
Transparent Web Caching with

Load Balancing

A thesis submitted to

the Department of Computîng and Information Science

in conformity with the requirements

for the degree o f Master O Ç Science

Queen's University

Gngs ton, Ontario, Canada

February 2001

Copyright O Zl~engang Liang, 2001

National Library l*l of Canada
Bibliothèque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

395 Wellington Street 395. rue Wellington
Ottawa ON KI A ON4 Ottawa ON K I A ON4
Canada Canada

The author has granted a non-
exclusive licence allowiug the
National Lib rw of Canada to
reproduce, loan, distribute or seil
copies of this thesis in microfonn,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fkom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une Licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distribuer ou
vendre des copies de cette thèse sous
la forme de microfiche/irlm, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation,

Abstract

\Veb caching is a technique that temporarily stores Web objects (such as Hypertest

documents) for later retrievd in order to irnprove the performance and scalability of the \Xreb.

Layer 5 svitching-based transparent Web caching schemes intercept HïTP requests md

redirect requests according to their contents. This technique not oniy makes the deployment

and configuration of the cadiing system easier, but also ùnproves its performance by

redirecting non-cacheable HTTi? requests to bypaçs cache servers.

In this thesis, we propose a Load Balancing Layer 5 çwitching-based (LB-Lj) Web caching

scheme that uses the msparent Web caching technique to support distributeci Web caching-

In LB-L5, information about pro. cache semer workload, networli link delay, cache content

and access-h-equency is used to redirect H T l T requests in order to ache\-e cache semer

workload balance and better response tirnes. LB-L5 uses a weighted Bloom Filter to represent

cache content and access-frequency information, which enables LB-L5 to implement access-

frequency-aware cache cooperation. LB-L5 e.aends ICP, the mos t po pular Web caching

protocol, to support communication benveen cache servers and Layer 5 switches, and ensure

compatibility with existing Web cache systems.

A number of simulation e.sperÛnents were conduaed under different HTI-P requesr

intensities, nehvork link delays and populations of cooperating cache servers. Simulation

results show that LB-L5 outperforms esisting Web caching schemes, n-melv ICP, Cacl-ic

Digest, and basic L5 transparent Web caching, in terms of cache semer workload b a l m c i n ~

and response tirne. LB-L5 is also shown to aciapr better to 1ligl-i HTlT request intensitv than

the otl-ier scl-iernes.

Acknowledgments

I would like to thank my supervisors Professor Hossam Hassanein and Professor Patrick

Martin, to whom I am greatly indebted, for their continuous guidance, keen supen-ision,

constant encouragement and great assistance throughout the couse of my snid-

The financial support provided by the Department of Computing and Information Science at

Queen's University and Communication and Information Techno logy Ontario (CITO) is

greatly app reciated.

I would l i k to diank my fnends in the Telecommunic~ons Research Labomto? and the

Database Systems Laboratorp for being supportive. 1 will cherish their frîrndship forever.

Especially, 1 am very gratehl to Ahmed Sd3vat for al1 his help.

Special thanlis to my wife for her seltless support, which allowed me to concenm-,ire on my

studies.

Finally, 1 would like to make special mention of my parents. I would not be doing higl~er

studies if they did not teach me the value of hard work ÿnd dedication. Although they are

d~ousmds OF miles away From me, I alwaÿs teel their presençe and blessings-

Table of Content

... i . INTRODUCTION ...-.........

2.1 P~oxy WEB CACHING MOQELS .. 6

2.1.1 Hierarchical Web Caching ... 7

2.1.2 Disnïbuted Web Caching .. 8

2.1.3 Hybrîd Web Caching .. 10

... 2-2 COOPERATIVE PROXY WEB CACHING PROTOCOLS 1 1

.. 2.2.1 Query-Based Approach - ICP (Intemet Cache ProtocoI) 1 I

.. 2.2.2 Directory-Based Approach - Cache Digest 12

2-23 Kash-Based Approach - C e (Cache Array Routing Protocol) .. 14

2.3 TRANSPARENT WEB CACHING TECHNIQUES .. 14

... 2.3.1 L4SwitchingBased Transparent Web Caching 14

... 2.3.2 LS-Switching-Based Transparent Web Caching 16

.. 3 . LB-L5 WEB CACHING -20

3.2 LB-LS DETAILED DESCRIPTION .. 25

3.2.1 Cache Content Representation .. 25

3-22 ICP Extension .. 30

3.2.3 L5 Switches working with Extended ICP ... 35

3.2.3 Cache Servers working with Extended ICP .. 41

.. 4 . PERFORMANCE EV ALUATION -45

.. 4.1 SIMULATION MODEL 45

4.1.1 Network Mode1 .. 46

4.1.2 Proxy Traces .. 47

4.1.3 Web Caching Schemes ... 49

4.1.4 Simulation Parameter Sertings .. 52

4.1.5 Simulation Software Implementation ... 54

4.2 SIMULATION RESULTS ... 55

4.2.1 Raw-trace Data Simulations .. 56

.. 4.2 1.1 HTTP request intensity and response tirne 56

4.2.1.2 ffit rate .. 62

4.2.2 ControIled-Parameter Simulations ... 65

4.2.2.1 Effea of necwork link delay .. 66

4.232 Effect of request intensity .. 69

4.323 Effect of number of cooperating cache serves ... 73

4.234 Effect of request irnbalanœ ... 76

... CONCLUSION 80

... 5- 1 CONCLUD~NG REMARKS 80

APPENDIX A . WEIGHTED 8 LOOM FILTER .. -92

APPENDIX B . MD5 HASH FLTNCTfON - 9 8

APPENDIX C . THE FLOW CHARTS OF WEB CACHING SCEMES 101

APPENDIX D . THE SIMULATION SOFTWARE STRUCTURE 1 Il

APPENDIX E- CONFIDENCE INTERVALS .. 1 17

1V

List of

FIGURE 2.1

FIGURE 2.2

FIGURE 2.3

Figures

FIGURE 2.4 TRANSPARENT CACHING SUPPORTED BY AN L.4 SWITCH ... 15

FIGURE 2.5 NORMAL HTTP T R A ~ C FLOW ... 16

FIGURE 2.6 LAYER 5 SWITCHING TRAFFIC FLOWS ... 18

3 7 FIGURE 3.1 LB-LS WEB CACHING ARCHITECïURE --

.............................. FIGURE 3 2 CACHE CONTENT REPRESENTATION BASED ON WEIGHTED BLOOM FILTER 28

FIGURE 3.3 ICP MESSAGE FORMAT ... 30

.......................... FIGURE 3.4 UPDATING CACHE CONTENT INFORMATtON WITH EXTENDED ICP MESSAGES 33

F~GURE 3.5 QUERYD'IG WORKLOAD INFORMAT~ON WITH EXTENDED ICP MESSAGES 34

....................... FIGURE 3.6 THE ALGORITHM OFTHE ICP-MESSAGE-RECEIVING PROCESS ON A L5 SWITCH 39

F~GURE 3.7 THE ALGORITHM OFQUERYING CACHE SERVER WORKLOAD INFORMATION 40

FIGURE 3.8 THE ALGORITHM OFTHE ICP-MESSAGE-RECEfVING PROCESS ON A CACHE SERVER 42

FIGURE 3.9 THE ALGORITHM O F UPDATING CACHE CONTENT INFORMATION ... 43

.. FIGURE 4-1 THE N ! ~ ~ V O R K MODEL FOR THE WEB C.4CHCNG SCHEMES 47

FIGURE 4.2 NLANR NETWORKTOPOLOGY ... 48

F t ~ u ~ E 4 . 3 NON-CACHEABLEJ~~TP R E Q U W S IN LB-LS .. 50

F r G u R ~ 4 . 4 CACHEABLE HTTP CET REQUWS IN LB-L5 (PROXY CACHE HIT) 51

Frcun~4.5 CACHEABLE HTTP GET REQUEST tN LB-LS (PROXY CACHE MISS) 51

FIGURE 4.6 PROXY RESPONSETIME VS . NUMBER OF CONCURRENT REQUESTS .. 53

F l ~ u R E 4 . 7 REQUESTS INTENSITY ... 58

F ~ G U R E ~ - 8 AVERAGE RESPONSETIME A T LiNK DELAY =5 MS ... 59

FIGURE 4-9 AVERAGE RESPONSETIME A T LINK DELAY =50 M S ... 60

FIGURE 4- 10 AVERAGE RESPONSETIME AT LlNK DELAY MS .. 61

FIGURE 4- 1 1 AVERAGE RESPONSETIME AT LlNK DELAY =200 MS .. 63

FIGURE 4- 12 HIT RATE COMPARISON O F ICP . CD . BASIC L5 . AND LB-LS .. 64

FIGURE 4.13 EFFECT OF LiNK DELAY O N RESPONSE TIME .. 68

.. FIGURE 4.14 EFFECX OF REQUEST [NTENSITY ON RESPONSE TIME 72

FIGURE 4.15 EFFECTOFTHE NUMBER OFCOOPERATING PROXES ON RESPONSETIME 75

FIGURE 4.16 WORKLOAD BALANCING IN LB-LS .. 77

FIGURE A . 1 WEIGHTED BLOOM FILTER VS . BLOOM FILTER W ï ï H O ü T WEIGHTS 97

FIGURE B-1 MI>5 MAIN LOOP ... 99

FIGURE B.2 ONE OPERATION [N O N E ROüND IN MD5 .. LW

FIGURE C . 1 m P GET REQUESTS IN ICP SCHEME ... 103

FIGURE C.2 HTTP GMS REQUESTS IN IcP SCHEME ... i@!

F~GURE C.3 GET REQUES~S IN CACHE DIGEST .. 105

FIGURE C.4 G m S REQUESTS IN CACHE DIGW .. 106

FIGURE C.5 HTTP GET REQUESTS IN T H E BASIC U SCHEME ... 107

FIGURE C.6 GMS REQUESTS IN T H E BASIC L5 SCHEME ... 108

FIGURE C.7 H I T P GET R E Q U W S IN LB-LS .. 109

F~GURE C-8 H?TP GIMS REQUESTS IN LB-LS .. 1 1 0

FIGURE D- 1 SIMULATION S O F ï W A R E STRUCTURE.. .. 112

List of Tables

... TABLE 3.1 ICP OP CODES 31

... TABLE 4.1 SIMULATION PARAMETERS (TIME VALUES) 52

TABLE 4.2 SIMULATION PARAMETERS (PROBABILTTY VALUES) ... 53

 TABLE^.^ PROXY TRACES USED IN RAW-TRACE DATA SIMULATIONS .. 56

TABLE Al WEIGHTED BLOOM F~LTER vs . BLOOM FILTER W ~ O U T WEIGXTS 97

Chapter 1

Introduction

The World-\Vide Web P,2] (the IVeb) is an Intemet-based glo bal1 y distributed in fornation

system that was orïginally developed at CERN (Conseil Européen pour la Recherche

Nucleaire) for s haring in fornation arnong collaborating researchers. The Web uses Hy pertext

for stcucturing information [1,2]. Hyperte.-T is test with links (called Hyperlinks) to other

information, such as t e ~ t and multimedia. The clients and senrers on the Web use the

HyperTest Trans fer Protoco l (H m) to communicate [3,4]. -1 W'eb dien t accessrs

information on a \Veb server by sending an HlTP request. 11e server parses d ~ e request,

retrieves the requested information, and retums it to the client.

Since its hrst complete implementation in 1991 [2], the Web lias esperienced phenomenal

gro\vth because of its tnendly user interfaces and effective information dissemination

capability. However, the growd~ of rhe LVeb has contributeci signibc;mtly to tlir traffic on tlic

Interne< and raised sevenl problems such as long HTTP request/response times, 1iea;iw LVrb

Chapter 1. Introduction - 7

server worlcloads and netsvork congestion [5]. These problems have mo tivated several pro jrcts

on improving the perfo miance and scalability O t the Web.

Web caching a technique that ternporarily stores Web objects (such as Hypertest documents)

for later retrieval, is considered one of the most efficient approaches [GYT]. Web caching c m be

perfomed at Web prosies. A IVeb p r o 9 consists of application level software that accepts

HTI?) requests from a set of clients, fetches the requested objects from originül YVeb sen7ers,

caches the requested objects and sends these objects back to the clients. Prosv Rreb caching

increases document availabiliy and enables domdoad sharing. Ir reduces overd access delay

and swes network bandwidth by caching Crequently requested Web objects.

In addition to local pros7 Web caching disaibuted cache cooperation, a rnechism tDr

s haring documents benveen caches, cm hrther improve system performance b y providing a

shared cache to a large user population [8,9,10yll,12]. In a cooperxire Web caching system, if

a cache miss occurs at a local cache semer, the request can be fonvarcled to one of a set of

cooperating servers. Therefoore, if any one of the servers has a cached copy of the requested

object then the request will result in a cache hit.

In the past few years, several W-eb ccaching schemes were proposed ;md widely deployed to

support distributed cache cooperation. The pioneer project C E R ! [13], iirid its direct

successor Harvest [Z-C], introduced the Internet Cache Protocol (ICP) to achie\-e pros! scn-cr

çoopecation [15,l6,lï'l. After Harvest was commercialized in 1995, Squid [l SI becme its

public domain successor. One of the most recent improvements implemented in Squid is the

Chap ter 1. Introduction 3
-- -- -

Cache Digest (CD) LVeb caching scheme [19], which uses a Bloom Filter [19] to represent the

cache content and performs directory-based proxy cache server coopemtion. A sirnilar scheme,

S u m m q Cache [20], was proposed by Pei Cao in 1998-

Recendy, Layer 4 and Layer 5 (L4/L5) switching-based transparent 'Cir& cicl~ing techniques

have drawn lots of attention kom academic and industrial researchers [21,22,23,24,25]. IBM,

- o m P o i n t (acquired by CISCO in June 2000) and Alteon (acquired by Norte1 in July 2000)

have announced L5 switches that c m transparently redirect non-cacheable HTI'P requests to

original Web servers and cacheable requests to caches by using TCP spoofing and TCP

splicing techniques. Transparent Web caching not on- makes the deployment and

configuration of the caching system easier, but also improves its performance by redirecting

non-cacheable HTTP requests to bypass cache servers [21].

However, no Web caching sclieme has yet been proposed for the m s p a r e n t \Vrb caching ta

support dismibuted cache cooperltion, which is widely supported by prosy Web caching

svstems and has proven ettective [8,9,10,12,17,18,19,26,32]. The thesis of this rexxch is

d u t transparent Web caching c m be cornbined with diseibuted cache coopemtion to provide

improved cache performance.

In this thesis, we propose the b a d Balancing Laver 5 (LB-L5) sivitchinç-based \Vel~ c d 4 n ç

scheme. LB-L5 uses transparent Web caching techniques to support distributcd Web caching.

Moreover, cache server w-orkload, network link delay, cache content m d access-frequency

information, are used in LB-L5 to redirect H T ï P requests in order to achieve cache sen-cr

Chapter 1. Introduction 4

worldoad balancing and better response cimes. LB-L5 uses a weighted Bloorn Filter to

represent cache content and access-fkequency information, which enables LB-L5 to implement

access- r e q u e n - v e cache coo peration. In order to achieve bacba rd compatib iiity witl~

esisting V7eb caching sptems, LB-LJ estends, but does not replace, ICP - the most popular

Web caching protocol - to support c~rnrnunication between cache servers md LS. nvitches.

The rest of the thesis is organized as tfollo\vs. In Chapter 2 we provide a review of related Web

caching technologies. We fvst describe the hierarchical and dis tributed pros7 Web cachinç

models. LVe then introduce typical V e b caching protocols representing query-basrd, hash-

based and directory-based approaches. Finally, we discuss emerghg transpÿrent Weeb caching

techniques, which use Layer 4 or Layer 5 switches to transparently redirect H m requests to

cache servers.

Chapter 3 presents ün overview of &e proposed LB-L5 scheme fo11o~ved by a discussion of

the design decisions. The use of a weighted Bloom Filter to represent cache content and

access-kquency information is described. A detded description of the scheme and

algorithw is aven, where Layer 5 switches and prosy cache servers coopemte by using

estended ICP messages.

A performmce evaluarion of LB-L5 Bs presented in Chapter 4. The adoptcd simulation mode1

is described. Prosy nazes tiom the N L M R cacl~ing project 127,281 are used to drive our

simulator. Simulation esperiments a r e conducted in order to study the cifeçt of nenvork link

delq, HTll? request intensity, and the number of coopenting cache servers on the

-
Chapter 1. Introduction 3

performance of LB-L5. These results are compared to existing YVeb caching schemes, namely

ICP, Cache Digesr, and basic Layer 5 transparent Web caching- The results show that LB-L.5

outperïorms =isting schemes in terms of overall H m request/response time and cache

semer workload bdancing. Chapter 5 concludes the thesis, and provides some suggestions for

hrther research.

Chapter 2

Web Caching Techniques

In this chapter we provide an ovenyiew of various related Web caching techniques. Section 2.1

describes the hienrchical, distributed, and hybrid Web caching models. Secxion 2.2 introduces

query-based, hash-based and dlectory-based approaches ro p r o q semer cooptration by

describing a typical protocol of each category. Section 2 3 discusses the emergmg tmnsp;irenr

Web caching techniques with an emphasis on the structure and function of Layer 4 md Lqer

5 switching.

