRJ~OI~JJ~~ events to a C&~~tch~-te~i 

Class LB-L5Switch 

Clss  L B L ~ S J I ~ L C ~  simuiates a LB-L5 switcl-i. In addition to the Liinctions ofa  basic L5 swircli, 

ir communicates with cache semers to obtain their workload, cache content ;inci iiccess 

trequency information. It also masures nenvork link del-. benveen itselt and cachc seners.  

LB-L-SJJ~IL~  uses tlx obtained information to redirect 1-1-1-I'P requests r o  onc- of rhc 

cooperating cache servers. 



LB-LiSiMtch suppom estended ICP messages in its e~,lttHllrd(r method, and schedules events 

corresponding to such messages on its associated links. For example, it 11mdles 

IO-UPDA~E-COLWE~LT even ts fro m links ro L-Pra\yCa~%Is: and sclîedules 

IOJüER~[ t "OiKLOAD events to f-.5PPm~C~~%ts. 

Class ProxyCache 

Class PmxyCache is the super class of a11 prosy classes. It implements the Lem Recentlv Used 

&RU) cache replacement algorithm to sirnulate a LRU cache. -MI prosy classes derived h m  

this class inlîerit its methods i m p i e m e n ~ g  LRU cache. 

Class LBL5-ProxyCache 

Class LB15Pro~yCache simulates a prosy cache semer supporting LBL5 nvitches. In addition 

to the hnctions of a basic LRU pro. cache server, i t  communicates widi L3 switcl-irs for 

updating its workload, cache content and access frequenq information. 

L B - L - S I I . ~ ~  supports estended ICP messages in its ~ L Y V I I H L Z I I ~ ~ J  metliod, and scl-iedules events 

corresponding to extend ICP messages for its associated links. For esiimple, it handles 

KPJLERY-IF'ORE(L0AD events fro m links to L - P ~ v ~ y C r l ~ % I t s ;  and schedules 

IGP_L~PD,-~E-CO~\EL\T even ts for Iin ks to b-pmxy Cuck. 

Class ICP-ProxyCache 

Ckus fCP-Pru-\yCdche simulates a p r o y  cache server supporting the ICI' protocol. In ;iJrlitiori 

to the functions of a basic LRU pros? ~ic11e server, it communiates witli coopcratirig ICI' 

pros? cache semers to share cached YVeb objects. 
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ICP-Pm-qCde sup pom ICP messages in its r,w~tEfami!e mediod, and schedules events 

con-esponding to ICP messages toc its associated links. For esample, it handles ICPJUERY 

events from links to other ICD_Pm~Cacbes; and responds the query by scheduling fC'P-HIT or 

iCP-:\.UIS evenn for the link to the querying pros?. 

Class CDPro;uyCache 

Class CDCDPmxyCucbe sirnulates a p r o y  cache semer supporting the Cache Digest protocol. In 

addition to the functions of a basic LRU pros? cache server, it cornrnunicates with coopemting 

Cache Digest pro. cache sen-ers to share cxhed Kreb ob jects. 

4 CD-PmyiCuch cornputes its cache digest represented with a Bloom Filrrr periodiç;illy, and 

publishes the digest to other coopemting Cache Digest prosy serves. \\,%enevrr ;L 

@PmyCacbe receives a request and cannot fiid the requested object in its own ciclie, it 

searclies the cache digests of coopemting cache seners, and tetches die object from a 

cooperating sen-er that has this requested object- 

a Class WebServer 

Claçs EfZeUSenw simulates a Web semer. It  accepts H?TP requests and sends back I - I l T P  

responses. 1EGb.Ierzer supports TCP ;md H T T P  messages in its mvitf-lrl~~dl. metliod, and 

schedules events corresponding to TCP and F-ITIl? rnessi'~ges for its ssociated links. For 

sclieduling a *~CP-.-\CL event to the link. 
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Class EventManager 

Class E~'e~~t~\fanager uses a linked lis t to queue simulation even ts scheduled b y 211 simulation 

objects, and then dispatch the events to their receivlig objects in tïme order. 

Class MD5 

Class MD5 implemenrs MD5 hash ilnction. The r-on/p~~tzHahL khrr method of d ~ i s  cl;ü-s is usrd 

for building the Bloom Filter in the Cache Digest scheme and the weighted Bloom Filter in the 

LB-L3 CVeb caching scherne. 



Appendix E 

Confidence Intervals 

The acc-uraq ~Fsimulation results can be descnbed in terms ofconhdençr intemils placed on 

the mem values of the results. The confidence intend çalçulation procedure is descrhrd ;c\ 

folfows: 

Let 1,. . .,Y, be the statisticdly independent results from ,V difterent runs of the siune 

- 
simulation. The sample mean, Y , of these results is: 

The variance of the distribution of the samplc values, SI, is: 

2 (Y, - 
sz = '=' N - L  
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The standard deviation of the sarnple mean is: 

Under the ;~sumption o t  independence m d  normality' the sample mean is distril-ruted in 

accordance to the t-distribution. The upper and lower limits of rlie contidencir inten-al 

regarding the simulation results are: 

where ta,,. is the upper a/Z percentile o f  the t-distribution with hÏ-7 degrees of freedom. 

The simulation esperimencs in this thesis were run large enough rimes to ensurc a 90*'0 

confidence level witi-i 10y.O confidence intervals. 




