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Abstract

Web caching is a technique that temporarily stores Web objects (such as Hypertext
documents) for later retrieval in order to improve the performance and scalability ot the Web.
Layer 5 switching-based transparent Web caching schemes intercept HTTP requests and
redirect requests according to their contents. This technique not only makes the deployment
and configuration of the caching system easier, but also improves its performance by

redirecting non-cacheable HTTP requests to bypass cache servers.

In this thesis, we propose a Load Balancing Layer 5 switching-based (LB-L5) Web caching
scheme that uses the transparent Web caching technique to support distributed Web caching.
In LB-L5, information about proxy cache server workload, network link delay, cache content
and access-frequency is used to redirect HITP requests in order to achieve cache server
workload balance and better response times. LB-L5 uses a weighted Bloom Filter to represent
cache content and access-frequency information, which enables LB-L5 to implement access-
frequency-aware cache cooperation. LB-L5 extends ICP, the most popular Web caching
protocol, to support communication between cache servers and Layer 5 switches, and ensure

compatibility with existing Web cache systems.

A number of simulation experiments were conducted under different HTTP request
intensities, network link delays and populations of cooperating cache servers. Simulation
results show that LB-L5 outperforms existing Web caching schemes, namely ICP, Cache
Digest, and basic L5 transparent Web caching, in terms of cache server workload balancing
and response ume. LB-L5 is also shown to adaprt better to high HT TP request intensity thar

the other schemes.
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Chapter 1

Introduction

The World-Wide Web [1,2] (the Web) is an Internet-based globally distributed information
system that was originally developed at CERN (Conseil Européen pour la Recherche
Nucleaire) for sharing information among collaborating researchers. The Web uses Hypertext
for structuring information {1,2]. Hypertext is text with links (called Hyperlinks) to other
information, such as text and multimedia. The clients and servers on the Web use the
HyperText Transfer Protocol (HTTP) to communicate [3,4]. A Web client accesses
information on a Web server by sending an HTTP request. The server parses the request,

retrieves the requested information, and returns it to the client.

Since its first complete implementation in 1991 [2], the Web has experienced phenomenal
growth because of its friendly user interfaces and effective information dissemination
capability. However, the growth of the Web has contributed significantly to the tratfic on the

[nternet, and raised several problems such as long HT TP request/response times, heavy Web
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server workloads and network congestion [5]. These problems have motivated several projects

on improving the performance and scalability of the Web.

Web caching, a technique that temporarily stores Web objects (such as Hypertext documents)
for later retrieval, is considered one of the most efficient approaches [6,7]. Web caching can be
performed at Web proxies. A Web proxy consists of application level sottware that accepts
HTTP requests from a set of clients, fetches the requested objects from original Web servers,
caches the requested objects and sends these objects back to the clients. Proxy Web caching
increases document availability and enables download sharing. It reduces overall access delay

and saves network bandwidth by caching frequently requested Web objects.

In addition to local proxy Web caching, distributed cache cooperation, a mechanism tor
sharing documents between caches, can further improve system performance by providing a
shared cache to a large user population [8,9,10,11,12]. In a cooperative Web caching system, it
a cache miss occurs at a local cache server, the request can be forwarded to one of a set of
cooperating servers. Therefore, if any one of the servers has a cached copy of the requested

object then the request will result in a cache hit.

In the past few years, several Web caching schemes were proposed and widely deployed to
support distributed cache cooperation. The pioneer project CERN [13], and its direct
successor Harvest [14], introduced the Internet Cache Protocol (ICP) to achieve proxy server
cooperation [15,16,17]. After Harvest was commercialized in 1995, Squid {18] became its

public domain successor. One of the most recent improvements implemented in Squid is the
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Cache Digest (CD) Web caching scheme [19], which uses a Bloom Filter [19] to represent the
cache content and performs directory-based proxy cache server cooperation. A similar scheme,

Summary Cache [20], was proposed by Pei1 Cao i 1998.

Recently, Layer + and Layer 5 (L4/L3) switching-based transparent Web caching techniques
have drawn lots of attention from academic and industrial researchers [21,22,23,24,25]. IBM,
ArrowPoint (acquired by CISCO in June 2000) and Alteon (acquired by Nortel in July 2000)
have announced L5 switches that can transparently redirect non-cacheable HTTP requests to
original Web servers and cacheable requests to caches by using TCP spooting and TCP
splicing techniques. Transparent Web caching not only makes the deployment and
contiguration of the caching system easier, but also improves its performance by redirecting

non-cacheable HTTP requests to bypass cache servers [21].

However, no Web caching scheme has yet been proposed for the transparent Web caching to
support distributed cache cooperation, which is widely supported by proxy Web caching
systems and has proven effective [8,9,10,12,17,18,19,26,32]. The main thesis of this research is
that transparent Web caching can be combined with distributed cache cooperation to provide

improved cache performance.

[n this thesis, we propose the Load Balancing Layer 3 (LB-L5) switching-based Web caching
scheme. LB-L35 uses transparent Web caching techniques to support distributed Web caching.
Moreover, cache server workload, network link delay, cache content and access-trequency

information, are used in LB-L5 to redirect HT TP requests in order to achieve cache server



Chapter 1. Introduction +

workload balancing and better response times. LB-L5 uses a weighted Bloom Filter to
represent cache content and access-frequency information, which enables LB-L5 to implement
access-frequency-aware cache coopewation. In order to achieve backward compatibility with
existing Web caching systems, LB-L5 extends, but does not replace, ICP - the most popular

Web caching protocol - to support coommunication between cache servers and L5 switches.

The rest of the thesis is organized as #ollows. In Chapter 2 we provide a review of related Web
caching technologies. We first describe the hierarchical and distributed proxy Web caching
models. We then introduce typical "Web caching protocols representing query-based, hash-
based and directory-based approachess. Finally, we discuss emerging transparent Web caching
techniques, which use Layer 4 or Lay=er 5 switches to transparently redirect HTTP requests to

cache servers.

Chapter 3 presents an overview of thhe proposed LB-L5 scheme followed by a discussion of
the design decisions. The use of a weighted Bloom Filter to represent cache content and
access-frequency information is described. A detailed description of the scheme and
algorithms is given, where Layer 5 switches and proxy cache servers cooperate by using

extended ICP messages.

A performance evaluation ot LB-L5 a@s presented in Chapter 4. The adopted simulation model
is described. Proxy traces from the NLANR caching project [27,28] are used to drive our
simulator. Simulation experiments ar< conducted in order to study the eftect of nenwork hnk

delay, HTTP request intensity, an-d the number of cooperating cache servers on the
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performance of LB-L5. These results are compared to existing Web caching schemes, namely
ICP, Cache Digest, and basic Layer 5 ransparent Web caching. The results show that LB-L5
outpertforms existing schemes in terms of overall HTTP request/response time and cache
server workload balancing. Chapter 5 concludes the thesis, and provides some suggestions tor

further research.