2.1 Proxy Web Caching Models

In esisting prosy Web caching systems, cooperativr pro? cache sen-ers are orgmized ritlier

hie-hically, in a h l i y distributed mesli, or in a hybrid structure. This section introduçcs tliesc

structures and points out their advancages and disadvantages.

Chap ter 2. Related Web Caching Techniques 7

2.1-1 hYerarc1Fu'ccal Web Caching

One category o t approaches to cooperative LVeb caching sets up a caching hienrchy [11,14], as

shown in Figure 2.1. LVkh hienrchical caching, caches are placed at multiple levels of the

nebvork. For the sake of discussion, we assume that tlxre -are tour levels of caches: bottom,

institutional, regional, and national. The client caches are at the bottom level of the hirrarchy.

When a client cache does not satisfy a requesf the requesr is redirected to an institutional

cache. If the document is not tound at the institutional level, the request is then tonvarded to

the regional level cache, which in mm Çonvvds unsatisfied requests to the national level cache.

If the document is not Coud at any cache level, the national level cache contacts the original

Web server. When the document is Çound, either at a cache or at the server, it mvels down the

hierxchy, leaving a copy at each of the intermediate caches. Further requesn For the same

document mveI up the caching hierarchv und the document is tound at some cache le\-el.

Cache Cache Cache Cache Cache Cache
4 1-y r \

/ \

Figure 2.1 HierarchiGd Web Caching Mode1

Chapter 2. Related Web Caching Techniques 8

Hierarchical Web caching was k t proposed in the Harvest project [ly- Other esamples o f

hiemchical caching include .4daptive Web caching [29] and Access Driven cache [30]. =i

hiemchical architecture is bandwidth efficien~ particularly when some cooperi~ting cache

servers do not have high speed connechvis.. In such a structure, popular Web pages c m be

efficiendy difhsed towards the demand. However, there are several problems associated with a

caching hie rarch y:

1. Every hierarchy level introduces additional delays.

2. Higher level caches mav become bodenecks and may have long queuing delys.

3. Multiple copies of documents are stored at different cache levels.

4. To set up such a hierarchy, cache serves need to be placed at key access points in the

netsvork This often requires significant coordination arnong participating cache sen-ers.

2.1.2 Discributeci Web Cachhg

Recentiy, a number of researchers have proposed an alternative to liierarchical caching, cdled

distributed caching [8,9,lO,l l,3 1,35,36]. In d i s~bu ted Web caching systems, no intermediate

caches are set up. There are only institutional caches that serve each other's misses. In ordrr to

decide from wl-iich institutional a c h e to retrieve a document, institutionai keep

metadam information about the content of every otl-ier cooperating cache. -1-0 r n i k e the

distribution of the metadata information more efficient and scalable, a hierarcl-iical distril~u tion

cm br used. Homever, the hierarchy is only used to distribute information about the location

or the documents and not to store document copies. The smxture of the distributed \Vel>

Chap ter 2 Related Web Caching Techniques 9

caching mode1 is shown in Figure 2.2

Figure 2.2 Distributed Web Cacl-iing Mode1

With distributed caching most of the traffic is in the lower levels of the hiemrch y, wh ich are

less congested. The nodes at the interrnediate levels only require Little additional disk spiice. In

addition, distributed caching dlows better load sharing and more h l t roler.uicr. Seved~eless,

a Iqe-scale deployment of distributed caching may encounter several problems, suc11 ;fi l-iigh

connection delays, higher bmdwidth usage, and administrative issues.

There are severd approaches to distributed cacl-iing. The Hanest [14] group designed the

In ternet Cache Protocol (ICP), which supports discovery and retrievd OF documents t?om

neighbouring caches, as well as parent caches [l4,15,16]. Another approach to dismbuted

caching is the Cache k a y Routing Protocol (CARP) [32], wl-iich divideç the C U - s p x c

among an arr;iy of loosely-coupled caches and lets eacl-i cache store only the \Vcb objccts

Chamer 2. ReIated Web Caching: Techniques 1 O

whose URLs are mapped to it.

Provey and Harrison [31] also proposed a disaibuted caching scheme. In their scheme,

directorv servers that contain location hints about the documents kept at every cache replace

the upper Ievel caches of the other schemes. h metadata hiervchy is used to make the

disaibution OF these location hints more efficient and scalabie. Tewari et d. [8,9] proposed a

sirnilar approach to implement a hlly distributed Internet caching systern where location hints

are replicated locally at the institutional caches.

In the central directory approach CRISP [33,34], a centrai mapping service interconnects ;i

certain number of caches. Zn the Cachemesh system [35], cache semers establish a cache

routing table among themselves, and each cache semer becomes the desipated semer for a

number of Web sites. Client requests are then fonvarded to the proper cache semer according

to the cache routing table. In Cache Digest [19], Summary Cache 1201, and the Relais project

[j 6] , caches interchange messages i n d i c a ~ g their cache contents and keep local directories to

facilitate finding ob jects in other caches.

2.2.3 Hybrid Web C a c h g

In a hybrid scheme, a certain number o f prosy cache sen-ers coopemte at rvery levçl of ;i

cachÏng hier,~cl-iy by using disaributed caching recl~niques. For exunple, ICP [25,1 G,l71 Lan l x

useci for cache cooperation at every level of a caching hierarcl-iy. The requcsted obiecr is

fetclied tiom the parent/neighbour cache semer tliac has the lowest round trip rime.

hbinovich [3-/1 proposed to limit the cooperation between neiglibouring c x h e sen-ers to

Chap ter 2. Related Web Caching Techniques 11

avoid obtaining documents fiom distant or slower caches. In this case, requested objects c m

be retrieved directiy kom the original LVeb server at a Iower cost.

2.2 Cooperative Proxy Web Cachïng Protocols

To support distributed cache server cooperation, various prococols are used in existing Web

caching sys terns. In this section, we intmduce three ap proaches for cache coo pention, namely

query-based, directory-based, and huh-based approaches. We describe a typical protocol for

each approach.

2-21 Query-Based Approach - ICP (kternet Cache Prorucol)

ICP [15,16] is the most popular protocol that uses the query-based technique to coordinate ii

set ofcoopenting proxy Web caches. The caches can be o r p i z e d either hierarchically or in a

discnbuted model. ICP is an application layer protocol running on top of CDP (User

Data- Protocol). Both Hanest [14] and Squid [la] use ICP to coordinace pro- \Veb

caches-

In a distributed pro- Web caching system, ICP work as foIlows. A client sends a request to

its configured pros7 cache semer. If that cache server cmnot fiid the requested objecr in its

own cacl-ie, it broadcasts an ICP query message to al1 the other cooperating cache semen. I f a t

l es t one cooperating cache semer has the object, the contigured cache semer srnds an ITITL'

request for the object to the Fust semer tint responds to the query with an ICP hic mess:Lge.

Upon receiuing the objecc die configured cache semer stores a copy in its cache, and tlicin

Chap ter 2 Related Web Caching Techniques 12

sends die object back to the requesting client. If no cooperatïng cache semer responds to the

query with an ICP hit message before a the-out perïod, the contigured c;~che server fetches

the requested object from the original LVeb server.

222 I)irectory-Based Approach - Cache Digest

Although query-based approaches, such as ICP, work weil when cooperating prosy cache

servers are located close to each other, the que ry/response delay becomes significant in a wide

area nenvork. Directory-based approaches allow cache sen-ers to d e information about their

cache content available to peecs in order to avoid the query/response delai.

However, using an uncompressed directory of cache content c m result in hugc merno?

consumption on the cache semers and hi& directory update tdfic on the nenvork. For

esmple, if we use the entire list of cache keys (URLs) to represent the c;icl.ie content of n

prosy server holding 1 million objects, and the average URL length is 50 bytes [19], the

directory will be 50 megabytes. If we have 16 cooperating cache servers, ljs50=750

megabytes memory mil1 be allocated in each proxy semer for keeping siblings' directo-

information. YIUS, compressed representations of the cache content directory have been used

in seveml proposed approaches [8,9,19,20].

Summuy Cache [20] and Cache Digesr [19] ;ire ve? similar üpproaclirs. Both use :i Hloom

Filter to represent the directory of cache content. The major difference benvern dicm is du t

Summary Cache estends ICP to update the directory, while Digest Cache uses ICITI' to

mu-tskr directory information.

Chap ter 2 Related IVeb Caching Techniques 13

Bit Vector

Figure 2.3 Bloorn Filter

-4s s11own Li Figure 2.3, a Bloom Filter is an amy of bits, some ofwliich are set to 1 and the

rest are 0's. To add an e n q to t l ie Bloorn Filter, several independent hiisli funcrions are

computed for the entry's key (URL). The haçh values specik which bits in die filter are set to

1. To check i fa specific entry is in the hlter, we use the sarne hash hnstions to cornpute hash

values for the entry's lq, and check the corresponding bits in the filter. I f m y one of die bits

is set to 0, the e n q is not in the filter. If al1 the bits are set to 1, then we cm predict diat the

entry is in the fiter. A detailed description of the Bloorn Filter is presented in Cliapter 3.

The saIient tèature o f a Bloom Filter is that there is a de off betsveen the prediction accur,iqr

and die size of the filter. By adjusting the number of bits allocated for each cntq and die

numbrr of hash functions, a low hlse prediction prohbility is acliievrd in die Sunima. Cache

P O 1 -

Chap ter 2. Related Web Caching Techniques 14

223 Nash-Based Approach - C m (Cache Array RouaBg Proroc@')

-4nother cxtegory of Web cache cooperation approaches use hash-based KITP request

redirection to avoid the inter-pros? query/response delay. Cache h r a y Routing Protocol

(Cr\RP) [32] is a typical enmple.

ChRP was designed by Microso fi Corporation and the University of Pennsylvania. In C . W ,

a prosy cache semer detemiinistically redirects H?TP requesn to neighbouring caches by

using a rnapping h c t i o n that maps the hash values of the requested LrRLs to cache semer

LDs. Ail reques ts For the same URL are redüected to the same cache semer. Each cache sen-er

stores oniv the LVeb ob je- whose URLs are mapped to it.

In CARP, HïTP requests are reduected to cache semers without explicit knowledge of the

cache content on these servers or the network link delay to tiiese serves, It implicitly considers

cache hit rate by redirecting the same requests to the same cache semer. C-%RP works \vell for

1ntra.net hierarchies, but l a s so for loosely-coupled Internet cache peers [19].

2.3 Transparent Web Caching Techniques

Transparent Web caching uses network devices to redirect H ï T P mftic to cache sen-ers. T l ~ e

technique is called transparent because Web browsers do not h w e to bc esplicirly configurcd

to point to a cache semer, that is the caches are mmsparenr to the browsers [3q.

2.3.1 L#-Sdtchurg-.Z3ased Transparent Web Cachhg

.A Layer 1 switching device cm be used to redirect TCP/IP packets destined to H'iTP ports to

Chap ter 2. Related Web Caching Techniques 15

cache servers, and forward al1 other network t r d i c directly to the WAN router. They are

called Layer 4 (L4) nvitches because their switchïng decisions are based on information in the

TCP header, and TCP is a protocol for Layer 4 in the OS1 7-layer mode1 [22].

L-bswitching-based transparent Web caching systems partition the client's \Veb requests inro

separate hash buckea. The hash hunction maps the TCP session's desbnahon address into a

hash bucket, effectively mapping specific Web semer URLs to specific caches. Most of these

hash h c t i o n s operate on subnet boundaries, and typically map the ceplicas of a Web semer to

a single cache.

Client
Traffic

Figure 2.4 Transparent Caching supported by an L4 sw-itch (adop ted from [22])

NetCache Apptiances

Figure 2.4 shows NetCache Appliances NCI to NC3, an Ateon's Layer 4 switch, a router, and

a subnet l3O.lj. 1 .'. Suppose a client requests hm:/ /\WQT\-.cs.aueensu.ca frorn Web semer

130.15.1.100 and that the L4 switch's hash hnction m~ps the entire 130.15.1.0 sulmrt to

NetCachr pro. server nc2. The client establishes a TCP session with NerCache nc2.

thinking that it has established a conncction \vit11 the VYeb server 130.15.1.100. i\ -ietCaçhc

p r o y server accepts al1 connections routed to it, regardless of the desrinarion address. In

WAN
Router

Layer 4 Switch

Chapter 2. Related Web Caching Techniques 16

accepting these connections, the NetCache pros7 server masquerades as the remote Web

server.

2.32 LS-SmCVItchitzg-Based Transparent Web CachiBg

\Sihile L4 nvitches are optimimized for the aanspoct layer, they are completely unaware of' the

Application Layer (Layes 5 - 7), which h the Intemet includes protocols such as H T ï P *and

FTP. Layer 5 sivitches are nemorliing devices that provide high speed switchïng of trd-tic.

InFormation in the TCP and H'TT'P request header is used to malce routing decisions based on

the actual content, for esample URL, being requested, and manage request/responsr t-lows

from beginning to er,d [23].

The HlTP request header, which includes the URL, cornes from the client browser, bu t the

client does not send this und the TCP connection is set up. For a direct connection brnveen ;i

client browser and a \Veb server, the normal flow is shouin in Figure 2.5.

Client sena TCP SYN +
c- Server s e n d s TCP SYN ACK

Client sen& TCP ACK +
TCP session is setup

Client s e n d s HlTP Request +
f----- Senrer s e n d s H l T P Respome

t---- Server sends TCP FIN

Client sends TCP FIN ACK ------ i

Figure 2.5 Normal H T i T rraftic tlow (adopced from 1231)

A Layer 5 witch sits benveen the client md the Web serves In order to o h i n the I - t I T '

Cha~ter 2. Related Web Caching Techniques 27

request header, the switch performs delayed binding (or TCP spoo h g) . Delayed binding

means diat the witch, after receiving the initial TCP siT\I, sends t h e SyN -+CK prior to

establishing the TCP session to the semer, thus "tricking" the çlienr browser into sending it's

KT173 request. -\fier receivhg die HTTP request, the Laver 5 switch h;as JI of die in tomarion

it needs to make routing decisions based on the content being requested, and cm select the

best site and semer to service the request The swïtch then initiates a riew TCP connection to

that server and sen& the KiTP request. The Web semer responds back to the client via the

Layer 5 nvitch. In the flow rmitching stage the Layer 5 switch is provcding Network Address

Translation and wire-speed Forwarding of packets for al1 mffic going b=etween the \Xreb Semer

and the client (TCP splicing). In the finai stage, the Web switch tears down the connection,

freeing resources aliocated for the flow. These steps are shown in Figure 2.6.

2.4 Summary

In this cl-iapter, we reviewed =Uious related Web caching techniques. In Section 2.1, we

described the hierarchicai, distributed, and hybrid Web caching models and pointd out the

advanngeç and disadvantages of each model.

In Section 2.2 query-b-ased, ha&-baçed and drectory-based approaches to pro- c;iclie s e n w

cooperation, were reviewed by describing a typical protocol of eacl-i category. -\lthough que?-

baseri approaches work well when cooperating pros7 cache servers ; r e located close to eic1-i

other, the inter-prosy query/response deIay becomes signifiant in a wide arci ncnvork.

Directory-baçed approaches dlow cache servers to make information about tl-ieir ~ ~ h c

Chap ter 2. Related LVeb Caching Techniques 18

CO ntent available to peers in order to avoid inter-prosy query/response delqs. ThereFore, d ~ e y

requüe an efficient cache content representation. Has h-based approaclies deterministi~xll y

redirect HTTi? requests to cooperating caches by using a mapping hnction that maps the hash

d u e s of the reques ted URLs to cache semer IDs. In hash-based approaches, HTTP requests

are redirected to cache servers without esplicit knowledge of the cache content on these

semes or the network link delays to these serves. Thus, they work less efficiently for loosely-

coupled Intemet cache peers.

1 Client sends TCP SYN 1
f--------- Wsb Çwitch sen&

TCP SYN ACK

I Client sends TCP ACK ------ +
to Web Wtch

Client sen& H l T --------- -+
Request to Web switch --

Web Switch detemines best sitefserver for the requested content based on
the information in the TCP and HrrP headers. server load. and con&?~~~âila brI11y. - ,

- - - A A .- - -
Web Svntch rends ---------- i
TCP S M 10 selver

f---------- Server sends TCP
SYN ACK to m t c h I

Web % t h sends ---------- +
HTTP Request

Stage 2: Wirespeed HlTP Flow Switching

+--------- Sewer sends KlTP
Response

+--------- Web swtch sen&
HlTP Response

+------------- Web wtch sen&
W P Response

Stage 3: HlTP Flow Tear down

+----------- Sewer senas TCP
FIN or TCP RST

+---------- Web Wtch sen&
TCP FIN orTCP RST

Figure 2.6 Layer 5 Switching traffic flows (d o p ted kom [23 1)

Chapter 2- Related Web Caching Techniques 19

In Section 2.3, we introduced transparent Web caching techniques and desnibed the function

of Layer 4 and Layer 5 switching. Layer 4 mritching-based transparent Kfeb caching cm

transpxently redirect ail HTïP wffic to cxhe servers. Layer 5 switching-based transparent

Web caching redirem HTIF requests acco rding to their content In Layer 5 nvitching-bsed

transparent Web caching, non-cacheable H ï T P requests are redirected to bypass cxhe

servers. Transparent Web caching not only makes the deployment and configuration OF the

caching system easier, but also Lnproves its perfomance. However, no trmsparent LVeb

caching scheme supports distributcd cache cooperation, which is widely supported by pro-.