Chapter 2

Web Caching Techniques

In this chapter we provide an overview of various related Web caching techniques. Section 2.1
describes the hierarchical, distributed, and hybrid Web caching models. Section 2.2 introduces
query-based, hash-based and directory-based approaches to proxy server cooperation by
describing a typical protocol of each category. Section 2.3 discusses the emerging transparent
Web caching techniques with an emphasis on the structure and function of Layer 4 and Layer

5 switching,

2.1 Proxy Web Caching Models

In existing proxy Web caching systems, cooperative proxy cache servers are organized either
hiecarchically, in a tully distributed mesh, or in a hybrid structure. This section introduces thesc

structures and points out their advantages and disadvantages.
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2.1.1 Hierarchical Web Caching

One category of approaches to cooperative Web caching sets up a caching hierarchy [11,14], as
shown in Figure 2.1. With hierarchical caching, caches are placed at muluple levels ot the
network. For the sake of discussion, we assume that there are tour levels ot caches: bottom,
institutional, regional, and national. The client caches are at the bottom level of the hierarchy.
When a client cache does not satisfy a request, the request is redirected to an institutional
cache. If the document is not found at the institutional level, the request is then torwarded to
the regional level cache, which in turn forwards unsatistied requests to the nauonal level cache.
If the document is not found at any cache level, the national level cache contacts the onginal
Web server. When the document is found, either at a cache or at the server, it travels down the
hierarchy, leaving a copy at each of the intermediate caches. Further requests tor the same

document travel up the caching hierarchy until the document is found at some cache level.

3
Web
Server

Y Y o
N Ly 3 3
=] (=] () ] =

S

Figure 2.1 Hierarchical Web Caching Model

Cache
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Hierarchical Web caching was first proposed in the Harvest project [14]. Other examples of
hierarchical caching include Adaptive Web caching [29] and Access Drven cache [30]. A
hierarchical architecture is bandwidth efficient, particularly when some cooperating cache
servers do not have high speed connectivity. In such a struct;.lre, popular Web pages can be
efficiently diffused towards the demand. However, there are several problems associated with a

caching hierarchy:

1. Every hierarchy level introduces additional delays.
2. Higher level caches may become bottlenecks and may have long queuing delays.
3. Multiple copies of documents are stored at different cache levels.

4. To set up such a hierarchy, cache servers need to be placed at key access points in the

network. This often requires significant coordination among participating cache servers.

2.1.2 Distrabuted Web Caching

Recently, a number of researchers have proposed an alternative to hierarchical caching, called
distributed caching [8,9,10,11,31,35,36]. In distributed Web caching systems, no intermediate
caches are set up. There are only institutional caches that serve each other’s misses. In order to
decide from which institutional cache to retrieve a document, institutional caches keep
metadata information about the content of every other cooperating cache. To muke the
distribution of the metadata information more etticient and scalable, a hierarchical distribution
can be used. However, the hierarchy is only used to distribute information about the location

of the documents and not to store document copies. The structure of the distributed Web
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caching model 1s shown in Figure 2.2.

Bl

Figure 2.2 Distributed Web Caching Model

With distributed caching most of the traftic 1s in the lower levels ot the hierarchy, which are
less congested. The nodes at the intermediate levels only require little additional disk space. In
addition, distributed caching allows better load sharing and more taulr olerance. Nevertheless,
a large-scale deployment of distributed caching may encounter several problems, such as high

connection delays, higher bandwidth usage, and admunistrative issues.

There are several approaches to distributed caching. The Harvest [14] group designed the
Internet Cache Protocol (ICP), which supports discovery and retrieval of documents trom
neighbouring caches, as well as parent caches [14,15,16]. Another approach to distributed
caching is the Cache Array Routing Protocol (CARP) [32], which divides the URL-space

among an array of loosely-coupled caches and lets each cache store only the Web objects
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whose URLs are mapped to it.

Provey and Harrison [31] also proposed a distributed caching scheme. In their scheme,
directory servers that contain location hints about the documents kept at every cache replace
the upper level caches of the other schemes. A metadara hierarchy is used to make the
distribution of these location hints more efficient and scalable. Tewari et al. [8,9] proposed a
similar approach to implement a fully distributed Internet caching system where location hints

are replicated locally at the institutional caches.

In the central directory approach CRISP [33,34], a central mapping service interconnects a
certain number of caches. In the Cachemesh system [35], cache servers establish a cache
routing table among themselves, and each cache server becomes the designated server for a
number of Web sites. Client requests are then torwarded to the proper cache server according
to the cache routing table. In Cache Digest [19], Summary Cache [20], and the Relais project
[36], caches interchange messages indicating their cache contents and keep local directortes to

facilitate finding objects in other caches.

2.1.3 Hybrid Web Caching

In a hybrid scheme, a certain number of proxy cache servers cooperate at every level of a
caching hierarchy by using distributed caching techniques. For example, ICP [15,16,17] can be
used for cache cooperation at every level ot a caching hierarchy. The requested object s
fetched trom the parent/neighbour cache server that has the lowest round trip ume.

Rabinovich [37] proposed to limit the cooperation between neighbouring cache servers ro
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avoid obtaining documents from distant or slower caches. In this case, requested objects can

be retrieved directly from the original Web server at a lower cost.

2.2 Cooperative Proxy Web Caching Protocols

To support distributed cache server cooperation, various protocols are used in existing Web
caching systems. In this section, we introduce three approaches for cache cooperation, namely
query-based, directory-based, and hash-based approaches. We describe a typical protocol tor

each approach.

2.2.1 Query-Based Approach — ICP (Internet Cache Protocol)

I[CP [15,16] is the most popular protocol that uses the query-based technique to coordinate a
set of cooperating proxy Web caches. The caches can be organized either hierarchically or in a
distributed model. ICP is an application layer protocol running on top of UDP (User
Datagram Protocol). Both Harvest [14] and Squid [18] use ICP to coordinate proxy Web

caches.

In a distributed proxy Web caching system, ICP works as follows. A client sends a request to
its configured proxy cache server. If that cache server cannot find the requested object in its
own cache, it broadcasts an ICP query message to all the other cooperating cache servers. It at
least one cooperating cache server has the object, the contigured cache server sends an HTTP
request tor the object to the first server that responds to the query with an ICP hit message.

Upon receiving the object, the configured cache server stores a copy in its cache, and then
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sends the object back to the requesting client. If no cooperating cache server responds to the
query with an ICP hit message before a time-out period, the configured cache server fetches

the requested object from the original Web server.

2.2.2 Directory-Based Approach — Cache Digest

Although query-based approaches, such as ICP, work well when cooperating proxy cache
servers are located close to each other, the query/response delay becomes significant in a wide
area network. Directory-based approaches allow cache servers to make information about their

cache content available to peers in order to avoid the query/response delay.

However, using an uncompressed directory of cache content can result in huge memory
consumption on the cache servers and high directory update traftic on the nerwork. For
example, if we use the entire list of cache keys (URLs) to represent the cache content of a
proxy server holding 1 million objects, and the average URL length 1s 50 bytes [19], the
directory will be 50 megabytes. If we have 16 cooperating cache servers, 15x30=730
megabytes memory will be allocated in each proxy server for keeping siblings’ directory
information. Thus, compressed representations of the cache content directory have been used

in several proposed approaches [8,9,19,20].