Web caching sys tems and has proven eEective.

Chapter 3

LB-L5 Web Caching

Esisting L5 switching-based Web caching schemes use TCP spoo f i g to inspect the content of

the HTïP header of a client request, and then rediren non-cacheable requests to bypass tilt

cache secvers. This increases the cache hit rate and improves system perfonnimce becausr only

cacheable requests are directed to caclie: servers. Eiisting approaches, liowewr, do not support

distributed Web caching. A Layer 5 fivitch and its associated cache server cm only be placrd ar

the gateway of a network domain. This results in problems such as congestion/latenq caused

by TCP spoofmg -and limited cache sharing between IWO or more domains.

In this chapter, we propose a h l l y distributed Web caching scheme chat estends the

capabiliries o f the Layer 5 svitching-based approaches to support distribureci \V& cxhing.

Tlie goals o f the proposed L5-based scheme are to balance pros7 cache sen-er worrkload and

improvr rrsponst time for client requests. We cal1 the sclieme the LB-LS (Lod-Balancing

Layer-5-switching-base4 Web caching scheme.

Chapter 3. LB-L5 Web Caching 21

3.1 LB-L5 Web Caching Scheme Overview

LB-LS uses infiormation about the proxy cache server workload, network link delay, cache

c e server content and access-frequenq to redirect H l T P requests, which in tum balances CT-h

workload and reduces average response times. LB-L5 uses a rveighterl Bloom Filter to

represent cache content and access-ttequency information, mhich enables LB-L3 to implemen t

access-Frequency-aware cache cooperation. LB-L5 ertends ICP, the most popular Web

caching protocol, to support communication between cache sen-ers and Layer 5 mitches, imd

so is compatible with csisting iVeb cache systems.

In addition to the transparency of existing L5 switching-bÿsed schemes, LB-L5 provides the

tollowing benefits:

1. B a h c e d cache server workload. In LB-L5, d e n t requests are duected with the

intention of balancing the workload of cooperating cache servers.

2. Reduced response time. In a hlly distrïbuted scheme cache servers cm be placed

closer to clients. The number of hops for clients to access die caches is reduced.

Moreover, LB-LS GUI baIance rvorkIoad m o n g coo perating ~ ~ c l - i c sen-ers ;ind use

network Iink delay information to redirect the: htcp request in ordrr to avoid Iiigh-cost

remote hits.

3. Improved cache s h a ~ g . The cooperation among distrit-iutecl cache sen-ers c m

hcrease the ovemll 11it rare by allowing more clients to &are cac11t.s-

4. Reduced possibility of congestion caused by TCP spoofmg. Layer 5 switcl-ies c;m

Chapter 3. LB-L5 Web Caching 22

be distributed within the network- Theref-ore, the number of TCP tlows e;~cl-i switch

needs to hmdle is reduced.

5.. Avoidance of a single point of failure. When a cache semer stops running the L3

nvitches c m redirect client requests to other cache serves.

The pioperties of LB-LS are sumrnarized as follows:

Fuily distributed architecture

As s h o w in Figure 3.1, LBL5 uses a h11y distributed architecture. H ï T P requests from a

duster of clients are f i t inspected by a L5 switch, which then redirects the requests to one of

a set of cooperating prosy cache servers or to the original \.eb serven.

Figure 3.2 LB-L5 Web caching architecture

Chap ter 3. LB-L5 Web Caching 23

In LB-LS, to redirect client requests to the most suitable cache semer, a L5 nvitch sliould 11ilk-e

information about the cache content and the worlcload of every coopemting çaclie senxr, as

well as the nenvork link delay between the L5 nvitch and eve. cache semer. The compressed

cache content information is generated and published periodically to the L5 nvitclies by cache

servers. The L5 switches also query cache server worlrload and masure nenvork link delay by

using ex~ended ICP messages. h detailed description O f the cache content rep resentiitio n

method and the use ofextended ICP messages are provided in Section 3.2-

Balance between cache content distribution, workload and nenvork Iatency

LB-L5 uses a weighted Bloom Filter to represent the cache content and the access trequencies

of cached objects at a cache semer. The weighted Bloom Filter is srnaller in size tlim a

cornpiete directory of cached objects. Moreover, it reflects the characteristics of the requests

handled bir the semer since we use the weighted Bloom Filter to c i q cache object access-

trequency information.

A Bloom Filter is used to represent cache content in the Cache Digest [19] and Summary

Cache [20] schemes. Every cached object is rissigned a tï~xed numbrr of bits in the hltrr. In the

weiglited Bloom Filter, cached objects are assigned different numbers of bits acçording to ti~rir

access frequencies. This enables the filter to carry access-frequency informarion, ünd more

üccurarely indicate whether an object is in a cache. A description of the weighted Bloom Filrer

is prsented in Section 3.2.1.

n i e access-kqurncy information of cached objects is one factor tliat intluences LB-LS's

Chap ter 3. LB-L5 Web Caching 24

HTTP request routing Lnction. In cases where several cache sen-ers have the requested object

cnched, and have similar workload and nenvork link delay, L5 switches redirect the request to

the cache server where the requested object h;is highest access-Frequency. Because cxhed

objects with lower access Çrequencies will espire and be evicted sooner, the routing drcision

based on object access-frequency is helphl to reduce caching of redundant copies.

Other h o r s of LB-LS's ICITD request routing hinction are the cache sen-er workload ;uid

the necwork link delay. LB-LS does not purely emphasize the cache hit rate, because in a h l l y

distrïbuted environmen< a rernote hit or a hit on a very busy cache server c m be slow-er than

fetching the requested objects Erom the original Web server. Thus, LB-L> makes routing

deçisions bg considering the combined effects of cache content (hit rare), cache sen-er

workload, and nenvork Iink delay.

In LB-LS, the workload of a cache server is measured by the nurnber of concurrent ?'CI'

sessions establishrd to the server. L5 switches use extended ICP messages to query work1o;id

infornation, and, at the same rime, measure netsvork link delaÿs by the message round trip

time betsveen the switch and a cache server.

Backward compatibility

LB-L5 estends, but does not replace, ICP (Internet Cache Protocol), which is the most

popular protoc01 in misting K'eb cacl~ing systems. Unused OP Codes in ICP are used for L13-

L5 messages. This r d e s LB-L5 cache servrrs can cooperate witli switches ;md/or cache

secvers that arc not LB-LEI aware, and LB-L5 messages nmsparent to these s\x~itchcs md/or

Chapter 3. LB-LS Web Cachtng 25

cache servers. Because Cache serves in LB-LS hlly support [Cl?, LB-L5 is bacla-ard

compatible with ICP aware Web caching systems.

3.2 LB-L5 Detailed Description

The following sections contain a detailed description of the LB-L5 scheme. We firsr introduce

the weighted Bloorn Filter, =-hich is used to represent cache content and access-frequenq

infomation. \Ve then describe the ICP estension, -and esplain how to use e.stcnded ICI'

messages to exchange cache content information, query prosy semer workload and measure

the network link delay. FinalIy, we provide pseudo code for the algod-irns describuig the

coopention oE L5 nvitches and cache servers.

3.2.1 Cache Conten r Represenra tion

The use o f a Bloom Filter to compactly represent cache content \vas proposed in Cache Digest

[19] and Summary Cache [20]. In these schemes, every object in a cache is represented in a

Bloom Filter by using a Exed set of hash hinaions to cornpute hash values for its key (LIRL),

and thrn setting correspondlig bits of the filter to 1. To check i l ü specific object is in the

cache, the same set oflxish tunctions are computed -and comesponding bits ;ire chrçkd. I f one

or more of the bits is O, then the object is not in the cache. But if al1 bits are 1, we have isvo

cases:

1) truc prediction: thle object is in the cache;

2) hlse prediction: the object is not in the cache while the filter indicares it is-

Chapter 3. LB-LS Web Caching 26

By adjusting the filter size and the number of hash hnctions, Summary cache achieves a tdse

prediction probability around 4.7% or lower [20]-

However, a desirable property of a cache content representation for LB-L5 is the ability to

c a q access-frequency information. -4s mentioned in the previous section, this info-~tion is

used to route the H m requests. In LB-L5, if an object is cached at more than one cache

semer havlng sirnilar values for worlrload and network Iink delay, requests for the object

should be directed to a semer where the object has the highest access-frequency. This routing

policy helps to reduce the duplication of object caching because cached objects with lower

ascess-frequency will espire and be evicted sooner.

Our cache content representation, mhich we cal1 the meigl~ted Bloorn Filter, is based on

signature bles proposed for general text file renievd by Fdoutsos [39]. .-\ signature file is

hindarnentally the same as a Bloom Filter. l i e signature file method builds a weiglited Bloom

filter that uses a varying number of hash tüntions for objects wid~ difkent access

frequencks.

The weighted Bloom Filter divides id1 cache objects into different s e s and assigns a weight to

each set according to their access-tiequencies. The weight o f a set is the nurnber of hash

hnctions that should be used to compute hash values for the key (URL) of ;ui objrçr

belonging to the set, or die number of bits set to 1 in the filter for the object W e d l this

methoci weighted Bloom Filter beçause it assigns a weight to e x I l ç;iclie-obieçt sct- *J3c

weighrerl Bloom Filter assigns a 11r:lvier wriglit to a set with higher ;icccss-frequenc~ l'hus,

Chapter 3. LB-L5 Web Caching 27

objects with higher access frequencies are represented widi more bits set to 1 in the filter. i t

die t h e o f looking up an ob je- the number of b is set to 1 indicates die acccjs-frequenc-

rank of the object.

.An esample of using the weighted Bloom Filter to represent cache content infornation is

shown în Figure 3.2. In this e-sample, a cache server divides dl a c h e objrcts into two sets

iiccording to their access kequencies. The filter size is 16. cc~v~. ! .ahoo.com" belongs to a high

access-fkequency set, SI, whose weight is 6. ccunvw.beowulf.org" and Ys-xnv-dc-Iolii-nct" belong

to a low access-fkequency set, S, whose weight is 4.

Case (a) in Figure 3.2 illustrates how to use the weighted Bloom Filter ro represent cache

content. \Ve cornpute G hash hnctions for the key of every object in S, (4 for objrcts in SJ,

and set the corresponding bits in the filter to 1. Figure 3.2 (cases b-e) describes the procedure

of loolring up an object h-orn a particular cache and its access-frequency r.mk \Ve first

compute the 4 hash hc t ions , and check the corresponding bits in the filter representing die

cache content. If one or more of the 4 bits is 0, the object is not in the cache. Othewise, we

compute the additional G - 4 =2 hash hnctions and check die corresponding bits. I l b o d ~ bits

are 1, we can predict that dlis object is in the cache and belongs to die high access-tkquency

subser. On the otl~er hand, i f m y one of the 2 bits is O, the object is in the cache but bclongs to

the low access-kequency subset.

Chaprer 3. LB-LS Web Caching 28

a)cache content regtesentation:

Object üRL Access freq. Set Weight Representation

W M . yahoo . corn high
www.beowulf-org low
www-delphi-net low

weighted Bloom Fil ter
1001 0110 1101 0010

b) look ug www. yahoo . c m

Steps

1-check if it is in S2
2,check if it Ls in SI
2.1 compute additional hash
2.2 check

Weight Representation Resul ts

4 1000 O100 O001 O010 (in S2)

6-4=2 0001 0010 0000 O000
(in S1)

(in the cache, high access f req. 1

Steps

1-check if it is in S2
2 ,check if it is in S1
2.1 compute additional hash
2.2 check

d) look up www.whouse1. corn

Steps

1-check if it is in S2

Weight Representation Resul ts

4 1000 O100 1001 0000 (in S2i

6-4=2 0010 0001 O000 O000
(not in SI)

(in the cache, low access freq-

Weight Representation Results

4 O001 O010 1001 0000 (not in S2)

(net in the cache)

e)look up www.whouse2.com (false grediction)

Steps Weight Representation Results

1-check if it is in S2 4 1001 O110 0000 0000 (in S2)
2.check if it is in S1
2.1compute additionalhash 6-4=2 O100 0000 0000 O010
2.2 check (not in SI)

(in the cache, low access freq.)

Figure 3.2 Cache content representation based on weighted Bloom Filter

Chap ter 3. LB-L5 Web Caching 29

The weighted Bloom Filter c m be used to represent cache content and cxty cache access-

tiequencv information at the sxne time. In addition, i t gives lower fdse prediction pcobability

thm the basic Bloom Filter used in Cache Digest and Surnmary Cache. By using the weighted

Bloom Filter to represent cache content, LB-L5 c m support directory-based HTT'l? request

routing in order to avoid the query/cesponse delay in query-based schemrs such as ICP.

Meanw-hile, the access-trequency information carrïed in a weighted Bloom Filter enables LB-

L5 to support access-ftequenq-aware cache cooperation, which helps to reduce the

duplication of object caching, since cached objecs with low access-frequencv will espirr and

be evicted sooner. A detailed analysis of the weighted Bloom Filter is presented in Appendk

A.

The hash hnctions used for building the weighted Bloom Filter are based on M D 5 [-IO], wl~icli

is also used in Surnrnq Cache and Cache Digest. MD5 is a one-way hash hnction drsignrd

by Ron Rivest MD stands for Message Digest; the algorithm produces a 128-bit Iiash d u e , or

message digest, for an arbitmry-lengd~ input message. M D 5 has a good collision-cesistant

property, mhich means that it is difficult to find two nndom messages sharing a cornrnon Iiasli

\-due. The collision-res is tant propecty maltes MD 5 suitable for building the weiçh ted Bloom

Filter, since we wa.nt ditiiërent ob jects to ha\-e diftkrent representarions.

The hash hnctions used in LB-L5 take groups of bits from the 128-bit MD3 11ash value o f a

URL. This method was recommended by Cao in Surnrnary Cache 1201. The cornputarional

overhead of M D 5 is negligible compared widl the user and system CPU over l~ed incurred b!r

Chap ter 3. LB-L5 Web Caching 3 O

caching [20,41]- The M D 5 algorithm is described in Appendix B.

3.2.2 K P Extension

-b [CP message i n & & - s a 20-bpe header and a variable-sized p-load, w-hiich ~ p i c a l l ~

contains a tJRL. Figure 3.3 shows the ICP message format-

Options

Padding

O 31

--

Sender Host Address

r
OP Code

Payload (Variable Size)

- - -

Figure 3.3 ICP Message Format

Request Number

Version

The contents of the header are as follows:

OP Code: the type of message. For example, a query message's QP Code is

ICPQUERY, a reply message's OP Code is ICP-MISS or ICP-HIT.

Packet Length

Version: ICP version to maintain bacLavard compatibility.

Packet Length: the tom1 size of the ICP message.

Request Number: an opaque integer identifier to match quedes md responses.

Options: bitfield to support optional Eeatures and new additions to ICP.

Padding: unusrd. (In Harvest, Options and Padding fields are slatcd to bc used for

Chapter 3. L33-L5 Web Caching 31

au tho rizatio n.)

Sender Host Address: ociginally intended to hold the IPu4 address. Howewr, since the

originating address is also avdable kom the socket API, diis field is redundant and

oken unused.

Table 3.1 shows the currentlg defmed ICP OP Codes. The spacious OP Code Reld and the

variable length payload allow ICP to be easily estended.

Value Name
O IcP-OPINVALID
1 ICI?-OP-QUERY
2 IcP-OPHIT
3 m - o ~ m s
4 ICI?-OPERR
5-9 UNUSED
10 ICI?-OP-SECHO
11 ICP-OP-DECHO
12-30 UNUSED
21 r n - o r M I s s - N o FETCH
22 rcP-OPDENIED
23 ICP-OP-HIT-OB!

Table 3.1 ICP OP Codes

LB-L5 defines the following tour new ICP messages for updating content kquency

disnibution information and querying cache semer workloiload information:

ICP-UPDATE-CONTENT: usrd b y cache serers to in form L5 switchcs of chmges nt- rl~cir

cache content and access-frequency.

ICP-WDATE-CON~E-ACK: used by L5 nvitches to acknowledge an updatc of cache

content and access- fiequency information.

ICP-QUERY-WORI(LOAD: used by L5 switches to q u e l cache senw workic~;id.

Chapter 3. LB-L5 Web Caching 32

ICP-WDATE-WORKLOAD: used by cache servers to mnver a workload query [rom a L3

s t - i tcl-i.

These tour new ICP messages are ilssigned the OP Codes 12 to 15, respectively.

Figure 3.4 shows the procedure for updabng cache content information mith extended ICI'

messages. Each cache server periodically computes its cache content information and

publishes it to every L5 nvitch. To do this, a cache server multicxts an estended ICP message,

ICP-ZTPDATE-CONTENT, to the L5 switches. The OP Code is set to

ICP-JPDATE-CONTENI and the content information and a timestamp are put in the payload

field of the message.

When a L5 mitch receives an ICP-UPDATE-CONTENT message and successtülly updatcs the

content information of the sending cache sen-er, it sends an ICP-WDATE-CONTENT-ACK

message back to the cache sen-er to acknowledge the update. If the cache senFer receives

ICP-UPDATE-CONTENT-ACK responses from dl L5 nvitches before it times out, then the

update is successhlly completed. Othenvise, the cache server sends out the

ICP-IPDATE-CONTENT message, with the s m e timestamp, to al1 L5 m-~tches that did not

respond. -\fier sending the second ICP-UPDATE-CONTENT message, the cache semer

finisheç this round of updates, that is, it does not mait for another response. A L5 switch ma)',

however, receive hvo ICP-UPDATE-CONTENT messages with the s m e timestxnp t?om a

partÏcular cache semer. In this case, only the tlrst one 1s accepteci.