Summuary Cache [20] and Cache Digest [19] are very similar approaches. Both usc a Bloom
Filter to represent the directory of cache content. The major difference between them is that
Summary Cache extends ICP to update the directory, while Digest Cache uses HTTP to

transter directory information.
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Bit Vector
ht{url1)
h2(uri1) \ 1
h3(uri1)
hd(uri1)

Figure 2.3 Bloom Filter

As shown in Figure 2.3, a Bloom Filter is an array of bits, some of which are set to 1 and the
rest are 0's. To add an entry to the Bloom Filter, several independent hash funcrions are
computed for the entry’s key (URL). The hash values specify which bits in the filter are set ro
1. To check if a specific entry is in the filter, we use the same hash functions to compute hash
values for the entry’s key, and check the corresponding bits in the filter. If any one ot the bits
is set to 0, the entry is not in the filter. If all the bits are set to 1, then we can predict that the

entry is in the filter. A detailed description of the Bloom Filter is presented in Chapter 3.

The salient feature of 2 Bloom Filter is that there is a trade off between the prediction accuracy
and the size of the filter. By adjusting the number of bits allocated for each entry and the
number of hash functions, a low false prediction probability is achieved in the Summary Cache

[20].
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2.2.3 Hash-Based Approach — CARP (Cache Array Routing Prorocol)

Another category of Web cache cooperation approaches use hash-based HTTP request
redirection to avoid the inter-proxy query/response delay. Cache Array Routing Protocol

(CARP) {32] is a typical example.

CARP was designed by Microsoft Corporation and the University of Pennsylvania. In CARP,
a proxy cache server deterministically redirects HTTP requests to neighbouring caches by
using a mapping function that maps the hash values of the requested URLs to cache server
IDs. All requests for the same URL are redirected to the same cache server. Each cache server

stores only the Web objects whose URLs are mapped to it.

In CARP, HTTP requests are redirected to cache servers without explicit knowledge ot the
cache content on these servers or the network link delay to these servers. It implicitly considers
cache hit rate by redirecting the same requests to the same cache server. CARP works well tor

Intanet hierarchies, but less so for loosely-coupled Internet cache peers [19].

2.3 Transparent Web Caching Techniques

Transparent Web caching uses network devices to redirect HTTP trattic to cache servers. The
technique is called transparent because Web browsers do not have to be explicitly contigured

to point to a cache server, that is the caches are ransparent to the browsers [38].

2.3.1 L4-Switching-Based Transparent Web Caching

A Layer 4 switching device can be used to redirect TCP/IP packets destined to HT TP ports to
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cache servers, and forward all other network traffic directly to the WAN router. They are
called Layer 4 (L4) switches because their switching decisions are based on informarion in the

TCP header, and TCP is a protocol tor Layer 4 in the OSI 7-layer model [22].

L4-switching-based transparent Web caching systems partition the client’s Web requests into
separate hash buckets. The hash function maps the TCP session’s destination address into a
hash bucket, effectively mapping specific Web server URLs to specific caches. Most of these
hash functions operate on subnet boundaries, and typically map the replicas of 2 Web server to

a single cache.

NW.CS.queensu.ca

NetCache Appliances @

e @&

Client . WAN
Traffic Layer 4 Swilch Router

Figure 2.4 Transparent Caching supported by an L4 switch (adopted from [22])

Figure 2.4 shows NetCache Appliances NC1 to NC3, an Alteon’s Layer 4 switch, a router, and
a subnet 130.15.1.%. Suppose a client requests http://www.cs.queensu.ca from Web server
130.15.1.100 and that the L+ switch’s hash function maps the entire 130.15.1.0 subner to
NetCache proxy server nc2. The client establishes a TCP session with NetCache nc2,
thinking that it has established a connection with the Web server 130.15.1.100. A NetCache

proxy server accepts all connections routed to it, regardless of the destnation address. In
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accepting these connections, the NetCache proxy server masquerades as the remote Web

server.

2.3.2 L5-Switching-Based Transparent Web Caching

While L4 switches are optimized for the transport layer, they are completely unaware of the
Application Layer (Layers 5 — 7), which in the Internet includes protocols such as HTTP and
FTP. Layer 5 switches are networking devices that provide high speed switching of traftic.
Information in the TCP and HTTP request header is used to make routing decisions based on
the actual content, for example URL, being requested, and manage request/response tlows

from beginning to end [23].

The HTTP request header, which includes the URL, comes from the client browser, but the
client does not send this until the TCP connection is set up. For a direct connection between a

client browser and a Web server, the normal flow is shown in Figure 2.5.

Client sends TCP SYN -
e Server sends TCP SYN ACK
Client sends TCP ACK  ——eererr—r—>
TCP sessign is setup
Client sends HTTP Request ————————=>
e Server sends HTTP Response
Emmmre e Server sends TCP FIM
Client sends TCP FIN ACK  ——————mmmeaeerrr— —

Figure 2.5 Normal HTTP trattic flow (adopted trom [23])

A Layer 5 switch sits between the client and the Web servers. In order to obtain the F'TTP
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request header, the switch performs delayed binding (or TCP spoo ting). Delayed binding
means that the switch, after receiving the ininal TCP SYN, sends the SYN ACK prior to
establishing the TCP session to the server, thus “tricking” the client browser into sending it’s
HTTP request. After receiving the HTTP request, the Layer 5 switch has all of the information
it needs to make routing decisions based on the content being requested, and can select the
best site and server to service the request. The switch then initiates a mew TCP connection to
that server and sends the HT TP request. The Web server responds back to the client via the
Layer 5 switch. In the flow switching stage the Layer 5 switch is provading Network Address
Translation and wire-speed forwarding ot packets for all traffic going b-etween the Web Server
and the client (TCP splicing). In the final stage, the Web switch tears down the connection,

freeing resources allocated for the tlow. These steps are shown in Figure 2.6.

2.4 Summary

In this chapter, we reviewed various related Web caching techniques. In Section 2.1, we
described the hierarchical, distributed, and hybrid Web caching modesls and pointed out the

advantages and disadvantages of each model.

In Section 2.2, query-based, hash-based and directory-based approaches to proxy cache server
cooperation, were reviewed by describing a typical protocol of each caregory. Although query-
based approaches work well when cooperating proxy cache servers are located close to each
other, the inter-proxy query/response delay becomes significant in a wide area nenwork.

Directory-based approaches allow cache servers to make information about their cachce
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content available to peers in order to avoid inter-proxy query/response delays. Theretore, they
require an efficient cache content representation. Hash-based approaches deterministically
redirect HTTP requests to cooperating caches by using a mapping function that maps the hash
values of the requested URLs to cache server [Ds. [n hash-based approaches, HTTP requests
are redirected to cache servers without explicit knowledge of the cache content on these

servers or the network link delays to these servers. Thus, they work less efficiently for loosely-

coupled Internet cache peers.