Chapter 3. LB-LS \Veb Caching 33

Cache server 1 L5-1 L5-2 L5-3

ICP-UPDAT

Re-send (with same
and finish this round of update

1 1 v I

Receive the
;econd message
with same TS

Figure 3.4 Updating cache content information with estended ICP messages

Figure 3.5 shows the procedure of a L5 nvitch querying workload information with extendecl

ICP messages. Each L5 smitch peciodically queries al1 cache serves for workload information

by mulhcasting ;m ICP_QUERY_WOMCLOAD message to dl cache semen. Every time a L j

nvitch sends out an ICP-QUERY-WORKL.OAD message, it kcreases the timestamp fo or r v e 7

cache semer by 1. I n e n n cache server receives an ICP-QUERU-WORELOAD message, it

sends back an ICP-UPDATE-WORKLOAD message, with in workload informarion 2nd the

timestamp proridrd by the switch in the payload field o f rhe ICP-QUERY_WORN.OAD

message.

If the L5 switch receives ICP-UPDATE-WOFUCLDAD messages from al1 cache servrrs bcfore it

tirnes out, this round of queries is success~ulIy completed. Othenvise, it resends the

Chapter 3. LB-L5 Web Caching 34

ICP-QUERY-WORKLOAD message to al1 the cache servers that had no t responded, ünd w ~ ~ t s

for responses und it receives ICP-UPDATE-WORKLOAD messages from these cache semers

or m e s out.

In a round ofworuoad queees, a L5 switch sends out at most &.O ICP-QUERY-WORKL.OAD

messages to a cache semer- If a cache server fails to respond to ~o consecutive

ICP-QUERYYWORgL.OAD messages, the L5 switch ses the semer's worlrload to be infinite, in

order to avoid redirecting client requests to this cache semer. Upon receiving an

ICP-I.JPDATE-WOR~LX)AD message kom a cache server Mth a neiver timestarnp than in

previous ICP-UPDATETEW0R]BIX)AD messages hrom that server, or if the previously recorded

worl-doad for the cache semer is infiite, the L5 switch updates the workload information of

the sending cache server.

L5 Switch 1 CServerl CServeR CSewer3

?
ICP-QUERY-WORKLOAD T

I
I

ICP-UPDATE-WORI(LOA0
b wm receved mg's TS

CServeB: Time out 4

message out of order, only
accept message wit

CServeR:
failed to answer two query
messages. set its workload to
infinity

Figure 3.5 Qurrying workload in formation wi th estendrd ICP messxges

Chapter 3. LB-L5 Web Caching 3 -5

3.2.3 W Saitches worhg wich Extended ICP

In the LB-LS scheme, the Layer 3 switch uses cache server worldoad, netsvork link drlav, cache

content and access-kequency information, in addition to the HTI7? header intomiÿtion

inspected kom the content of client requests, to route a request to the most suitable cache

server or its destination Web server. The information is O btained as to 110~~s:

Cache content and access-frequency intormation: Cache con tent and access-trequenw

infimation is obtained and represented with a rveighted Bloom Filter Ily eac11 cache

server. It is sent to each Layer 5 nvitch using the estended ICP message

ICP-UPDATE-CONTENT.

Cache semer workload information: A Laver 5 svitch o b ~ u n s the workload intomtion

fiom a cache server bu sending each cache server an ICP-QUERY-WORKLOAD message,

which is ansvered by the receiving cache semer with an ICP-UPDATE-WORIILORIILOQD

message, whose payload field carries the semer's workload information. The workload of a

Num - of - TCP - Sessions
cache semer is rneasured as , w-here ~ ~ l c n l _ o f _ ~ ~ ~ ~ e ~ - s i o ~ f ~ - ti

Max - TCP - Sessions

the nurnber of current TCP sessions established at the server, and MK-TCP-S~W~O/K is the

misimum number of'TCP sessions that GUI be hmdled by the senter.

Nenvork link delay intorrnation: There are several proposed approachcs to me;isurins

nenvork latency. One category OF approaches uses tools such as ping, tcicerou te, and Zonc

nansfer [rom a DNS server [42]. Another category of approaches uses nenvork senices

Chapter 3. LB-L5 Web Caching 36

such as SONAR [43], IDhL4PS [M] and ReMoS [45]. However, we did not hnd an?

commonly supported ûpproach to obtain instantmeous latenq infornarion. In LB-L3, the

message round trip time between a Layer 5 sn-itch -and a cache sen-er is uscd to meisurc

the network latency. This message round trip tirne Licludes the propagatîon dela?, packet

transmission delay and nebvork access dela)..

Upon receiving a H T l T request, a L5 m-itch malies a routkg decision as follows:

1. If the request is non-cacheable, the switch redirects it to the original Web semer.

2. For every cache semer, the mitch estimates the tirne needed for htching the requested

ob ject kom that server as follows:

2.1 The switch computes hash values for the request's URL, ;md then checks the

weighted Bloorn tilters representing the semer's cache content ro see if the semer

has the requested object in its cache.

2 2 The switch then estimates the time (ï) needed for fetching the requested obieçt

from the semer as:

2.2.1 IF the requested object is available at the cache server, tlien T includes die

Nne for connecting to the server, sending the request from the switch to the

cache semer, sexching for the object at the server, moring the obiect from

disk to memory, and sending the object from the srrver to the switch.

2.2.2 If the object is not available at the cache server, then the timc for tlic c;iclic

Chapter 3. LB-L5 Web Cacliing 37

semer to tëtch the ob ject kom the CVeb server is added-

3- The switch then pre-selects a set of cache serves d u t have a reasonably short response

tune. A threshold c m be used for this purpose-

4- The witch chooses the cache server from the pre-selected set that has the highest

frequency for the requested ob jects, and redirects the request to the senier.

To make the routing decisions and redirect client requests, a L j nvitch mainnins the following

information for every cache sen-er?

IPAddress: IP address of the cache server.

ContentDistribution: a weighted Bloom Filter representing the cache content of the

cache server.

WorkLoad: the workload O F the cache server

NetworkLatency: the message round trip tirne between the cache semer and die switch.

WorkLoad-QuqTime: the tirne the last ICP-QUERY-WORgLOAD message mas sent

to the cache semer.

WorkLoad-QueryeryResponse_Time: the time of die mos t reccn tly rcrreivcd

ICP-UPDATE-WORKLOAD message from the cache semr .

WorkLoad-QuqTS: the times t m p , represented wi th a sequence number, ~ u r i e d in

the most recent ICP-QUERY-WORKLOAD mcssagc sent to d-ic ~ i c h c scn-cr-

Last-WorkLoad-UpdateMsg-TS: tl-ie timestmp, represcntecl witli il sequence numlxr,

carried in the most recent ICP-WDATE-WORgLOAD message received t'rom the

cache server-

A L j switch uses an i m y , CacheServerArray, to store the above information about al1

cooperating cache sen-ers. As described in Figure 3.6, a L5 switch has a proçess to receive ICP

messages from the cooperating cache servers and update the workload and nenvork Ihk deiay

information of these servers. Upon receking an ICP message, the ICP-message-receivhg

process fisr locates the sending server in its CacheSemer-ka7 according to t l ~ e message's

Sender-ddress (lines 2-7, and then processes the ICP message according its OP Code.

If the message is ICP-UPDATE-CONTENT, the L5 switch updates the content information of

the semer sending the messase, md sends the semer m ICP-TJPDATE-COhTTENT-ACK

message (using the timestamp tiom the ICP-ZTPDATE-CONTENT message) to achowledge

the update (lines 9-14). If the message is ICP-UPDATETEWORKLOAD, the L5 sivitdi updates

the G-orkload inlorrn;inon of the semer if the message carries more reccnt workload

information or if the previously recorded workload information is not valid (lines 15-20). An

ICP-UPDATE-WORgLOAD message (from a cache server to a L5 switch) is an irnmediate

response to an ICP-QUERY-WORKLOAD message (kom a LS switch to a cache semer). -A L3

switch uses these m-O messages to measure the message round trip timr henveen the switçh

and a a c h e sen7er (lines 21-23).

L5 switc1-i periodicaiiy queries the workload information of ai1 cacl-ie serverç by sending

ICP-QUERY-W0RgLOA.D messages to the servers. As describeci in Figure 3.7, a LS sw-itdi

Chapter 3. LB-L5 Web Caching 39

increments the workIoad query tirnestmp and records the query sending time before sending

an ICP-QUERY-WORKLOAD to a cache server (lines 4-6 and 14-16). The timestÿmp is used ro

match up the query and responding messages. Recordhg the query send time facilitates

measuring the message round trip time benveen the switch and the cache server. in a round of

quenes, a L5 switch sends at most nvo ICP-QUERY-WORKLOAD messages to a particular

cache server. If a server does not respond to tsvo consecutive queries, the LJ switch sets the

workload and nenvork Iink delay to infinity (lines 25-28). Theretore, a L5 switch c m avoid

redirecting client requests to non-responding server.

1. Process OnReceiveMessage(rnsg: IC2Xessage)

2 . for i:= 1 to NumOfCacheServers do
3 . if (CacheSenrerArray[i] - IPAddxeçs == mg. SenderAddress 1 then
4 . cserver := CacheServerArray[il
5 . break
6. endif
7. endfor

8. switch (msg . OPCode)
case IC PUPDATE-CONTENT :

if(rnsg-TS > cserver. LastÇontentUpdabzMsg-TSI then
cserver-ContentDistribution := rnsg.ContentDistribution
cserver.last-Content-UpdateMsg-TS := msg-TS
SendMessage(1CP-UPDATE-CONTENT-ACK, msg-TS,

CS erver -1 PAdders s
endif

case ICP-UPDATE-WORKLOAD:
if((rnsg.TS > cserver.Last-WorkLoad-UpdateMsg-TS)

OR (cserver-WorkLoad == INFINITE 1 then
cserver-Workload := msg-WorkLoad
cserver.LastWorkLoad-UpdateMsg-TS := msg.TS
cserver . WorkLoad-Query-Response_Time : = t i m e (1

endif
if (msg.TS == cserver.WorkLoad-Query-TS) then

cserver.NetworkLatency :=
cserver.WorkLoad~Query~Response~Time -
cserver.~ork~oad-Query-Time

endif
endswit ch

end 25. -

Figure 3.6 The algorithm O F the ICP-message-receiving process on il L5 svitch

Chap ter 3. LB-L5 7iVeb Caching 40

1. Procedure QueryWorkLoad O 1
I

2. for i:=l to NumOfCacheServers do !
3 . cserver := CacheServerArraytiI
4 . cserver . WorkLoad-Query-TS += 1
5 . cserver . Workload-Queririme r = time (
6. SendMessage (ICP-QUERY-WORKLOAD, cserver . W~rkLoad~Query~TS,

cserver - IPAddress)
7. endfor

8, SendTime := t h e 0
9. Wait until (tirne() > (SendTirne + TIME-ûUT-THRESHOLD))

10. flagSendAgain:= FALSE

Il. for i:=l to NumOfCacheServers do 1
cserver := CacheServer~rrayiil
if (cserver . Workload-Query-ResponseTime c

cserver,WorkLoad_QueqfI!ime) then
cserver.WorkLoad-Query-TS += 1
cserver.WorkLoad-QueryTirne := time0
SendMessage (ICP-QUERY-WORKLOAD, cserver

cserver . IPAddress)
flagSendAgain :=TRUE

endif
endf or

SendTime := tirne0
Wait until (tirne() > (SendTime + TIME-OUT-THRESHOLDI

for i:=l to NumOfCacheServers do
cserver : = CacheServerArray [i 1
if (cserver . Workload-Query-Response-Time c

cserver . WorkLoad-QueryTime 1 then
CS erver - WorkLoad : = INFINITE
cserver .NetworkLatency : = INFINITE

endif
endfor

1 31. end 1

Figure 3.7 The algorithm of querying cache semer workioad infom;i:ion

Chapter 3. LB-L3 Web Caching 41

3.2.4 Cache Servers worfig ~ + r % 2 Extended ICP

To cooperate with Layer 5 nvitches, cache serves must be extwided to supporr neiv [CP

messages, and use these messages to inform the L3 srvitches about d ~ e i r cache content and

workload in Eomatio n.

To cooperate with L5 Mntches, a cache semer maintains the following inComation For ev-

L5 switch:

IPAddress: IP address of this cache semer.

Content-Update TS: the timestmp, represented with a sequence number, carrieci in the

most recent ICP-LWDATE-CONTENT message sent to this L5 switch.

Content-Update-AdcMsgJS: the timestmp, represented witli a sequence numbrr,

çarrïed in the most recent ICP-UPDATE-CONTENT-ACK message reçeived frorn this

L5 svitch.

A cache server uses an array, SwitchAmay, to store the above ininmation about al1

cooperating L5 nvitches. As described in Figure 3.8, a cache server has a process to rrceiw

ICP messages kom the cooperating L5 switchrs. Upon receiving m ICP message, the process

hrsr loçates the sending L j switch in in Srnitch-\rray according to the mcss;ige'e's

SenderMdress (lines 2-7), and then processes the ICP messxge according its OP Code. II rhr

message is ICP-UPDATE-CONTENT-ACK, the cache server records the achowledgemrnr

timestmp, which is used to check if the content update o n the slvitch is suçcess~ully hnirlicd.

l f the message is ICP-QUERY-WORgLOAD, the cache semer responds with an

Chapter 3- LB-L5 Web Caching 42

ICP-UPDATE-WOEUCLOAD message uskg the timestmp from the L j switch, so t h the

switch cm keep track of the query and the response (lines 11-12). The cache semer's workload

inforrnxtion is put in the payload field of the responding message.

1. Process OnReceiveMessage(msg: ICPMessage)

2 , for i:= 1 to NumOfSwitches do
3 - if (Swi tchPirray [i 1 . IPAddress == msg , SenderAddress) then
4 , sw : = SwitchArray [il
5 - break
6. endif
7, endfor

8. switch (msg. OpCode)
9 - case ICP-UPDATE-CONTENT-ACK :

10. sw.Content-Update-AckMsg-TS := rnsg,TS
II. case ICP-QUERY-WORKLOAD:
12. SendMessage(1CPUPDATE-WORKLOAD, msg-TS, sw-IPAddress)
13. endswitch

Figure 3.8 The aigorithm of the ICP-message-receiving process on a cache server

Each cache sen-er peri~dicall~ publishes its cache content information to evecy ~ o o p r r ~ ~ t i n g L5

nvitch. Sirnilar to the aigorithm used in a L5 nvitch, a cache semer also uses a sequcnce

number as a tirnestarnp to keep tnck of ICP-UI?DATE-CONTENT ÿnd

ICP-UPDATE-CONTENT-ACK messages. As described in Figure 3.9, a cache server miy srnd

out one o r n.-O ICP-WDATECONTENT messages to a particular L3 switch in every round of

content updare, but it only increases the timestamp of this switch by 1 (line 4)). This is because

a L5 nvitch might receive ~ v o ICP-UPDATE_CONTENT messages in the same round- ?bus, if

a L5 switch receives nvo ICP-UPDATE-CONTENT messages midi a %lme timeswrnp, ir ciin

sirnply ignore the second message.

Chapter 3. LB-L5 Web Caching 43

1- Procedure UpdateContentDistribution(content:WEIGHTED~BLOOM~FILTER~

2. for i:=l to NumOfSwitches do
sw : = SwitchArray[i]
sw-Content-Update-TS += 1
SendMessage(ICP-UPDATE-CONTENT,sw.ContentUpdateTS sw.IPAddress

endf or

SendTime := t h e 0
Wait until (tirne0 > (SendTime + TIME-OUT-THRESHOLD))

for i :=1 to NumOfSwitches do
sw : = SwitchArray[i]
if(sw-Content-Update-TS I = sw-Content-Update-AckMsg-TS) then

SendMessage(ICP-UPDATE-CONTENT,sw.ContenttUpdate~TS
sw - IPAddress)

endif
endfor

end

Figure 3.9 The algorithm ofupdating cache content information

3.3 Summary

In this chapter, we inrroduced the h a d Balancing Layer 5 PB-L5) switching-basrd Wrb

caching scheme. LB-L5 uses a weighted Bloom Filter to represrnt cache content in order to

support directo-based cache cooperation. The weighted Bloom Filter has nvo salient

properties. Fint, the weighted Bloom Filter c m be used to represent cache content and c;irry

cache access-frequency information at the same time. Second, the weighted Bloom Filrer gkes

lower hlse predicxion probability than the basic Bloom Filter used in Cache Digsr 2nd

S u m m q Cache. By using the weigl~ted Bloom Filter to represrnt cache conrenr 1.13-L.3 c m

support directory-based HTTP request routing in order to avoid t l~c quer\;/responsc dchy

esisting in query-based schemes such as ICP. Memwliile, thc access-tkqurncy informiirion

carried in a weigh ted Bloom Filter enables LB-L5 to support access-tieqwncy-mure cache

Chapter 3. LB-L5 Web Caching 4 4

cooperation, mhich helps to reduce the duplication of ciiching.

LB-L5 uses cache content and access-frequenq information, cache sen-cr w-orkload

infomation and network Iïnk delay information to route HlTP requesrs to one OC a set of

cooperating cache servers. This routing policy mzkes LB-LS suitable to support distributrd

Web caching since it aooids fetching objects kom remote o r busy cache sen-es wlienrrrr a

less espensive copy c m be found. LB-L5 achieves backward compatibility with existing Web

caching rnethods by e ~ ~ e n d i n g ICP, the most popular Web caching protocol, to tacihate

communication between the cache servers and the switches- This means that LB-L5 cache

serven c m cooperate with switches and/or cache serves that are not LB-Lj aware, and diat

LB-LS messages are transparent to these switches md/or cache servers.

Chapter 4

Performance Evaluation

In this chapter, we evaluate the pertormance of our proposed LB-LS Web çaching sçheme.

The results are compared with those of ICP, Cache Digest, and basic L5 transparent \Veleb

caching. Section 4.1 esplains the simulation model adopted in this snidy? whvhid~ includes the

network model, proxy traces and the simulation sohxare implernenk~tion. The effects of

nenvork link delay, H m request Litensity, w d the number of cooperating pro' sen-ers on

the performance of the Web caching schemes are reported in Section 4.2. Findly, Section 4.3

provides a summary of the results O btained in the simulation study.

4.1 Simulation Mode1

\Ve fint describe d ~ e simulation model, includhg the ncnvork model and tlic p r o y triiscs cised

to genemte 1-ITTP request traffic. The simulation of the Web cacl~ing schcrnes il; rhen

descnbed, followed by the necessary p ~ ~ e t e r senings and the simulation s o h v x e srnimire.

Chap ter 4. Pertorrnance Evaluation 46

In rhis study, a 6 . ~ 1 1 ~ distributed cache coopention architecture is simulated. Tlx nenvork

mode1 for a c h of the four sknulated \Veb caching scliemes is shown in Figure 4.1. In the LCP

-md Cache Digest schemes shown in Figure 4.1 and @), respectively, e ~ h pro? cache

semer accepts HTTP requests fiom a cluster of clients, and has a link to evecy other

cooperating prosy semer. In the basic L5 md LB-L5 Web caching schemes shown in Figure

4.1 (c) and (4, respectively, a L5 nvitch transparently intercepts H'ITP requests h m a cluster

of clients. The L5 nvitch redirem a cacheable request to a cache semer. Non-cacheable

requests are routed directly to the Web semer. The ciifference between the basic L5 and LB-L5

is that LB-LS suppom distributed cache cooperation. In the LB-L5 scheme, a L5 nvitch c m

make routing decisions and redirect a H'TTP request to one of a set of cooperating

servers.

Web Server s
@) Cache Digest

Chap ter 4. Pe~ôrrnance Evaluation 47

(c) Basic L5 (d) LB-LS

Figure 4.1 The nenvork mode1 for the Web caching schemes

4.1.2 Proxy Traces

\\;é use publicly nvailable p roq m c e s from the National Laboratory for Applied Senvork

Research (NLWR) 127 cache serves to generate HïTP requests in the simulation. NL-LVR

netsvork topology is shown in Figure 4.2. The proxy races [rom BO (Boulder) -md UC

(Urbiuia-Champaign) are used in the simulation.

The pro- hace files are in the Squid native format. r\n entry in the trace tiles 1x1s the

to llowing fields:

Timestamp: the time when the client socker is closed. -ïhr torrnit is "Griis rime"

(seconds since Januaty 1, 1970) with rnillisecond resolution.

Chap ter 4. Performance Eduat ion 49

URL: the URL of the reques ted ob jea.

HierarchyData/HostName: a description of how and wliere the requested object \vas

tétched.

ContentType: the content type of the request object.

In Our eïperiments, pro- trace files are used in two ways: raw-trace md controlled. In the

mi,--trace data sinuiations, the traces are used to simulate the requests from client clusters. In

the conuolled-parameter simulations, we modifjr the traces to enmine the et5ect.s of dilterent

parameters. LVe condense or espand the traces with different factors (shorten or enlarge the

intennl between requests proportïonally), and use different nenvork link delays and different

numben of cooperating cache serÿers to investigate their eftects on the prrf-brmance of Wei)

caching schemes.

4.1.3 Web Caching Schemes

We evduate the performance the ICP, Cache Digest, basic L5 and LB-L5 Web çaching

schemes. We compare LB-La with ICP because it is the most popular Web caching p rotocol

in esisting Web caching systerns. In addition, LB-L5 is compared with Cache Digest beçause it

is also used in the NLASR nenvork together with ICP. The pertommce cornparison of LB-

L5, ICP, and Cache Digest can show the improvement achieved by adopting the L5 switch to

support distributed caching. Moreover, LB-L5 is compared with the basic L5 scheme to

investigte to what esrent the ivork1o;id bdancing and cache çoopemtion features ot' LB-L5

improve upon the pertormmze of the basic L3.

Chapter 4. Performance Evaluation 50

Figures 4.3 to 4.5 illustrate the basic H?Tl? request processing procedure in LB-L5. A non-

cacheable H?TP request is redirected to a Web server as shown in Figure 4.3.

Web Client L5 Switch Proxy Cache Web Server

Figure 4.3 Non-cacheable HTTP requestç in LB-LS

Cacheable HTIT requests ;rre processed as shomm in Figures 4.4 md 4.5. The sxvitch redirects

a cacheable request to one of a set O t cooperatïng cache s e r v e s If the receiving cache semer

tïnds the requested object in its cache, it replies with a HlTP response message and the object

(Figure 4.4). Othenvise, it krches the objects Çrom a Web server (Figure 4.5).

The detaiied 1-ITTP request processing t7ow cham of the tour Wet, cachins schemes are

described in Appendk C. These flow cliiirts -are drxwn according to the scherne dcscriprions in

ICP [15,16], Cache Digest [19], basic L5 [23] and LB-LS. The simulation method is also used

by Chiang to mode1 and evduate hiecnrchicd Web a c l ~ i n g schemes [-4G]. -L%ç p;ir.imetecs uscd

in the simulation, suc11 as the request processing time at pros7 sert-ers and the round trip rime

Chapter 4. PerFormance Evaluation 5 1

benveen sibling proxy servers, are summvized in the nesrt section.

Web Client L5 Switch Proxy Cache W eb Server

Figure 4.4 Cacheable H-iTP GET requests in LB-LS (prosy cache l-iit)

Web Client LS Switch Proxy Cache Web Server

Figure 4.5 Cacheable H T l T GET request in LB-LS (prosy cache miss)

Chap ter 4. Performance Evaluation 52

4.i.4 S.ular ion Parameter Sethgs

The pimeters used in the simulation are chosen according to dan measured by Rousskov

[17,4S] and BM's technical report o n its L5 nvitch [237. These pÿrameten ;ire summarized in

Tables 4.1 and 4.2.

Connect ~C-WS

Connect W - ~ C

Connect SWJVS

Connect w c s c

Connect wcsw

Disldccess pc

Processing WS

Processing
ws~-rïmeouc

Processing
ws-GIMS

Relay p - -

Rep - - I ~ s - .-

The dapsed cime since a pro? cache sen& TCP-SIX CO a Web server to diel qïClmc
JJ\,111J

proq receiviri~ TCP-SYN--ACK h m the Web server - ______ - - - I-_ - - -
Theelapsed tirne since a L5 switch sen& T m - S m CO a p rov cache semer to the
suitch receivlig TCP-SSN-ACK fmm the cache semer

10-450ms
-

The ehpsed cime since a L.5 switch sen& TCP-SITU' CO a Web semer to the swicch
receivini TCP-SkN-ACK Gom the Web semer - -

The elripsed time since a Web client sen& TCP-SYN to a pcoy cache semer to
the client receiviog TCP-SYN-ACK from the cache semer

0-30ms
- -

The eiapsed rime since 3 Web client ~ends TCP-SYN CO a L5 switch ro the clien
receivixq TCP-StX-ACK I?om the switch 0-30ms

-

The cime it takes a pro'cy a c h e s m e r CO retrîeve a cache object fmm disk co
rnernory 100ms

- ---- - -
The t h e it cakes :i Web semer between receicing a request md retuuiing die tirs
byte of the rcquested object 35Oms
The time it t&es a p r o q semer to abort an outgoing HTI-P connecrion setiip
request for a Web server 25000ms

The cime it t h 3 Web server between teceiokig a GINS reqiiest and renirnlig
the &SC byte of rhe reqiiested obiect 250ms

n i e rime it tkes n proq cache semer CO day a t-esponse to the requesting ppvty ISOms

The time it takes a prolcy cache s e r v e ~ to reply a object in memory to die
requescing p q 15Oms

- -
The tirne it cakes a pro. cache server to reply a "30k not modified" message SOms - --
The the it tkes a Web semer to reply an object in manozy to the requeskg p q 1
-- - -- - - - - - -- - -
The rime it t k e s x 5 nvitch CO make a rouclig decision 5Oms
-- - , . - , . n - -

The round trip &ne between a proy ccnch semer and n Web serrer 13001~1s --- - . -

n i e murid trip time benveen a L5 swiccti =id ri pro- cridic sen-er 1-10---1(10ms

r - - ---- - - - - - -. - - -
TCP-Splicing "le &e ir r a k a a [c, s\vkch's port controk to ~ : ~ l n t e K P seqiiena nimiber
s\v r -- - .. I I

Table 4.1 Simulation parmeters (Time values)

Source

A V q i n g according CO distmcr.

:\ssumed vduc.

Chap ter 4. Performance Evaluation 53

Nomindl
Parame ter Source \;;due

Table 4.2 Simulation panmeten (Probability values)

We assume that the request processing time at a pro'ry cache server, which includes the timc to

search for a requested object in a cache and the disk access time for moring the object from

disk to memory, is proportional to the nurnber of concurrent requests. Th i s assumption is

supported by the data collected by Rousskov [-Il as shonm in Figure 4.6

ResponseTime vs. Number of Concurrent Requests

Number of Concurrent Requesrs

1 * ProxyResponseTime = Predicted ~ r o x ~ ~ e s p o n s e ~ i m e i

Figure 4.G Prosy response time vç. number of concurrent requests

-1I-ie predicted response time plot in Figure 4.6 is obtained through linelr represston xdysiç

Chap ter 4. Performance Evaluation 54

using the least squares method to fit a line through a set of observations-

4.1.5 Simulation Soffware Implernentatih

The simulator used in this thesis conducts discrete event driven simulation. It is developeci

using the Java prognmming language. The simulation sohvare consists of the following sis

major components:

Client Cluster: responsible for simulating a cluster of clients. Ir grnerates H-ITP

request dfic using the request logs tiom p r o q trace files.

Basic L5 and LB-L5 Switch: responsible for sirnulating the basic L5 switch and

LB-L5 switch. The basic L5 switch redirects a cacheable request to its associateci

cache semer and a non-cacheable request to a \Veb sen-er. The LB-Lj switch

supports ex~ended ICP messages and communicates widi coopcrating cache

servers. It redirects a cacheable request to one OF a set o f distributed cache srn-ers

based on the cache content and access-frequency in forrnatio n, semer workload,

and network link delays.

ICP/CacheDiges t/L5/LB-L5 Prosy Servers: responsible for simularing a pros'

cache senier. They use the L a t Rccently Usecl (LRU) replacement ;ilgorithm tti

maintain their caches. The basic L5 prosy s e m r does not support s;ic!x

coopention. Therefore, it only performs the LRU cache m;tn;igemrnr Lnçrion.

Other prosy cache servers perforrn additionai tunctions. The ICP prosy sen-er

uses the ICP pcotocol to support query-based cache cooperation. T l ~ e Ciiche

- -
Chap ter 4. Performance Evduation 33

Digest uses a Bloom Filter to represent cache content and supports directo--

based cache cooperation. The LB-L5 pro. server uses a weiglired Bloom Fïlcer to

cepresenc cache content It uses estended ICP mess;igrs to communicate witi~ LB-

L5 nvitches to publish w-orHoad, cache content and access-Frequençy infom~rÏon.

Web Server: responsible for simuiaàng a Web server. It accepts 1-ITTP requests

and then sends back H T ï P responses and requested objects-

Netnrork Link responsible for sirnulating a network link connecting p r o y semers,

L5 sivitches, Web server and client clusters. It passes messages From one end to

the other with a specified link delay.

Event Manager. responsible for simulation event queuing imd dispatching. ;\Il

simulation events are handled by the event man-,iger.

The detailed sohvare structure and class description of the simulator are @\-en in i\ppendLx D.

4.2 Simulation Results

In this section, we describe and analyze raw-trace data and controlled-paruneter simulation

experiments. In the raw-trace data simulations, pros7 traces are used to genente H'TTP

requests to drive the simulation. In the controlled-p=meter simulations, pro' traces are

çondensed or espanded using different factors (the interval behveen requests is shortened or

enlxged prop~rtionall~) to simulate difFereiit HTiT request intensities. The network link dchy

(including propagation delay, packer transmission delay and nehvork açcess del;^^) ;nd r l ~ c

number of cooperating p r o q cache servers are other parameters uusd in both rmv-tr;icc d;ir:i

C h a ~ ter 4. Performance Evaluation 56

and controlled-p-meter simulations.

4.2.1 Ra tv-trace D a ta SUnu1stion.s

In the caw-trace data simulations, we use the pro- mces Çrom prosy sen-ers on the NLitNR

nenvort. The pros7 traces used in the simulations are described in Table 4.3.

i m-ne P r o s - S Location NumO tReques ts Date
BO 1 Boulder 11621 1 Sept. 16,2000
tic Grbana-Champaign 374093 Sept. 16,2000

Table 4.3 Prosi traces used in raw-trace data simulations

The nvo pro. senrers are at the root level OF the NLANR netsvork. They accept 1 - I T I T

requests From prosies at lower levels. Approsirnately 90 prosies use BO1 as their parent sache

and 60 use UC- \Ve choose H?TP requests from network domains by the client IP addresses

loged in the trace Tiles, so that itve c m simulate the cache cooperation among diti-erent

4.2.1.1 HTTP request intensity and response time

The number of HTTP requests received by a pro. determines the worklo;id o t the pros?. -As

we shall see, the response time of a prosy cdche semer follows the HTTP request intrnsity.

3[ranwhile, if a scheme adapts d l to high F-IT[i ' requcst inrensitirs, ir slio~ild li:i\-c :1 h m r

response time cun-e.

c ~ t : semers Figure 4.7 plots the HTTP request intensity in an e~periment, where four pro' cl -1

cooperate in a 2Chour duration (The results af'ter simulation m m - u p time, 0:OOam - 6:OO;un.

Chap ter 1. Performance Evaluation 57

are adopted). The request intensit~ ranges kom 127 to 1043 messages pper minute. The average

intensity is 465 messages per minute.

The average response times undçr different lin% delays are shown in Figures 4.8 - 4.1 1 . The

simulation resuln show that LB-L5 outpertorms the other three schemes, and has a better

adaprabili~ to high E-ITIT request intensities.

Under a small lin% delay (5 milliseconds), as shown in Figure 4.8, LB-L5 outperforms ICP b y

314'0, Cache Digest by 23'/., and basic L5 by 13% on average. However, under vety large link

delavs, LB-LYS performance is similar to that of the basic L5 scheme. LB-L5 avoids

redirecüng requests to remote cache serves when the response time improvement is less d ~ m

the cost. .As shown in Figure 4.11, when the link delay is 200 milliseconds, LB-L5 outprrfoms

LCP bv 419'0, Cache Digest b y 174'0, and basic L5 by only 2'/0 on average.

The results also show that LB-L5 11% a better adaptability to high H??-P request intensity,

especdlv for small link delays. As shown in Figure 4.8, under a peak request intensity (time of

day =19:50) LB-L5 outperforms ICP and Cache Digest by 53'10, and basic LS by 28OA

Chap ter 4- Performance Evaluauon -5 8

Number of HïTP requestç per minute

Chap ter 4. Performance Evduation 59

Time

Figure 4.8 --iverage response time at Iink delay =5 ms

Chap ter 4. Performance Evaluation 60

Response time (Link delay=50 ms)

.-- - pp -- -- - - - . -

Figure 4.9 Average response time at link delay =3 m s

Chap ter 4. Performance Evaluation 62

Response tirne (Link delay=100 ms)

Time

Figure 4.1 0 Average response tirne at link delay =IO0 m s

Chapter 4. Performance Evaluation 62

Response time (Link delay=200 ms)

-- - -- - - - - - -. - - - . .

Figure 4.1 1 Average response time ar link delay =200 ms

4.2.1.2 Hit rate

The cache hit rates of the tour scl-iemes under a link del. of 50 miIliseconcis (;ibout the dcla!.

of a 100 kilometer network link) are shown in Figure 4.12. The results show d ~ a t [Cl' ;ichievrs

Chap ter 4. Performance Evaluation 63

the highest hit rate. The average hit rates for ICP, Cache Digest, basic L5 and LB-LS are

22.799'0, 22.20°,'0, 17. 16% and 21.07°/~, respectively.