Stage 1: HTTP Flow Setup
Client sends TCP SYN  —— o5

e e YWD SwalCh Sends
TCP SYN ACK

Client sends TCPACK ey,
to Web swilch

Client sends HTTP  ~—eccamcamasmsananans, —
Request to Web switch

Web Switch determines best sitefserver for the requested content based an
__ the information in the TCP and HTTP headers, server load, and content availabiity

Web Switch sends
TCP SYN 1o server

s e e e e e

Web Switch sends
TCP ACK to server

—————————— ey

Server sends TCP
SYN ACK ta switch

P ——

e ees Web switch sends
TCP FIN or TCP RST

Web Switch sends  —eeeemccnmren sy
HTTP Request
Stage 2: Wire-speed HTTP Flow Switching
-, Server sends HTTP
Response
e —eeemeeee—e ¥¥ED SWilch sends
HTTP Response
LR
PSS Server sends HTTP
Response
PSS Web swilch sends
HTTP Response
Stage 3: HTTP Flow Tear down
e e Se4¥Er SENQS TCP

FIN or TCP RST

Figure 2.6 Layer 5 Switching tratfic flows (adopted trom [23])
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In Section 2.3, we introduced transparent Web caching techniques and described the function
of Layer 4 and Layer 5 switching. Layer 4 switching-based transparent Web caching can
transparently redirect all HTTP traffic to cache servers. Layer 5 switching-based transparent
Web caching redirects HTTP requests according to their content. In Layer 5 switching-based
transparent Web caching, non-cacheable HTTP requests are redirected to bypass cache
servers. Transparent Web caching not only makes the deployment and configuration ot the
caching system easier, but also improves its performance. However, no transparent Web
caching scheme supports distributed cache cooperation, which is widely supported by proxy

Web caching systems and has proven ettective.



Chapter 3

LB-L5 Web Caching

Existing L5 switching-based Web caching schemes use TCP spoofing to inspect the content of
the HTTP header of a client request, and then redirect non-cacheable requests to bypass the
cache servers. This increases the cache hit rate and improves system pertformance because only
cacheable requests are directed to cache servers. Existing approaches, however, do not support
distributed Web caching. A Layer 5 switch and its associated cache server can only be placed at
the gateway of a network domain. This results in problems such as congestion/latency caused

by TCP spoofing and limited cache sharing between two or more domains.

In this chapter, we propose a ftully distributed Web caching scheme that extends the
capabilities of the Layer 5 switching-based approaches to support distributed Web caching.
The goals of the proposed L5-based scheme are to balance proxy cache server workload and
improve response time for client requests. We call the scheme the LB-L5 (Load-Balancing

Layer-3-switching-based) Web caching scheme.

20
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3.1 LB-L5 Web Caching Scheme Overview

LB-L5 uses information about the proxy cache server workload, network link delay, cache
content and access-frequency to redirect HT TP requests, which in turn balances cache server
workload and reduces average response times. LB-L5 uses a weighted Bloom Filter to
represent cache content and access-frequency information, which enables LB-L5 to implement
access-frequency-aware cache cooperation. LB-L5 extends ICP, the most popular Web
caching protocol, to support communication between cache servers and Layer 5 switches, and

so is compatible with existing Web cache systems.

In addition to the transparency of existing L5 switching-based schemes, LB-L5 provides the

following benetfits:

1. Balanced cache server workload. In LB-L5, client requests are directed with the

intention of balancing the workload of cooperating cache servers.

2. Reduced response time. In a fully distributed scheme cache servers can be placed
closer to clients. The number of hops for clients to access the caches 1s reduced.
Moreover, LB-L5 can balance workload among cooperating cache servers and use
network link delay information to redirect the http request in order to avoid high-cost

remote hits.

3. Improved cache sharing. The cooperation among distributed cache servers can

increase the overall hit rate by allowing more clients to share caches.

4. Reduced possibility of congestion caused by TCP spoofing. Layer 5 switches can
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be distributed within the network. Theretore, the number of TCP tlows each switch
needs to handle s reduced.

5. Avoidance of a single point of failure. When a cache server stops running the L5

switches can redirect client requests to other cache servers.

The properties of LB-L5 are summarized as follows:

e Fully distributed architecture

As shown in Figure 3.1, LB-L5 uses a fully distributed architecture. HTTP requests from a
cluster of clients are first inspected by a L5 switch, which then redirects the requests to one of

a set of cooperating proxy cache servers or to the original Web servers.

LT
— e}

Web Server

] —
Web Server

—AOAER
Web Server

Figure 3.1 LB-L5 Web caching architecture
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In LB-L5, to redirect client requests to the most suitable cache server, a L5 switch should have
information about the cache content and the workload of every cooperating cache server, as
well as the network link delay between the L5 switch and every cache server. The compressed
cache content information is generated and published periodically to the L5 switches by cache
servers. The L5 switches also query cache server workload and measure network link delay by
using extended ICP messages. A detailed description of the cache content representation

method and the use of extended ICP messages are provided in Section 3.2.

¢ Balance between cache content distribution, workload and network latency

LB-L5 uses a weighted Bloom Filter to represent the cache content and the access frequencies
of cached objects at a cache server. The weighted Bloom Filter is smaller in size than a
complete directory of cached objects. Moreover, it reflects the characteristics of the requests
handled by the server since we use the weighted Bloom Filter to carry cache object access-

trequency information.

A Bloom Filter is used to represent cache content in the Cache Digest [19] and Summary
Cache {20] schemes. Every cached object is assigned a tixed number of bits in the tilter. In the
weighted Bloom Filter, cached objects are assigned ditferent numbers ot bits according to thetr
access frequencies. This enables the filter to carry access-frequency informanon, and more
accurately indicate whether an object is in a cache. A description of the weighted Bloom Filter

ts presented in Section 3.2.1.

The access-trequency information of cached objects i1s one tactor that influences LB-L5’s
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HTTP request routing function. In cases where several cache servers have the requested object
cached, and have similar workload and network link delay, L5 switches redirect the request to
the cache server where the requested object has highest access-frequency. Because cached
objects with lower access frequencies will expire and be evicted sooner, the routing decision

based on object access-frequency is helpful to reduce caching of redundant copies.

Other factors of LB-L5's HTTP request routing function are the cache server workload and
the network link delay. LB-L5 does not purely emphasize the cache hit rate, because in a tully
distributed environment, a remote hit or a hit on a very busy cache server can be slower than
fetching the requested objects from the original Web server. Thus, LB-L5 makes routing
decisions by considering the combined effects of cache content (hit rate), cache server

workload, and network link delay.

[n LB-L5, the workload of a cache server is measured by the number of concurrent TCP
sessions established to the server. L5 switches use extended ICP messages to query workload
information, and, at the same time, measure network link delays by the message round trip

time between the switch and a cache server.

® Backward compatibility

LB-L5 extends, but does not replace, ICP (Internet Cache Protocol), which is the most
popular protocol in existing Web caching systems. Unused OP Codes in [CP are used for LB-
L5 messages. This makes LB-L5 cache servers can cooperate with switches and/or cache

servers that are not LB-L5 aware, and LB-L5 messages transparent to these switches and/or
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cache servers. Because Cache servers in LB-L5 fully support ICP, LB-L5 is backward

compatible with ICP aware Web caching systems.

3.2 LB-L5 Detailed Description

The following sections contain a detailed description of the LB-L5 scheme. We first introduce
the weighted Bloom Filter, which is used to represent cache content and access-frequency
information. We then describe the ICP extension, and explain how to use extended ICP
messages to exchange cache content information, query proxy server workload and measure
the network link delay. Finally, we provide pseudo code for the algorithms describing the

cooperation of L5 switches and cache servers.