The results show that ICP has the highest hit rate, since it k a query-baçed protocol. m e n an

ICP p r o q server receives a request and cannot h d the requested objrct in its own cache, it

ÿsks al1 cooperating cache serc-ers for that object. Therefore, if any one of a set O t cooperating

servers has a cached copy of the requested object then the request \vil1 result in a cache hit. In

the directory-based Cache Digest, the directocy update del. prel-mts a proxT semer from

having the most up-to-date information about the cache content on cooperating srrvers, and

thus decreases the hit rate. The basic L5 scherne does not support cache shwïng, and,

therefore, its hit rate is the lowest of al1 the scl-iemes. Like Cache Digest, LB-LS is a directory-

based approach, so the directory update delay is one o f the reasons for its lower hit rate. The

second reason for LB-LYS lower hit rate is that it sacrifices hit rate wl-ien it is cost-eftéctive not

to redirect a request to a remote semer o r a semer that hm a hi& workload.

LVe have a hypothesis that using a weighted Bloom Filter to represent cache content improl-es

cache hit rate, because the weighted Bloom Filter has lower hlse predicrion probability chan

the basic Bloom Filter used in ICP and Cache Digest. I-Ioweuer, the [lit r;itc. improl-cment 1s

offset because LB-LS sacrifices hit rate to balance semer workload imd to al-oici remotc cache

hits. The combined eftect oY these hctors on LB-L5's hit rate needs f u d ~ e r study.

AIthoug1-i simulation results show tl-iat LB-L5 has a Iower hit rate tlim ICP and Cache Digest,

ir k;is a better response time. This is because LB-L5 takes into consideration o d ~ r r tktors

Chap ter 1. Performance Evaluation 64

affecting the performance of Web caching systems, such as nenvork link delay, HTTP request

intensity and p r o q semer workload balancing. The effects of these k t o r s are t-urther

inves tigated us ing controlled-parameter simulations in the nes- setion.

Cache Hit Rate (Link defay=50ms)

-- -

Time

Figure 4.12 Hit rate cornparison of ICP, CD, basic L5, and LB-LS

Chapter A Performance Evaluation 65

4.2.2 Con trofled-parane ter S ' u h tr'ons

ln this section, we study the performance o f the proposed LB-LS Web cac11ing scheme in ;i

controlled-parameter environment. LB-L5 is again compared with ICP, Cache Digest, iuid

basic Lqer 5 transparent Web caching.

The parameters used in the esperiments are network link del*, HTTT request incensin, ;uid

the number of cooperating cache serves. These parameters are set as foollows:

Nenvork link delay. in the experiments, the network link delays are varied from 5 to 200

milliseconds, which represent a wide range of link distance and/or nemork congestion

leveIs.

HTTP request intensity: the ditterent HTTP request intensities are simulated by

condensing or expanding proliy traces with a controlled factor (shorrening or enlarging the

intervd between requests proportionally), and then using the modited traces to generatr

H?TP requests. In the esperiments, the HTïP request intensities are set irom 50".~? to

25Ei. The intensity range is chosen according to the previous w - t n c e dara simulation

results, where the p d request intensity (1043 requests prr minute) is about 22-1*,0 of the

average request intensity (465 requests per minute).

Number of cache servers: vie vary the number OF cooperating cache serves from a small

number (2) to a l i ~ g e number (12).

In the simulation e~periments, results are sampled every minuce in 30-minute duntions :ifter

warm-up time. Simulations are run large enougl~ times to obtain go0,% confidence Ir\-el with

10°/'o confidence intervds. Plots in tlis section do not show the confidence intervals because

tliey are too small.

Chap ter 4. Performance Evaluation 66

4.2.2.1 Effect of network link delay

Figure 4.13 pl06 the response time versus nenvork link delay. The esperiments are conducted

with ditferent H?TP request intensities and different numbers of cooperating pros7 cache

serven. We firs t note that LB-L5 outperfoms the other schemes for dl d u e s of link delay

and HTlT request intensities.

Escept for the basic L5 scheme, the response &es of the VVeb caching schemes increase as

the network link delay increases. However, the extent to which the times increse is ditferen t

in each scheme. The response tirne of the basic L5 scheme is not affected by link de-. sincr it

does not support cache server cooperation.

ICP is highly affected by the nenvork lhk delay since i t is a query-based scheme. .As descril~ed

in Chapter 2, if an ICP prosy cache server cmnot h d a requested object in in own cache, i i

queries al1 other coopentïng cache servers to fiid a cached copy of the ob ject. As the nenvork

link delay increases, the inter-prosy query/response tirne inçreases. As shown in Figure 4.13

(e.2), the response tirne o t ICP increases up to 370 milliseconds as the link del. increases

trom 5 to 200 milliseconds.

In Cache Digest, when a prosy cache server cannot find d ~ e requested object from its own

cache, it searches the digests of a11 other cooperating sen-ers, and if i t fin& the object then ir

ktclies die object t'rom other caclie senrer. nie Cache Digest scheme dues nor involve inter-

p r o q query/response. Fetching an objrct t'rom a remote semer. Iiowel-er. makes rlic f-1-1-17'

request rrsponsc time still susceptible to nenvork link delay. As sliown in Figure 4.13 (c.2). rhc

response time of Cache Digest increases up to 64 milliseçonds as the link delay incrrases irom

5 to 200 miheconds.

Chapter 4. Performance Evaluation 67

,
5 10 50 75 100 125 150 175200

Link deky (nu]

5 10 50 75 100 125 150 175 200
Link deky (mr)

5 10 50 75 100 125 150 175 200
Unk ckby (ml

10 Pm*. Rcquert htemlty =lm

5 10 50 75 100125 150 175200 j
Unk deby (rm) i

Chap ter 1. Performance Evduation 68

3800

- 3300
"800

Z 2300

Il,
z
1300

800

Figure 1.1 3 EfÇect of link delay on response time

The basic L5 scl-ieme is not attècted by nenvork link delays because ir does not supporr

dis~ibuted cache cooperarion. O n the oti~er h;md, the response timc of LB-LJ is ~ ~ ~ i r l ! .

at't-ected bv link delay. Khen the link rielair is srnall, LB-L5's rouring desision is lxised miinl!.

on the cache content md workload int-omat;on of cache senrers. 1-I?TP requests c m bc

redirected to any one o f the coopenting cache servers to increase caslie hit rate or to Ixi1;incc

Chap ter 4. Perfomance Evaluation 69

server worldoad. As the iink delq increases, the response thne irnprovement achieved by

redirecring requests to remote cache serves decreases. Therefore, when the Iink dclay is 1-ey

large, LB-L5's performance closely resembles the basic L5 scherne. As shown in Figure 4.13

(e.2), die response Nne of LB-L5 increÿses up to 730 milliseconds as the link delay incrases

trom 5 to 200 milliseconds. However, LB-L5 -d~- outpertoms the odier schrmrs.

Simulation results show that performance advancige of LB-L5 over the other schemes is rven

more apparent when the request intensity is high. This is because, as the request intensiv

increases, the irnbalance of the server worldoads increases, which means tliat the performance

improvement achieved by LB-Lj's semer workload balancing increases. -45 shown in Figure

4.13 (a.2), when the request intensity is 50°/o, the response tirne of LB-Lj is lower tlim that OC

[CP, Cache Digest, and the basic L5 schemes by up to 560, 353, and 250 rnilliseconds.

respectively. Figure 4.13 (e.2) shows that under a cequest intensity of 230°,G, the rcsponsr time

of LB-L5 is lower thm that of ICP, Cache Digest, and the basic L5 scheme, u p to 1966, 1422,

and 895 milliseconds, respectively. The effect of request intensity on d w response timç undcr

diffrrent link delys is hrdier studied in the nest section.

4.2.2.2 Effect of request intensity

Figure 4.14 plots the response tirne versus HlTP request intensity under different link delays.

l i e esperiments are conducted for different numbers of cooperating cache sen-ers. \Ve tirsr

note thar regxdless of the netsvork link delay, die H l T T request response tirne for ;dl \YTel>

cacliing schemes incrmes as we increase the request intensicy. hgain, LB-Lj outprrforms tlic

otlirr three schemes under al1 combinations of requcst intensity -and link deEiy, as shown in

Chap ter 4. PerFomance Evduation 70

Figure 4.14.

Simulation results dso show thac LB-L5 adapts better to hi& request intensities than the other

schemes. As shown in Figure 4.14 (a2), under a small link delay (5 milliseçonds), LB-L3s

response tirne increases by only 23'/0 as the request intensity increase Crom 50°A to 250%. The

corresponding response tirne increases for ICP, Cache Digest and basic L5 are 114V0, 106%,

and 77*/0, respectrvely.

These results again retlect the performance irnprovement xhieved by LB-L5's server workload

balancing. .4s the network link delay increases, the cost of redirecting requests to remote

semers increases. Therefore, mhen the link delay is very large, requests ÿre less likely ro br

redirected to remote serves and the response time of LB-L5 is s e 7 close to dut of the basic

L5 scheme. This case is shown in Figure 4.14 (f. 1, f.2).

Chapter 4. Performance Evduation 71

4 Prades. U n k cielay S m r 10 Proner. Unk delay Srra

-1

54% tm 15090 M<p/o 250% !

Requast lntensiiy
l

1

50%. rwk i50"& 200% 250%

Requasr intansity

10 Prades. Unk deiay =f O m

/-

500A 1- 150% 2W% Z!jO%

Raquest lntenslty

50% lm lWC 200% 25096

Requesi intensity

4 Proxles. U n k cielay =50rrrr 10 Prodes. Unk dolay 5 O n r r 1

Cl-iap ter 4. Performance Evduation 72

10 Proxia, t ink delay r 1 W m

- 1

4 Proaies. Unk cîelny =lOOm

-1

Request lntenslty I Requesl intensity 1
i

4 Proaies, Unk delay =150mr 10 Proxies. Unk âelay =150lm

m
!KI% 100% 150% 20(3% 250%

Requast iniensiiy

50% 100% 150.0 2 m 0

Requesl intensity

10 Prories. t ink dcliy =2Wm

-1

4 Pfodes. Link delay = 2 W m

50% 100% 150% 20(p,~ 2500h

Requast rniensriy

Figure 4.14 Effect of HTTP request intensity on response time

Chap ter 4. Performance Evaluation 73

4.2.2-3 Effect of nurnber of cooperating cache servers

Figure 4-15 plots the response times of the various schemes versus the nurnber ofcoopemting

cache servers. These experiments are conducted under different request intensities m d link

The basic L5 scheme does not support cache semer cooperation. Therefore, it is not ai-tected

by the number of cache servers and link delays. Increaçing the number of cooperating

servers does not guaryitee perhrmance improvements in ICP and Cache Digest. This is

because ICI) and Cache Digest try to achieve the best hit rate but do not consider cache server

workload and netsvork linli delay. Simulation cesults show that the response times of ICP and

Cache Digest increase as more requests are redirected to remote or busy cache servers to

acl-iieve higher hit rates-

O n rhe other hand, in LB-L5, as the number o t cooperating a c h e semers incrcases' LS

nvitches are better able to redirect requests to bdance server workloads. T h u s the performance

gain increases. \\%en the link delüy is srnaIl, the performance improremenr is signific;mt- -As

shown in Figure 4.15 (a.1, a2), the response tirne is reduced by 29% LIS the number o i

cooperating cache servers increases from 2 to 12 However, under vecy large link delays,

requests are not likeIy to be redirected to remote seru-ers. LB-Lj cannor g i n the brnetits of

semer workloxi balmcing and cache shanng in this case, as shown in Figure 4.1-5 (El , E2).

Request hteruiiy =100%, Link dehy=5 ms

Chap ter 4. Performance Evduation 7-4

Number of coopnthg pro*

Request intensity 400%. Link deIayd0 rns

2 4 6 8 10 12

Number of cooperatlng prorier

I R equest lnlenslt y d001 . Link de loyd ms l

I Number of cooperoting proxies j

Number of coopcraîhg pro*

Requesl lntensity =200X Link deloy4O ms

3800 1

Number of cooperat ing proxier

Chapter 4. PerEormance Evaluation 75

R equest Intenstty =100?&. L tnk deiay=t00 ms

Number of cooperottng proxies

Request in t ensity ~ 1 0 0 % Link delay=150 ms

Q
Q

i

2 4 6 8 1 0 1 2

Number of cooperat i ng proxles

Request tntensity =ZOO% Link deiay=100 ms

Number oï cooperoting proxies

Request intenslty =ZOO% Link delay=150 ms

Number of cooperal tng proxies

800 -1 1

2 4 6 8 10 12
Number ot çoopemting pmxœs

~cqucst kiicnsity =lûû%. un* d e i q - m ms

I Number of cooperating proxies i

- 1

Request int ensl t y =ZOO%, L inr aeiay=200 m i i
!
I

Figure 4-13 Èffect of the nurnber o f
(E2)

cooperating prosies on response rime

Chap ter 4 Performance Evaluation 76

4.2.2.4 Effect of request imbalance

The esperiments in this section snidy the server workload bdancing capabiliy of LB-L5 Four

client clusters generating different intensities of requests ÿre used in the simulations. F~gurc

4.16 (a-d) plots the number of messages processed per minute by each pros- ache sen-er for

each scheme. Figure 4.16 (e) plots the standard deviations of these numbers. These

esperiments are conducted under d i tkent nenvork link delays.

As sshown in Figure 4.16, server morliload is not balanced in ICP, Cache Digest or the basic L5

scheme, since they do not have a semer workload balancing capability. LB-L5, on the other

han4 ensures balanced server workloads when the network link delap is relarively small. -1s the

network link delav increases, the cost of r e d i r e h g requests to remote serves increases, -and

the benefits of workload balancing demeases. LB-LJ woids redirecting requests to rrmo tc

servers when the Iink delay is ver). large.

Simulation results show that the sen-er workload bdcuicing capability of LB-LS is apparent

when the network link delay is not Iarger than 72 milliseconds. Theretore, by bdmcing sen-er

morkload, LB-LS cm achieve performance improvement for distributed cache systems

deployed o n a local area nenvork o r a metropolitm area nenvork.

Chap ter 1. Perfocmuice Evduation 77

Lh* d e i y (ms) I

OPmw 1 I P m q 2 0Pmxy3 QPmxy4 i
--

S tondard devfat ton of the numbers of messages
processed by the four proxles

Link delay (ms)

(4
Figure 4.16 Workload bdancing in LB-LS

C h a ~ ter 4- Performance Evaluation 78

4.3 Summary

In sumq , thk chapter evaicated the performance of the proposed LB-LS Web cicl-iing

scheme. The performance ofLB-L5 was cornpared to that of ICP, Cache Digest, and the b-sic

L5 Web caching scheme via simulation. In addition, the adopted nenvork model, simu1;ition

experùnent setane, and shulation sohvare impiemen~tion were described. Two types of

simulation esperiments, raw-trace data and controlled-parameter, were conducted to

investigate the eftects of network link delay, FfiTP request intensity, and the number of

cooperating pro- servers on the performance of the K'eb caching schemes.

The simulation experknents showed that LB-L5 outperforrns ICP, Cache Digest, m d the basic

L5 scheme, with respect to HTTP request response tirne under various nework link delays.

Reprdless of the HïTP request intensity, the response tirne of ICP, Cache Digesr, and LB-LS,

increases as the nenvork link delay increases, whereas the basic LS scheme is not affecteci bv

Iink delav. Under large link delays, the response time of LB-L5 is close to thiu of the basic La

scheme, since LB-L5 avoids redirecting requests to remote servers when the cost is too 11igl1.

The resuIts obtained Gom the esperiments conducted on the ef'tèct of HTTP request intensity

skowed that LB-L5 adapts better to hi& request intensities t hm the other three schemes.

Under 11igl-i request intensity, LB-L5's semer workload balmcing produces s igni t i~mt

performance improvement.

Likewise, LB-L5 demonstmted a better capability of supporting a c h e cooperation th;m thc

C h a ~ ter 4. Perf-omance Evaiuation 70

other three schernG: As the nurnber of cooperating cache sen-ers încreases, LB-LS h;is more

opportunities to redirect requests, which helps to balance server workloads -and increase cache

s haring. These two factors mea . that the performance improves.

It is noteworthy that the eïperiments conducted to investigate LB-LYS semer rvorkload

balancing showed rhat the workloads of cooperabng cache sen7en are wel1 balanced when d-ir

link delay is not very large. Homever, the workload is not wel1 balanced when rile link delay is

very large, since the cost of redirecting a request becomes too high. The obcainrd results dso

retlected that LB-L5 does not over-emphasize any one of the hctors d u r detrrrninr the

performance of a Web cacl~hg system.

During the simulation e~periments it was found that she cache hit rate of LB-L5 is n o t as 11 igh

as that of ICP and Cache Digest, aldiough it is better than that OF the basic L5 schcme. The

main reason is that LB-L5 sacrifices hit rate when the cost of redirecting a request to a remo te

or high-workload server is too hi&. This again showed thac LB-L5 tries to give bdanced

consideration to the multiple hctors affecting performance. Thus, we c m conclude thar LB-L3

is more adapnbIe than the other schemes.

Chapter 5

Conclusion

5.1 Concluding Remarks

Web achlig is considered one of the most effective approaclies to improving die

performance imd scalabilip o t the Web. The emerging Laver 5 switching-based transparent

Web cacliing not only makes the deployment -md configuration o f the caching sysrem cisirr.

but also improves its pertômance bp redirecting non-cacheable HlTP requests to bypass

cache servers.

The main thesis OF this research is that transparent Web criching cm be cornhined with

distributed cache cooperation to provide improved cache perForrnance. \Xe proposed die Load

Balancing Layer 5 switching-bxed (LB-Lj) Web aching scheme, which uses rrmsparent \\;'el>

caching techniques to support distributed Web caching.

LB-L3 uses a weigl~ted Bloom Filter to represenr cache content in order to support direçtory-

Cha~ te r 5. Conclusion 81

based cache cooperation. The weighted Bloom Filter has nvo salient properties. Fint, the

weighted Bloom Filter cm be used to represent cache content and c q cache access-

kquency infomation at the s m e time. Second, the wei&ted Bloom Filter gives lower M s e

prediction probability than die basic Bloom Filter used in Cache Digest and Sumrnary Cache.

By using the weighted Bloom Filter to represent cache contenf LB-L5 c m support directory-

based E-ITïP request routing in order to avoid the query/response dela). esisting in query-

based schemes such as ICP. Meanwhile, the access-fiequency information c'mied in ;i

weighted Bloom Filter enables LB-Lj to support access-frequenq-mv-are cache cooperation,

wliich helps to reduce the duplication of caching.

LB-L5 uses cache content and access-kequenq infomation, cache sen-er morkload

information and nenvork link delay information to route H ï T P requesrs to one of a set of

cooperating cache semiers. This routing policy makes LB-L5 suitablr to support distributed

Web caching since i t avoids fetching objects Çrom remote or busy cache seners d e n e v e r ii

less expensive copy c m be found. LB-L5 achieves baclavard compatibility with esisting Web

caching methods by extendhg ICP, the most popular Web caching protocol, to facilitate

communication between the cache semers m d the switches.

-\ detded simulation modd waç developed to study tlx perforrmince of Ll3-1.5. LB-13 w i s

compared with three esisting Web caching schemes, n-Lunely ICP, Cache Digest, iind Imic

Layer 5 transp;uent Web cacliing. Tiiç results show t h LB-LS outpçrtunns diesr csisting

schemes in terms of H?TP request/response time and prosy semer workIo;id lxil~uicing. Ln-

Chap ter 5. Conclusion 82

L5 is also shown to adapt better to hi& HTTP reques t intensicy.

5.2 Future Work

While LB-Lj Web cadiing has a number of advantqes that enable it to outperfom rxisting

schemes, several aspects of the research need M e r investiption. The hasli hnctions used in

LB-Lj to generate cache content representation are based on MD5, w-hich is a one-way hÿsh

hnction that produces a 128-bit hash value, or message d iges~ of an arbitrary-lengdi input

message. MD 5's collision-resismce pro perty malces i t suitable for building the weighted

BIoom Filter, since we ~ v m t different objects to have different representations. However, we

believe it is possible to f i d a more computationally efficient hash tüncrion for d ~ e \Veb

caching contesr. This is because, first, MD5 was designed to process input messages of much

larger s ize (n 5 12-byte blocl;';) thm a typical URL (50 bytes on average). Second_ the a~danclie

effect, which is bringïng the previous blocls: hash values to the folloming blocks, in UD5 is

used to strengthen ILlD5's one-way property and may be simplitied in Our case. In addition, ;i

hash hnction that produces hash values reflecting die similarit). of input messages (dut is,

URLs) may be used to more precisely represent cache content üccess characteristics.

In LB-LS, the cache servers periodically publish the cache content and access-frequency

information to die switches. Cising compression techniques and incremenral updates is

possible, since rhe content ÿnd access-frequency information on a p;uticular cache sen-cr

climges gradua11 y.

Chapter 5. Conclusion 83

We have a hypothesis that using a weighted Bloom Filter to represent cache content improves

cache hit rate, because the weighted Bloom Filter has a lower hlse prediction probability d ~ a n

the basic Bloom Filter used in ICP and Cache Digest However, the hit Elte improvement is

offset because LB-LS sacrifices hit rate to balance server workload and to in-oid remo te cache

l-iits. The combined ettect of these factors on LB-LS's hit rate needs hrther snidy.

With some modihcations, LB-L5 c m be used in a Web semer cluster scenario. The \Sr&

servers can either contain duplicated Web documents, o r cm br optimized for differenr

document types. For esample, some Web semen c m be optimized for image documents,

while other Web servecs are optimized for text documents. This m a h s the Web semer cluster

easy to maintain, and possess better performance. A Layer 5 switch can be intewited into ;i

Web semer clus ter to redirect incoming H-ITP requests to one O t the Weeb semen according

to the tt-orkioad and the content information of the Web sen-ers. -i weigl-ited Bloorn Filter

c m be used to represent a Web semer's content and prekrence of the different sets of

document requests. For esample, the LVeb server optimized for image documents c m also

contain some test documents, but it haç a better response time for image document requests,

and thus prefers tlîese requests.

Bibliography

[I l T. Berners-Lee, R. CailIiau, J. Groff, and B. Pollermann, "World-Wide Web: The

Information Universe". In Electronic Networkirzg: Research, Applicutiorzs, und

Policy, Spring 1992.

121 CERN - European Laboratory for Particle Physics, "An Overview of the World-

Wide Web". Available at: http://www.cern.ch/Public/AC~VE~NTS/WEB/

[3] T. Berners-Lee, R. Fielding, and H. Nielson, "Hypertext Transfer Protocol -

~ P / l . O " . RFC 1945, May 1996.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T.

Berners-Lee, "Hypertext Transfer Protocol -- HTTPI 1.1". WC 26 16, June 1999.

[5] M. Seltzer, "Issues and challenges facing the World Wide W e b Available at:

http://www.eecs.harvard.edu/-mare

[6] A. Luotonen, and K. AItis, "Wor!d Wide Web proxies". In Proceedirzgs of tlze

First Internationai Corzfererzce urz rhe World- Wide Web, WWW '94, 1994.

[7] M. Abrams, C. Standridge, G. Abdulla, and S. Williams, "Caching Pi-oxies:

Limitations and Potentials". In Tlze Fourth Irztenzutiorral World Wide WeO

Corzfererzce, Boston, Massachusetts, USA , Decembet- 1995.

R. Tewari, M. Dahlin, H. Vin and J. KaylbbBeyond Hierarchies: Design

Considerations for Distributed Caching on the Internet'". Technical Report TR98-

04, Department of Cornputer Sciences, University of Texas at Austin, February

1998.

R. Tewari, M. Dahlin, H, Vin and J. Kay, "Design Considerations for Distributed

Caching on the Internet"'. In Proceedings of the 19'" IEEE Iiztenzniionnl

Confererzce on Distnbrtted Cornputing Systems, Austin, Texas, May1999

A, Wolman, G. Voeker, N. Sharma, N. Cardwell, A. Karlin, and H. Levy, "On

the scale and performance of cooperative web proxy caching". In Proceedings of

the 1 7th Symposium on Operating Systems Principles, December 1999.

P. Rodriguez, C. Spanner, and E. Biersack, "Web caching architectures:

Hierarchical and distributed caching". In Proceedirzgs of rhe 4th Intenzcttio~zul

Web Cactzing Workdrop, April 1999.

C. Jeffery, S. Das, and G. Bernal, "Proxy Sharing Proxy Servers". In Proceedings

of the IEEE ETA-COM Conference, Portland, OR, May 1996.

CERN - European Laboratory for Particle Physics, "CERN httpd Web Server".

Available at: http://www.w3.ors/Daernon,

C. Bowman, P. Danzig, D. Hardy, U. Manber, and M. Schwartz, 'The Harvest

information discovery and access systern". In Proceedings of the Second

I~ztenzutionnl World Wide Web Co~zfererzce, October 1994.

[15] D. Wessels and K- Claffy, "Application of Intemet Cache Protocol (ICP), version

3". RFC 2187, September 1997.

[16] D. Wessels and K. Claffy, "Internet Cache Protocol (ICP), version 2". RFC 2186,

September 1997.

[17] D. WesseIs and K. Claffy, "ICP and the Squid Web Cache". In IEEEE Jorrnzul orz

Selecred Areas in Conzmurzication, Vol 16, No.3, pp 345-357, Apnl 1998.

Cl81 D. Wessels, "Squid and ICP: Past, Present, and Future". In Proceedings of the

Artstralian Un Users Group, Brisbane, Australia. August 1997.

[19] A. Rousskov and D. Wessels, "Cache digestsm- In Proceedings of the Tltird

Intemcrtional WWW Caching Workshop, Manchester, England, June 1998.

[20] L. Fan, P. Cao, J. Almeida, and A. Broder, "Summary Cache: A Scalable Wide-

Area Web Cache Sharing Protocol". In Proceedirzgs of ACM SIGCOMM.

Septernber 1998.

[21] E. Johnson, "Increasing the Performance of Transparent Caching with Content-

aware Cache Bypass", Arrowpoing communications. In The Foctrtlz Irztenintional

WWW Cachirzg Wo rkshop, 1999. AvaiIable at:

[22] B. Williams, 'Transparent Web Cac hing SoIutions", Director of S trategic

Business Planning, Alteon Networks .White Paper. In The Third Irztenzationtcl

WWW Cactzirzg Wo rksh op , 1998. Available at:

h m : / /WU~--sor.inri;i. tT-/mirrors /~vc~v98/33 /cacl-iomer.li tml

[23] ArrowPoint Communications, "Content SmartTM Cache Switchinp", White paper.

AvaiIable at: ht t~:/ /www.arrow~oint~corn/s~ lutions/white pa~e r s /

[24] ArrOwPoint Communications, "A Comparative Analysis of Web Switching

Architecture", White paper. Avai IabIe at:

htt~://www.arrow~oint.com/solutions/white paperd

[25] G. ApostoIopoulos, V. Pens, P. Pradhan, and D. Saha, "L5: A self learning layer 5

switch". Technical Report RC21461, IBM, T.J. Watson Research Center, 1999.

[26] R. MaIpani, J. Lorch, and D. Berger, "Making World Wide Web caching servers

cooperate". In Proceediizgs of the Fozirtlz lntenzational World Wi& We0

Conference, December f 995.

[27] National Laboratory for Applied Network Research (NLANR). k a c h e project.

Available at: http://ircac he. nlanr.net

[28] D. Wessels, "Evolution of the NLANR cache hierarchy: Global configuration

challenges". Available at: htt~://www.nlanr.net/Papers/Cache96/, November

1996-

[29] S. Michel, K. Nguyen, A. Rosenstein, L. Zhang, S. Floyd and V. Jacobson,

"Adaptive Web caching: towards a new caching architecture". In The Tizird

tiztenzarioizal WWW Caching Worksi~op, June 1998.

[30] J. Yang, W. Wang, R. Muntz, and J- Wang, "Access Driven Web Criching".

UCLA CSD, Technical Report TR990007, 1999.

[3 11 D. Povey and J. Harrison, "A distributed Intemet cache". In Proceedings of the

70th Ausrraliarz Compzirer Science Confererzce, Sydney, Australia, February 1997.

[32] V_ Valloppillil and K. Ross, "Cache Array Routing Protocol v1 .O". Intemet Draft,

draft-vinod-carp-v I -03-txt , Febniary 1998.

[33] S. Gadde, J. Chase, and M. Rabinovich, "A Taste of Crïspy Squid". In Worhlrop

on irzternet Sewer Pe$omarzce (WISP'98), Madison, WI, June 1998.

[34] S . Gadde, M. Rabinovich, and J. Chase, "Reduce, Reuse, Recycle: An Approach

to Building Large Internet Caches". In The Skrh Workshop orz Hat Topics irz

Operathg Systems (HotOS-VI), pp 93-98, May 1997.

[35] 2. Wang, "Cachemesh: a Distributed Cache System for WorId Wide Web", Web

Cache Workshop, 1997.

[36] Realis Project, "Relais: cooperative caches for the World Wide Web", 1998.

Availab Ie at: http://www-sor-inria- Fr/projects/relais/

1371 M. Rabinovich, J. Chase, and S. Gadde, "Not al1 hits are created equal:

cooperative proxy caching over a wide-area network". In Conputer Nerr-vorks And

S D N Systenzs. 30, 32-23, pp. 2253-2259, November 1998.

[38] G. Barish and K. Obraczka, "World Wide Web Caching: Trends and

Techniques". In IEEEE Conzrnzi~zications Mugnzitze. [rrrerrret Teclzrzology Series,

May 2000.

[39] C. Faloutsos and S. Christodoulakis, "Design of a Signature File Method that

Accounts for Non-Uniform Occurrence and Query Frequencies". In I I I h

Bibliopphy 89

Inrernatioïzal Conference on VLDB, pp. 165- 1 70, Stockholm, S weden, August

1985.

R. Rivest, 'The MD5 Message-Digest Algorithm". RFC 1321, 1992.

A. Menezes, P. Oorshot, and S. Vanstone, "Handbook of Applied Crypto,araphy7'.

CRC Press, 1997.

R. Siamwalla, R. Sharrna, and S . Keshav, "Discovering Internet Topology7', July

1998. Available at: http://www.cs.cornelI.edu/skeshav/

K. Moore, I. Cox, and S. Green, "SONAR - a network proximity service7'-

Intemet Draft, February 1996.

P. Francis, S. Jarnin, V. Paxson, L. Zhang, D. Gryniewicz, and Y. Jin, "An

architecture for a global internet host distance estimation service". In Proceedirzys

of IEEE INFOCOM '99, March 1999.

T. Dewitt, T. Gross, B. Lowekamp, N. Miller, P. Steenkiste, J. Subhlok, AND D.

Sutherland, "ReMoS: A resource monitoring system for network aware

applications". Technical Report CMU-CS-97- 1 94, School of Computer Science,

Carnegie Mellon University, December 1997.

C. Chiang, M. Ueno, M, Liu and M. Muller, "Modeling Web Caching Hierarchy

Schemes", Technical Report, Ohio State University, OSU-CISRC-6/99-TR 17,

1999.

A. Rousskov and V. Soloviev, "On performance of caching proxies". In

Proceedings of rlte Joint I~ztentatiorzal Corzfererzce on Mecrs~rrenzenr c-nd MuckINzg

Bibliography 90

of Compter Systerns (SIGMETRICS 98PERFORMANCE 9 8) . pages 272-273.

Madison, WI, June 1998.

A. Rousskov and V. Soloviev, "A performance study of the squid proxy on

http/l .O". In Wodd Wide Web, 2(1-2):47-67, January 1999.

W. Li, "References on Zipf s Law". Avai lable at:

htt~:/Ainka~e.rockefeller.edu/wli/zi~f

L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker, "Web Caching and Zipf-

like Distributions: Evidence and Implications". In Proceedings of INFOCOM'99,

1999.

L. Breslau, P. Cao, L. Fan, and G. Phillips, "On the Implications of Zipfs Law for

Web Caching". Technical Report 137 1, Computer Science Department.

University of Wisconsin-Madison, April 1998.

B. Duska, D. M m o o d , and M. Feely, '"The Measured Access Characteristics of

World- Wide-Web Client f roxy Caches". In Proceeditzgs of the USENIX

Symposium on Inremet Technologies and Sysrems (USITS '971, December 1997.

1. Marshall, and C. Roadknight, "Linking cache performance to user behaviour".

In Proceedings of the Third international WWW Crrdzing Workshop, June 1998-

V. Almeida, A. Bestavros, M. Crovella, and A. de Oliveira, "Charactenzing

reference IocaIity in the W W W . In Proceedings of the IEEEE Conferencc 0 1 1

P cirallel and Distributed Information Systenrs (PDI.), Miami Beach, FL.

December 1996.

[55] P. Barford, A. Bestavros, A. Bradley, and M, Crovella, "Changes in Web client

access patterns: Charactetistics and caching implications". In World WÏde Weh.

2(1): 15-28, January 1999.

Appendix A

Weighted Bloom Filter

LB-L5 uses a weighted Bloom Filter to represent cache content Each cache semer divides al1

cache objects into different sets and assigns a weight to each set according to rl-ieir access-

frequencies. The weigl~t of a set is the number of has11 tünctions dmr should be used, oc the

number of bits set to 1 in the filter, for an object belonging to the set. \Ye cal1 d i s mrtiiod

weighted Bloorn Filter because it assigns a weight to each cache-object set.

The weighted Bloom Filter assigns a heavier weight to a set with bigher access-frequenq.

Thus, objects with higher access Frequencies are represented with more bits set to 1 in the

filter. At the time of looking up an object, the number of bits set to 1 indicates the access-

ti-equenq rank O t the object.

To analyze the hlse prediction probability and derive an optimum \veighr assignmenr, w e

formalize the probkm using an approacli similar to du t in [39].

Appendk h Weighted Bloom Wter 73

Assume that the set S of di possible objects in a cache is partitioned into n subsrts SI, 5 ,

S., mhicli ;ire dis joint and whose union is S, that is

Let Dl be the number of obiects in Si, and D= Dl+ Dl.. .+ D, be the total number otobjeçrs

in the cache. We def ie the access probability for objects in Si to be Po and the weighr for SI to

be IV,. Assume the filter length is F.

In a filter r e p r e s e n ~ g D objects, the probabiliv that a pdcular bit is O 1s:

I-ience, the probabilily thar a particular bit is 1 is:

The FaIse prediction probability is:

Appendk A Weighted Bloom Filter 94

To find the optimum IVL for eacli subset Si such that the FaIse predicrion F, 1s minimizrd, Ive

differentiate F, with respect to W,'s:

a~~ - 1 - R D~
Because - - -- aw, R F ~a

Equation (4) is equivalent to

P,R"I - P,R- - - - P,, R ' ~ ~ F, -_-_ --- - -. --- - K (I; is a constant independent of'i)
D, 4 Dn D

Su bs tituting equation (5) into (4), we have:

From equations (1) and (6), we lime:

Substituting equation O) into (6), we

Substituting equation (7) into (3, we have:

Substituting equation (9) into (S), sve have:

n P, - ln 2)' + CD, ln- n

Subs tituting equation (1 0) into (91, we give the optimum d u e s for the W i ' s :

L J

From equation (5) and (IO), we give the solution For F,:

r D 2 O, ln'
F I) , D,

In D
F, = e D D

Appendk A. Weighted Blocm Filter 96

The Bloom Filter used in ICP and Cache Digest is a special case of the weiglited Bloom Filter-

I f we do not divide objects into subsets (n=l), equations (11) and (12) reduçr to the

correspondhg formulas o i the Bloom Filter witl~out weights, as shown in equations (13) and

(1-9, res pectively.