3.2.1 Cache Content Representation

The use of a Bloom Filter to compactly represent cache content was proposed in Cache Digest
[19] and Summary Cache [20]. In these schemes, every object in a cache is represented in a
Bloom Filter by using a fixed set of hash functions to compute hash values for its key (URL),
and then setting corresponding bits of the filter to 1. To check if a specitic object s in the
cache, the same set of hash functions are computed and corresponding bits are checked. It one
or more of the bits is 0, then the object is not in the cache. But if all bits are 1, we have tnwo

cases:

1) true prediction: the object is in the cache;

2) false prediction: the object is not in the cache while the filter indicates it 1s.
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By adjusting the filter size and the number of hash functions, Summary cache achieves a talse

prediction probability around 4.7% or lower [20].

However, a desirable property of a cache content representation for LB-L5 is the ability to
carry access-frequency information. As mentioned in the previous section, this inforrmation is
used to route the HTTP requests. In LB-L5, if an object is cached at more than one cache
server having similar values for workload and network link delay, requests for the object
should be directed to a server where the object has the highest access-frequency. This routing
policy helps to reduce the duplication of object caching because cached objects with lower

access-trequency will expire and be evicted sooner.

QOur cache content representation, which we call the weighted Bloom Filter, is based on
signature tiles proposed for general text file retrieval by Faloutsos [39]. A signature file is
fundamentally the same as 2 Bloom Filter. The signature file method builds a weighted Bloom
filter that uses a varying number of hash functons for objects with ditferent access

frequencies.

The weighted Bloom Filter divides all cache objects into ditferent sets and assigns a weight to
each set according to their access-frequencies. The weight of a set is the number ot hash
tunctions that should be used to compute hash values for the key (URL) of an object
belonging to the set, or the number of bits set to 1 in the filter for the object. We call this
method weighted Bloom Filter because it assigns a weight to each cache-object sct. The

weighted Bloom Filter assigns a heavier weight to a ser with higher access-trequency. Thus,
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objects with higher access trequencies are represented with more bits set to 1 in the tilter. At
the time of looking up an object, the number of bits set to 1 indicates the access-trequency

rank of the object.

An example of using the weighted Bloom Filter to represent cache content information is
shown in Figure 3.2. In this example, a cache server divides all cache objects into two sets

according to their access frequencies. The filter size is 16. “www.yahco.com” belongs to a high

access-frequency set, S,, whose weight 1s 6. “www.beowulf.org” and “www.delphinet” belong

to a low access-frequency set, S,, whose weight is 4.

Case (a) in Figure 3.2 illustrates how to use the weighted Bloom Filter to represent cache
content. We compute 6 hash functions for the key of every object in S, (4 for objects in S,),
and set the corresponding bits in the filter to 1. Figure 3.2 (cases b-e) describes the procedure
of looking up an object from a particular cache and its access-trequency rank. We tirst
compute the 4 hash tunctions, and check the corresponding bits in the filter representing the
cache content. [f one or more of the 4 bits is 0, the object is not in the cache. Otherwise, we
compute the additional 6 — 4 =2 hash tunctions and check the corresponding bits. It both bits
are 1, we can predict that this object is in the cache and belongs to the high access-frequency
subset. On the other hand, it any one ot the 2 bits is 0, the object is in the cache but belongs to

the low access-frequency subset.
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a)cache content representation:

Object URL Access freq. Set Weight Representation

www . yahoo .com high s1 6 1001 0110 0001 0010
www . beowulf .org low S2 4 1000 0100 1001 Q00O
www.delphi.net low S2 4 0000 0100 0101 OO0

weighted Bloom Filter
1001 0110 1101 0010

b)look up www.yahoo.caom

Steps

Weight Representation Results

l.check if it is in S2 4 1000 0100 0001 Q010 {(in S§2)
2.check if it is in S1
2.1 compute additional hash 6-4=2 0001 0010 0000 00QC

2.2 check

(in the cache, high access freq.)

c)look up www.beowulf.org

Steps

Weight Representation Results

l.check if it is in S2 4 1000 0100 1001 0000 (in S2)
2.check if it is in S1
2.1 compute additional hash 6-4=2 0010 0001 0000 0000

2.2 check

({in the cache, low access freq.)

d)look up www.whousel.com

Steps

Weight Representation Results

1.check if it is in S2 4 0001 0010 1001 0000 (not in S2)

(not in the cache)

e)look up www.whouse2.com (false prediction)

Steps

Weight Representation Results

l.check if it is in S2 4 1001 0110 0000 Q000 (in S2)
2.check if it is in S1
2.1 compute additional hash 6-4=2 0100 0000 0000 0010

2.2 check

(not in S1)

(in the cache, low access freqg.)

Figure 3.2 Cache content representation based on weighted Bloom Filrer
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The weighted Bloom Filter can be used to represent cache content and carry cache access-
frequency information at the same time. In addition, it gives lower false prediction probability
than the basic Bloom Filter used in Cache Digest and Summary Cache. By using the weighted
Bloom Filter to represent cache content, LB-L5 can support directory-based HTTP request
routing in order to avoid the query/response delay in query-based schemes such as ICP.
Meanwhile, the access-frequency information carried in a weighted Bloom Filter enables LB-
L5 to support access-trequency-aware cache cooperation, which helps to reduce the
duplication of object caching, since cached objects with low access-trequency will expire and
be evicted sooner. A detailed analysis of the weighted Bloom Filter is presented in Appendix

A.

The hash functions used for building the weighted Bloom Filter are based on MD5 [40], which
is also used in Summary Cache and Cache Digest. MD5 is a one-way hash function designed
by Ron Rivest. MD stands for Message Digest; the algorithm produces a 128-bit hash value, or
message digest, for an arbitrary-length input message. MD5 has a good collision-resistant
property, which means thar it is difficult to tind two random messages sharing a common hash
value. The collision-resistant property makes MD5 suitable for building the weighred Bloom

Filter, since we want ditterent objects to have ditterent representations.

The hash functions used in LB-L5 take groups of bits from the 128-bit MD35 hash valuc ot a
URL. This method was recommended by Cao in Summary Cache [20]. The computational

overhead of MD5 is negligible compared with the user and system CPU overhead incurred by
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caching [20,41]. The MD?5 algorithm is described in Appendix B.

3.2.2 ICP Extension

An ICP message includes a 20-byte header and a variable-sized payload, whrch typically

contains a URL. Figure 3.3 shows the [CP message tormat.

OP Cade Version Packet Length

Request Number

Options

Padding

Sender Host Address

Payload (Variabie Size)

Figure 3.3 ICP Message Format

The contents of the header are as tollows:
OP Code: the type of message. For example, a query message’s (0P Code is

ICP_QUERY, a reply message’s OP Code is ICP_MISS or ICP_HIT.
Version: ICP version to maintain backward compatbility.
Packet Length: the total size ot the ICP message.
Request Number: an opaque integer identifier to match queries and responsess.
Options: bitfield to support optional features and new additions to ICP.

Padding: unused. (In Harvest, Options and Padding fields are slated to be used tor
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authorization.)

Sender Host Address: originally intended to hold the IPv4 address. However, since the
originating address is also available from the socket API, this field is redundant and

often unused.

Table 3.1 shows the currently defined ICP OP Codes. The spacious OP Code tield and the

variable length payload allow ICP to be easily extended.

Value Name

0 [CP_OP_INVALID
1 ICP_OP_QUERY
2 [CP_OP_HIT

3 [CP_OP_MISS

4 [CP_OP_ERR

59 UNUSED

10 ICP_OP_SECHO
11 [CP_OP_DECHO
12-20 UNUSED

21 ICP_OP_MISS NOFETCH
22 ICP_OP_DENIED
23 ICP_OP_HIT_OB]

Table 3.1 ICP OP Codes

LB-L5 defines the following four new ICP messages for updating content frequency

distribution information and querying cache server workload intormation:

ICP_UPDATE_CONTENT: used by cache severs to inform L5 switches ot changes of rheir

cache content and access-frequency.

ICP_UPDATE_CONTENT_ACK: used by L5 switches to acknowledge an update of cache

content and access-frequency information.

ICP_QUERY_WORKLOAD: used by L5 switches to query cache server workload.
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ICP_UPDATE_WORKLOAD: used by cache servers to answer a workload query trom a L5

switch.

These four new [CP messages are assigned the OP Codes 12 to 15, respectively.

Figure 3.4 shows the procedure for updating cache content information with extended ICP
messages. Each cache server periodically computes its cache content informaton and
publishes it to every L5 switch. To do this, a cache server multicasts an extended ICP message,
ICP_UPDATE_CONTENT, to the L5 switchess The OP Code is set to
ICP_UPDATE_CONTENT and the content information and a timestamp are put in the payload

field of the message.

When a L5 switch receives an ICP_UPDATE_CONTENT message and successtully updates the
content tnformation of the sending cache server, it sends an ICP_UPDATE_CONTENT_ACK
message back to the cache server to acknowledge the update. If the cache server recetves
ICP_UPDATE_CONTENT_ACK responses from all L3 switches before it times out, then the
update is successfully completed. Otherwise, the cache server sends out the
ICP_UPDATE_CONTENT message, with the same timestamp, to all L3 switches that did not
respond. After sending the second ICP_UPDATE_CONTENT message, the cache server
finishes this round of updates, that is, it does not wait for another response. A L5 switch may,
however, receive two ICP_UPDATE_CONTENT messages with the same timestamp trom a

particular cache server. In this case, only the tirst one s accepred.
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Cache server 1 L5-1 Ls-2 L5-3
ICP_UPDATE_CONTENT ¢ * * *
TS+1

ICP_UPDATE_CONTENT _ACK
Time out
Re-send (with same TS)

( with regefived msg's TS )
and finish this round of update
——— ] Receive the

| ——ssecond message

with same TS

v \4 v

Figure 3.4 Updating cache content information with extended ICP messages

Figure 3.5 shows the procedure of a L5 switch querying workload information with extended
ICP messages. Each L5 switch periodically queries all cache servers for workload information
by multicasting an ICP_QUERY_WORKLOAD message to all cache servers. Every time a L5
switch sends our an ICP_QUERY_WORKLOAD message, it increases the timestamp for every
cache server by 1. When a cache server receives an ICP_QUERY_WORKLOAD message, It
sends back an ICP_UPDATE_WORKLOAD message, with its workload information and the
umestamp provided by the switch in the payload field of the ICP_QUERY_WORKLOAD

message.

[f the L5 switch receives ICP_UPDATE_WORKLOAD messages from all cache servers betore it

times out, this round of queries is successfully completed. Otherwise, it resends the
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ICP_QUERY_WORKLOAD message to all the cache servers that had not responded, and waits
for responses until it receives ICP_UPDATE_WORKLOAD messages trom these cache servers

or umes out.

In a round of workload queries, a L5 switch sends out at most two ICP_QUERY_WORKLOAD
messages to a cache server. If a cache server fails to respond to two consecutive
ICP_QUERY_WORKLOAD messages, the L5 switch sets the server’s workload to be mfinite, in
order to avoid redirecting client requests to this cache server. Upon receiving an
ICP_UPDATE_WORKLOAD message from a cache server with a newer timestamp than in
previous ICP_UPDATE_WORKLOAD messages from that server, or if the previously recorded
workload for the cache server is infinite, the L3 switch updates the workload information ot
the sending cache server.

L5 Switch 1 CServert CServer2 CServer3

] ) »® [ ]
ICP_QUERY_WORKLOAD

P——
TS+ x\
T
ICP_UPDATE_WORKLOAD

/ P wihrecaved msgs TS
Time out

TS+ x
%\5
|

e
CServer3: Time out /
message out of order, only
accept message with newer TS, /

CServer2:

failed to answer two query

messages. set its workload to

inﬁnity v v v v

Figure 3.5 Querying workload information with extended ICP messages
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3.2.3 L5 Switches working with Extended ICP

In the LB-L5 scheme, the Layer 5 switch uses cache server workload, network link delay, cache
content and access-frequency information, in addition to the HTTP header intormation
inspected from the content of client requests, to route a request to the most suitable cache

server or its destination Web server. The information is obtained as follows:

e Cache content and access-frequency information: Cache content and access-trequency
informartion is obtained and represented with a weighted Bloom Filter by each cache
server. It is sent to each Layer 5 switch using the extended I[CP message

ICP_UPDATE_CONTENT.

e Cache server workload information: A Layer 5 switch obtains the workload information
from a cache server by sending each cache server an ICP_QUERY_WORKLOAD message,
which is answered by the receiving cache server with an ICP_UPDATE_WORKLOAD
message, whose payload field carries the server’s workload information. The workload ot a

Num _of _TCP _ Sessions
Max _TCP _Sessions

cache server is measured as , where Num_of TCP_Sessions is

the number of current TCP sessions established at the server, and Ma._TCP_Sessions 1s the

maximum number of TCP sessions that can be handled by the server.

e Network link delay information: There are several proposed approaches to measuring
network latency. One category of approaches uses tools such as ping, traceroute, and Zone

wransfer from a DNS server [42]. Another category ot approaches uses network services
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such as SONAR [43], IDMAPS [44] and ReMoS [45]. However, we did not tind any
commonly supported approach to obtain instantaneous latency information. In LB-L5, the
message round trip time between a Layer 5 switch and a cache server s used to measure
the network latency. This message round trip time includes the propagation delay, packet

transmission delay and network access delay.

Upon receiving 2 HT TP request, a L5 switch makes a routing decision as follows:

1. If the request is non-cacheable, the switch redirects it to the original Web server.

2. For every cache server, the switch estimates the time needed for fetching the requested

object from that server as follows:

2.1 The switch computes hash values for the request’s URL, and then checks the
weighted Bloom filters representing the server’s cache content to see it the server

has the requested object in its cache.

2.2 The switch then estimates the time (T) needed for fetching the requested object

from the server as:

2.2.1 If the requested object is available at the cache server, then T includes the
time tor connecting to the server, sending the request from the switch to the
cache server, searching for the object at the server, moving the object trom

disk to memory, and sending the object from the server to the switch.