To compare the weighted Bloom Filter with the Bloom Filter without weights, let us first

investigte Web access charncteristics. Resewchen have found that a small fclction of t l ~ e

objects receix-es a large fmction of the accesses. More precisrly, HTJT requesr distril~utions

follow a Zipf s distribution [49,5O751,j2,53,5.1,~ mir numbrr of accesses for che ir" mosr

N
popular object is: R, = , . The Zipf exponent ~r reflects die degree of populüriry skrw, and K

L

represents the number of requests for the most popular object. In die reportrd Web access

analysis, the esponent ranges korn 0.G to 0.8.

For esample, we assume that 30','0 of objects receive 7O0<'o of access requests. \'ire diride S into

subset S, and S mith P,=0.7, P,=0.3, and D,/D,=3/7. The cornparison of the tdse prediction

probability of these two Bloom Filters is sliown in TabIe 8.1 and Figure A l .

Appendk A. Weighted Bloom Filter 97

ted Bloom Filter

W2 Fp
0.652858908 0.272579682
1.346006069 0.168591443
2.039153269 0.10427137
2.73230045 0.06-i-494046
3-4254-47631 0.039889783
4-1 18593811 0.024671964
4.81 1741992 0.01 52.W692
5.504389172 0.00913817

Table A. 1 Weigl-ited Bloom Filter vs. Bloom Filter \vithout weigh ts

1 + BloomFiker -A-- weighted Bloom Filter /
Figure i1.1 Weigl-ited Bloom Filter vs- Bloom Filter witliout weighrs

Appendix B

MD5 Hash Function

MD> processes the input te- in 512-bit bloch, which are divided into 16 32-bit sub-blocks.

The output ot the algorithm is a set of four 32-bit blocks, which concatenate to form ;i single

128-bit 1 1 ~ h value. The algorithm consists of following steps:

Step 1: Pad the message, make the message length = 512 x n

Fi r s~ the message is padded so that its length is jusr 64 bits short o f being a multiple OF 312.

This padding is a single 1-bit added to the end of the message, followed by as many zeros as

are required. Then, a 64-bit representation of the message's lengti~ (before pdd ing bits wrre

added) is appended to the result. Ti~ese two steps serve to make the message lengdi an eesat

multiple o f 512 bits in iength (required For the rest of the ülgorithm), while ensuring that

different messages d l not look the same after padding.

S tep 2: InitiaLize chaining variables

Four 32-bit çhaining variables are initialized:

Appendk B. MD5 Hash Function 99

A = 01234567 (H e x)
B = 89abcdef (H e x)
C = fedcba98 (H e x)
D = 76543210 (H e x)

Step 3: Main loop

As shown in Figure B.1, the main [oop has four rounds. The loop continues for evey 512-bit

block in the message.

Input message Input message Input message
(block 1) (block 2) (block 3)

t

Figure B.1 MD5 main loop

Each round uses a diEerent operation 16 times. As shomn in Figure B.2, each opecirion

pert-oms a nonlinear hinction on tl-iree variabIes of -4, B, C, m d D. Then it adds the result to

the fourth variable, a sub-block of the test and a constant. Then it rotates that result ta the

rigl-it a variable number O F bits md d d s the result to one of -\, B, L. or il. T'iri;illy thc rcsulr

replaces one of ,A, B, C, o r D.

Amendix B- MD5 Haçh Function 1 O0

Msg Constant Sub block

Figure B.2 One operation in one round in hm5

There are four nonlinear h c t i o n s , one used in each operation (a dit-terent one for eacl-i

round).

n-iese tünctions are designed so t h if the corresponding bits o f S. 1' md Z are independenr

and unbiased, then each bit of the result will also be independent and unbiased. The funcrion

F is the bit-wise conditional: If X Sien Yetse 2. The tunction H is the bit-wise p-xity cpentor.

Appendix C

The Flow Charts of Web Caching Schemes

In this study, we evduate the performance of ICP, Cache Digest, basic LS and LB-L3 W e b

caching schemes. The HTTP request processing flow charts of the four schemes are shown in

Figure B.1 to Figure B.S. These tlow chms are dmwn according to the schemr descriptions in

ICP [l 5, 161, Cache Digest 11 91, t l~e basic L5 caching [Z], and LB-L5 as described in C11;iptrr 3-

A similar simulation model was used by Chiang to model and enluate hiemchical \Yre1'eb

cacl-iing schemes [46].

A s shown in Figure C.1, in rrn ICP hilly distributed cache semer mesh, 1-ITTP requesrs

generated by clients using the GET method are processed as foHows. \ m e n a pros- cache

srner receives ;i I-ITTP GET request, i t searches its cache for the reqursrrd objccr. I f tlic

requested object is tound in the cache, the pros? cache semer returns the ol~jcct to t h

requcsting client. Othenvisr, the pro- cache semer sends an ICP queq mcssilsc tu ;il\ thc

siblings, wI-iic1-i in turn seacch tlîeir own caches for the requested object and rcply with ;in 1Ci'

Hppendk C The Flow Cham of Web Caching Schemes 102

HIT or MISS according to the search result If n-one of its sibling replies with an ICP KIT

message, the pro. cache server fonvards the request to the original Web semer. if;ir l a s : one

of its siblings replies with an ICP HIT message, dae p r o y semer tetclirs the rcquesred objrct

irom the sibling whose reply cornes hrst, and then sends the requested object to the requescing

client.

H m requests generated by clients using the G M S (Ger If hloditied Since) rnedlod are

processed as shown Figure C.2. The FfT?P GIMS request is used when a client has a cashed

copp of the requested objen. The GIMS request carries a timestmp indicating when the client

has cached the object. A prosz cache server o r the origind Web semer should reply to the

GIMS request with the requested object if and only if the object is modified ;iFrrr the

timestmp. If the requested object har not been modified afier the timescmp, a sliort FI-133'

message, Code 304, should be sent to the client. T i u s HTTJ? G151S requests are processed

difierently kom the GET requests afier the reques ted objects are found: an extra step is ~ikcsri

to check if the object has been modified since the client cached it.

Appendis C- The Flow Charts of Web Caching Schemes 103

figure C.1 HTTP GET requests in ICP sçheme

hoendix C- The Flow Charts of \Veb Cachïng: Schemes 1 O4

Figure C.2 HTT'P GIMS requests in ICP scheme

Unlike que.-bascd ICP, Cache Digest is a directo--based \Vr& caching scheme. \ T k n :i

pro. cache sen-er canno t tind a requested object in its c;ichç it se;uches the siblings' digests

(the directocy of cache contents). If the requested objecr is found in the digest of ;i sil~ling

cache, the pros? cache semer requests the object trom the sibling. -\s described in Cliiiprer 2,

.-\ppendis C. The Flow Cham of Web Caching Schemes 105

Cache Digest uses a Bloom Filter to represent the cache contents, which can introduce false

prediaions, that is an object is shown in the Çdter but is not actually in the cache. I f die sibling

semer receiving the request does not h d the requested object, then i t tonvards the requrst to

the original Web semer. The processing flow charts of KITP GET and GIhlS requests are

sho~vn in Figure C.3 and Figure C.4, respectivel-

i-igure C.3 HTTP GET requests in Cache Digest

Appendk C. The Flow Charts of Web Caching Schemes 1 06

k~gure C.1 I-ITTrP GIMS requests in Cache Digest

In the basic L5 Web caching sclieme, every LS switch mmsparently inspects HTTP rcqucsu

kom a client cluster. It redirects the caclieabie requests to its associatecl prosy cacl-ie semer,

and non-cacheable requests to the original Web seners. The 1-ITT'P GET and GIMS reqwsr

Appendk C. The Flow Charts of Web Caching Schernes 107

processing Bow- ch-arts are shown in Figure C.5 and Figure C.6 respectively.

Figure C.5 HTTP GET requests in the basic L5 scheme

Appendis C. The Flow Cham of Web Caching Scherneç 108

Figure C.6 1-ITTP GIMS requests in the basic L5 scheme

In LB-L3, the switch inspecn the H?TP requests in the s;me way as in the hsic L3 scliemc.

The non-caclieable H ï T P requests are cedirecteci to the original LVeb secvers. tlowevcr. llillic

Appendis C. The Flow Charts of Web Caching Schemes 1 09

cacheable HTTP requests are redirected to one of a set of coopemting cache sen-ers according

the nvitch's routing decision, which is based on the cache content and workload infornation

of cache servers, as well as the nehvork link del. between the routing switch m d a c h e

semers. Figure C.7 and Figure C.8 show the H?TD GET and GIMS requests processing tlow

chats in the LB-LS scheme.

Figure C.7 T i T P GET requests in LB-L5

-4ppendk C. The Flow Charts of Web Caching Schemes 110

Figure C.8 HTTP GlkIS requests in LB-L5

Appendix D

The Simulation Software Structure

The simulator used in tilis smdy uses discrete event driven simulation to simulatc [CP. Ciiche

Digesg basic L5, and the LB-L5 Web caching scliemes. The simulation sotkVnv;ire is dcveloped

using the Java programming Imguage.

-4s shown in Figure C. 1, client clusters, L3 switches, pro? cache serves, Web sen-ers, and

nehvork links are modeled and sirnulated with different simulation objects. Budi the

communication betsveen objects m d txks pertormed are modeled as simulation events. Every

simulation object 1x1s an event handler to proçess received events, and c m schedule events for

its assoçiated objects. :il1 events are sent to the EventMmager module, \vIxre ex-ents are

queued and then dispatcl~ed to handle ohjrcts according to rime ordering

Appendis D. Simulation S o h z e Structure 112

Update Cache Distirbution
and Workload

Link

Measure Link Delay

tink

Generate H'TTP requests

) Web Server Object 1

HTTP Response L J
Link Link

. m m m..

tink tink

m.. m..

r w a c h e Object
LRU Cache

Update Cache Distribution 1
and Workload

tink

Make Routing Decision 1 Measure tink Deta> 1
Link

Web Client Cluster Object

Generate HITP requests

i Event Manager

Queuing & Dispatching
events from al1 other simulation object

Figure D.l Simulation sofnvare structure

The simulation sohvare package consists of 31 classes. The major classes are describeri as

tollo\vs:

simu1;ition object classes implement tlîk interfilce, ;rnd process received events in tilcir own

Appendis D. Simulation Sohvare Structure 113

Class ClientCluster

Clss CLerrtCIr(zter simulates a client cluster by reading prosy m c e files ;md genmiring 1-ITT'

requests. For esarnple, it c m schedule a RracaV~~zLogE~~~y to itself for getting ;i log entry hom

trace files and generate a HlTP request It c m also schedule TpCG.WN- or H ~ ~ P - R ~ I ~ ~ J - L evrnts

For sending a request to a prosy semer. CkeiiîC.~-fer handles events Erom its ssoci;ited links.

For example, TCP-ria, H T i l - ~ o t m for processing messages Erom p r o y servers.

Class L5Switch

Class L-jSü,trh simulates a basic L5 switch. It conducts TCP Spoot-Tng to inspect the HTn'

requests from a client cluster, and rhen directs cacheable requests to its associ;ited cache sefi-er

and non-cacheable requests to the LVeb senrer. L i S ~ ~ i r c h c m lxmdlr evenr; [rom its associated

links- For esarnple, it hmdles TCPJYNand HTTP-Rt,qiies~-t events From a Iink to ii CLril/C'lics/ri;

and TCI)-xK md H77T-Rc.po111e events t-rom a link to a VeUSc~rw: It also schedules events

For its associated links. For example, it schedules T o - - x K and HTTP_Rvur events to a

iF>bSemr, and TffCPriarand HTP-RRJ~OI~JJ~~ events to a C&~~tch~-te~i

Class LB-L5Switch

Clss L B L ~ S J I ~ L C ~ simuiates a LB-L5 switcl-i. In addition to the Liinctions ofa basic L5 swircli,

ir communicates with cache semers to obtain their workload, cache content ;inci iiccess

trequency information. It also masures nenvork link del-. benveen itselt and cachc seners.

LB-L-SJJ~IL~ uses tlx obtained information to redirect 1-1-1-I'P requests r o onc- of rhc

cooperating cache servers.

LB-LiSiMtch suppom estended ICP messages in its e~,lttHllrd(r method, and schedules events

corresponding to such messages on its associated links. For example, it 11mdles

IO-UPDA~E-COLWE~LT even ts fro m links ro L-Pra\yCa~%Is: and sclîedules

IOJüER~[t "OiKLOAD events to f-.5PPm~C~~%ts.

Class ProxyCache

Class PmxyCache is the super class of a11 prosy classes. It implements the Lem Recentlv Used

&RU) cache replacement algorithm to sirnulate a LRU cache. -MI prosy classes derived h m

this class inlîerit its methods i m p i e m e n ~ g LRU cache.

Class LBL5-ProxyCache

Class LB15Pro~yCache simulates a prosy cache semer supporting LBL5 nvitches. In addition

to the hnctions of a basic LRU pro. cache server, i t communicates widi L3 switcl-irs for

updating its workload, cache content and access frequenq information.

L B - L - S I I . ~ ~ supports estended ICP messages in its ~ L Y V I I H L Z I I ~ ~ J metliod, and scl-iedules events

corresponding to extend ICP messages for its associated links. For esiimple, it handles

KPJLERY-IF'ORE(L0AD events fro m links to L - P ~ v ~ y C r l ~ % I t s ; and schedules

IGP_L~PD,-~E-CO~\EL\T even ts for Iin ks to b-pmxy Cuck.

Class ICP-ProxyCache

Ckus fCP-Pru-\yCdche simulates a p r o y cache server supporting the ICI' protocol. In ;iJrlitiori

to the functions of a basic LRU pros? ~ic11e server, it communiates witli coopcratirig ICI'

pros? cache semers to share cached YVeb objects.

Appendk D. Simulation So h r e Structure 115

ICP-Pm-qCde sup pom ICP messages in its r,w~tEfami!e mediod, and schedules events

con-esponding to ICP messages toc its associated links. For esample, it handles ICPJUERY

events from links to other ICD_Pm~Cacbes; and responds the query by scheduling fC'P-HIT or

iCP-:\.UIS evenn for the link to the querying pros?.

Class CDPro;uyCache

Class CDCDPmxyCucbe sirnulates a p r o y cache semer supporting the Cache Digest protocol. In

addition to the functions of a basic LRU pros? cache server, it cornrnunicates with coopemting

Cache Digest pro. cache sen-ers to share cxhed Kreb ob jects.

4 CD-PmyiCuch cornputes its cache digest represented with a Bloom Filrrr periodiç;illy, and

publishes the digest to other coopemting Cache Digest prosy serves. \\,%enevrr ;L

@PmyCacbe receives a request and cannot fiid the requested object in its own ciclie, it

searclies the cache digests of coopemting cache seners, and tetches die object from a

cooperating sen-er that has this requested object-

a Class WebServer

Claçs EfZeUSenw simulates a Web semer. It accepts H?TP requests and sends back I - I l T P

responses. 1EGb.Ierzer supports TCP ;md H T T P messages in its mvitf-lrl~~dl. metliod, and

schedules events corresponding to TCP and F-ITIl? rnessi'~ges for its ssociated links. For

sclieduling a *~CP-.-\CL event to the link.

-%ppendis D. Simulation Sofhvare Structure 116

Class EventManager

Class E~'e~~t~\fanager uses a linked lis t to queue simulation even ts scheduled b y 211 simulation

objects, and then dispatch the events to their receivlig objects in tïme order.

Class MD5

Class MD5 implemenrs MD5 hash ilnction. The r-on/p~~tzHahL khrr method of d ~ i s cl;ü-s is usrd

for building the Bloom Filter in the Cache Digest scheme and the weighted Bloom Filter in the

LB-L3 CVeb caching scherne.

Appendix E

Confidence Intervals

The acc-uraq ~Fsimulation results can be descnbed in terms ofconhdençr intemils placed on

the mem values of the results. The confidence intend çalçulation procedure is descrhrd ;c\

folfows:

Let 1,. . .,Y, be the statisticdly independent results from ,V difterent runs of the siune

-
simulation. The sample mean, Y , of these results is:

The variance of the distribution of the samplc values, SI, is:

2 (Y, -
sz = '=' N - L

Appendk E. Confidence Intervals 118

The standard deviation of the sarnple mean is:

Under the ;~sumption o t independence m d normality' the sample mean is distril-ruted in

accordance to the t-distribution. The upper and lower limits of rlie contidencir inten-al

regarding the simulation results are:

where ta,,. is the upper a/Z percentile o f the t-distribution with hÏ-7 degrees of freedom.

The simulation esperimencs in this thesis were run large enough rimes to ensurc a 90*'0

confidence level witi-i 10y.O confidence intervals.