2.2.2 If the object is not available at the cache server, then the time tor the cache
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server to fetch the object from the Web server 1s added.
3. The switch then pre-selects a set ot cache servers that have a reasonably short response
time. A threshold can be used tor this purpose.

4. The switch chooses the cache server from the pre-selected set that has the highest

frequency for the requested objects, and redirects the request to the server.

To make the routing decisions and redirect client requests, a L3 switch maintains the following

information for every cache server:

IPAddress: IP address of the cache server.

ContentDistribution: a weighted Bloom Filter representing the cache content ot the
cache server.

WorkLoad: the workload of the cache server

NetworkLatency: the message round trip time between the cache server and the switch.

WorkLoad_Query_Time: the ume the last ICP_QUERY_WORKLOAD message was sent
to the cache server.

WorkLoad_Query_Response_Time: the tme of the most recently received
ICP_UPDATE_WORKLOAD message from the cache server.

WorkLoad_Query_TS: the timestamp, represented with a sequence number, carried in

the most recent ICP_QUERY_WORKLOAD message sent to the cache server.

Last_WorkLoad_UpdateMsg TS: the umestamp, represented with a sequence number,
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carried in the most recent ICP_UPDATE_WORKLOAD message received trom the

cache server.

A L5 switch uses an array, CacheServerArray, to store the above intormation about all
cooperating cache servers. As described in Figure 3.6, a L5 switch has a process to receive [CP
messages from the cooperating cache servers and update the workload and network link delay
information of these servers. Upon receiving an ICP message, the [CP-message-receiving
process first locates the sending server in its CacheServerArray according to the message’s

SenderAddress (lines 2-7), and then processes the ICP message according its OP Code.

It the message is [ICP_UPDATE_CONTENT, the L5 switch updates the content information of
the server sending the message, and sends the server an ICP_UPDATE_CONTENT_ACK
message (using the timestamp from the ICP_UPDATE_CONTENT message) to acknowledge
the update (lines 9-14). If the message is ICP_UPDATE_WORKLOAD, the L5 switch updates
the workload information of the server if the message carries more recent workload
information or if the previously recorded workload information is not valid (lines 15-20). An
ICP_UPDATE_WORKLOAD message (from a cache server to a2 L5 switch) is an immediate
response to an ICP_QUERY_WORKLOAD message (from a L5 switch to a cache server). A L5
switch uses these two messages to measure the message round trip time between the switch

and a cache server (lines 21-23).

A L5 switch periodically queries the workload information of all cache servers by sending

ICP_QUERY_WORKLOAD messages to the servers. As described in Figure 3.7, a L5 switch
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increments the workload query timestamp and records the query sending time before sending
an ICP_QUERY_WORKLOAD to a cache server (lines 4-6 and 14-16). The timestamp is used to
match up the query and responding messages. Recording the query send time facilitates
measuring the message round trip time between the switch and the cache server. In a round of
quertes, a L5 switch sends at most two ICP_QUERY_WORKLOAD messages to a particular
cache server. If a server does not respond to two consecutive queries, the L5 switch sets the
workload and network link delay to infinity (lines 25-28). Therefore, a2 L5 switch can avoid

redirecting client requests to non-responding server.

1. Process OnReceiveMessage (msg: ICPMessage)

2. for i:= 1 to NumOfCacheServers do

3. if( CacheServerArrayl[i] .IPAddress == msg.SenderAddress) then
4. cserver := CacheServerArray([i]

5. break

6. endif

7. endfor

8. switch (msg.OPCode)

9. case ICP_UPDATE_CONTENT:
10. if{ msg.TS > cserver. Last_Content_UpdateMsg_TS! then
11. cserver .ContentDistribution := msg.ContentDistribution
12. cserver.Last_Content_UpdateMsg_TS := msg.TS
13. SendMessage (ICP_UPDATE_ CONTENT_ACK, msg.TS,
cserver .IPAdderss)
14. endif
15. case ICP_UPDATE_WORKLOAD:
16. if((msg.TS > cserver.Last_WorkLoad_UpdateMsg_TS)
OR ( cserver.WorkLoad == INFINITE ) ) then
17. cserver .WorkLoad := msg.WorkLoad
18. cserver.Last_WorkLoad_UpdateMsg_TS := msg.TS
19. cserver .WorkLoad_Query_ Response_Time:= time()
20. endif
21. if (msg.TS == cserver.WorkLoad_Query_TS) then
22. cserver.NetworklLatency :=
cserver .WorkLoad_ Query_Response_Time -
cserver .WorkLoad_Query_Time
23. endif
24. endswitch
25. end

Figure 3.6 The algorithm of the ICP-message-receiving process on a L5 switch
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Procedure QueryWorkLoad ()}

1

2. for i:=1 to NumQfCacheServers do

3. cserver := CacheServerArray{i]

4 cserver .WorkLoad Query TS += 1

5 cserver .WorkLoad_QueryTime := time()

6 SendMessage (ICP_QUERY_WORKLOAD, cserver .WorkLoad_ Query TS,
cserver .IPAddress)

7. endfor

8. SendTime := time({)
9. Wait until ( time() > ( SendTime + TIME_OUT_THRESHOLD))

10. flagSendAgain:= FALSE

11. for i:=1 to NumOfCacheServers do

12. cserver := CacheServerArray([il]
13. if (cserver.Workload_Query Response_Time <
cserver .WorkLoad QueryTime) then
14. cserver .WorkLoad_Query TS += 1
15. cserver .WorkLoad_QueryTime := time(}
1l6. SendMessage (ICP_QUERY_WORKLOAD, cserver.WorklLoad_Query TS,
cserver .IPAddress)
17. flagSendAgain :=TRUE
18. endif
19. endfor

20. if (flagSendAgain) then

21. SendTime := time()

22. Wait until ( time({) > ( SendTime + TIME_OUT_THRESHOLD) )

23. for i:=1 to NumOfCacheServers do

24. cserver := CacheServerArray(i]

25. if (cserver.Workload_Query_ Response_Time <
cserver .WorklLoad_ QueryTime)then

26. cserver .WorkLoad := INFINITE

27. cserver .NetworkLatency := INFINITE

28. endif

29. endfor

30. endif

31. end

Figure 3.7 The algorithm of querying cache server workload intormation
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3.2.4 Cache Servers working with Extended ICP

To cooperate with Layer 5 switches, cache servers must be extended to support new [CP
messages, and use these messages to inform the L35 switches about their cache content and

workload mnformation.

To cooperate with L5 switches, a cache server maintains the following information tor every

L5 switch:

IPAddress: IP address of this cache server.

Content_Update_ TS: the timestamp, represented with 2 sequence number, carried in the

most recent ICP_UPDATE_CONTENT message sent to this L5 switch.

Content_Update_AckMsg_TS: the tmestamp, represented with a sequence number,
carried in the most recent ICP_UPDATE_CONTENT_ACK message received trom this

L5 switch.

A cache server uses an array, SwitchArray, to store the above information about all
cooperating L5 switches. As described in Figure 3.8, a cache server has a process to receive
ICP messages from the cooperating L5 switches. Upon recetving an ICP message, the process
first locates the sending L3 switch in its SwitchArray according to the message’s
SenderAddress (lines 2-7), and then processes the [CP message according its OP Code. [f the
message 1s ICP_UPDATE_CONTENT_ACK, the cache server records the acknowledgement
timestamp, which is used to check if the content update on the switch s successtully finished.

[f the message is ICP_QUERY_WORKLOAD, the cache server responds with an
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ICP_UPDATE_WORKLOAD message using the timestamp from the L5 switch, so that the
switch can keep track of the query and the response (lines 11-12). The cache server’s workload

information is put in the payload field ot the responding message.

1. Process OnReceiveMessage (msg: ICPMessage)

2. for i:= 1 to NumOfSwitches do

3. if ( SwitchArray[i].IPAddress == msg.SenderAddress) then
4. sw := SwitchArray(i]

S. break

6. endif

7. endfor

8. switch (msg.OPCode)

9. case ICP_UPDATE_CONTENT_ACK:

10. sw.Content_Update_AckMsg_ TS := msg.TS

11. case ICP_QUERY_ WORKLOAD:

12. SendMessage (ICP_UPDATE_WORKLOAD, msg.TS, sw.IPAddress)

13. endswitch

14 .end

Figure 3.8 The algorithm ot the ICP-message-receiving process on a cache server

Each cache server periodically publishes its cache content intormation to every cooperating L5
switch. Similar to the algorithm used in a L5 switch, a cache server also uses a sequence
number as a timestamp to keep track of ICP_UPDATE_CONTENT and
ICP_UPDATE_CONTENT_ACK messages. As described in Figure 3.9, a cache server may send
out one or two ICP_UPDATE_CONTENT messages to a particular L5 switch in every round of
content update, but it only increases the timestamp of this switch by 1 (line 4). This 1s because
a L5 switch might recetve two ICP_UPDATE_CONTENT messages in the same round. Thus, it
a L5 switch receives two ICP_UPDATE_CONTENT messages with a same timestamp, it can

simply ignore the second message.
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1. Procedure UpdateContentDistribution (content:WEIGHTED_BLOOM_FILTER)

2. for i:=1 to NumOfSwitches do

3. sw := SwitchArray(i]
4. sw.Content_Update_TS += 1
5. SendMessage (ICP_UPDATE_CONTENT, sw.Content_Update_TS sw.IPAddress)

6. endfor

7. SendTime := time()
8. Wait until ( time() > ( SendTime + TIME_OUT_THRESHOLD) )

9. for i:=1 to NumOfSwitches do
10. sw := SwitchArrayl[i]

11. if( sw.Content_Update TS ! = sw.Content_Update_AckMsg_TS) then

i2. SendMessage (ICP_UPDATE_CONTENT, sw.Content_Update_TS
sw.IPAddress)

13. endif

14. endfor

15. end

Figure 3.9 The algorithm of updating cache content information

3.3 Summary

In this chapter, we introduced the Load Balancing Layer 5 (LB-L5) switching-based Web
caching scheme. LB-L5 uses a weighted Bloom Filter to represent cache content in order to
support directory-based cache cooperation. The weighted Bloom Filter has two salient
properties. First, the weighted Bloom Filter can be used to represent cache content and carry
cache access-frequency inforrnation at the same time. Second, the weighted Bloom Filter gives
lower false prediction probability than the basic Bloom Filter used in Cache Digest and
Summary Cache. By using the weighted Bloom Filter to represent cache content, LLI3-L.5 can
support directory-based HTTP request routing in order to avoid the query/response delay
existing in query-based schemes such as ICP. Meanwhile, the access-frequency intformarion

carried in a weighted Bloom Filter enables LB-L5 to support access-frequency-aware cache



Chapter 3. LB-L5 Web Caching 44

cooperation, which helps to reduce the duplication of caching.

LB-L5 uses cache content and access-frequency intormation, cache server workload
information and network link delay information to route HTTP requests to one of a set of
cooperating cache servers. This routing policy makes LB-L5 suitable to support distributed
Web caching since it avoids fetching objects from remote or busy cache servers whenever a
less expensive copy can be found. LB-L5 achieves backward compaubility with existung Web
caching methods by extending ICP, the most popular Web caching protocol, to facilitate
communication between the cache servers and the switches. This means that LB-L5 cache
servers can cooperate with switches and/or cache servers that are not LB-L5 aware, and that

LB-L5 messages are transparent to these switches and/or cache servers.
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Performance Evaluation

In this chapter, we evaluate the performance of our proposed LB-L5 Web caching scheme.
The results are compared with those of ICP, Cache Digest, and basic L5 wransparent \Web
caching. Section 4.1 explains the simulation model adopted in this study, which includes the
network model, proxy traces and the simulation software implementation. The effects of
network link delay, HTTP request intensity, and the number of cooperating proxy servers on
the performance of the Web caching schemes are reported in Section +.2. Finally, Section 4.3

provides a summary of the results obtained in the simulation study.

4.1 Simulation Model

We first describe the simulation model, including the network model and the proxy mraces used
to generate HTTP request traffic. The simulation of the Web caching schemes s then

described, tollowed by the necessary parameter settings and the simulation sottware structure.
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4.1.1 Network Model

In this study, a fully distributed cache cooperation architecture is simulated. The network
model for each of the four simulated Web caching schemes is shown in Figure 4.1. In the ICP
and Cache Digest schemes shown in Figure 4.1 (2) and (b), respectively, each proxy cache
server accepts HTTP requests from a cluster of clients, and has a link to every other
cooperating proxy server. In the basic L5 and LB-L5 Web caching schemes shown in Figure
4.1 (¢) and (d), respectively, a L5 switch transparently intercepts HTTP requests trom a cluster
of clients. The L5 switch redirects a cacheable request to a cache server. Non-cacheable
requests are routed directly to the Web server. The difference between the basic L5 and LB-L5
is that LB-L5 supports distributed cache cooperation. In the LB-L5 scheme, a L5 switch can
make routing decisions and redirect a HTTP request to one of a set ot cooperating cache

sServers.

Web Server

(a) ICP (b) Cache Digesr
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Web Server web Server

(c) Basic L5 (d) LB-L5

Figure 4.1 The network model for the Web caching schemes

4.1.2 Proxy Traces

We use publicly available proxy traces from the National Laboratory for Applied Nerwork
Research (NLANR) [27] cache servers to generate HTTP requests in the simulation. NLANR
network topology is shown in Figure 4.2. The proxy traces from BO (Boulder) and UC

(Urbana-Champaign) are used in the simulation.

The proxy trace files are in the Squid native format. An entry in the trace files has the

tollowing fields:

® Timestamp: the time when the client socker is closed. The format 1s “Unix time”

(seconds since January 1, 1970) with millisecond resolution.
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NLANR Cache Configuration

Caches at the Supercomputer Center sites communicte on the vBNS.

Figure 4.2 NLANR network topology (adopted from [27])

¢ ElapsedTime: The elapsed time of the request, in milliseconds. This is the ume between
the accept() and close() of the client socket. For persistent HTTP connections, this is the

time between reading the first byte of the request, and writing the last byte ot the reply.
¢ ClientAddress: the client IP address.

e LogTag/HTTPCode: The LogTag describes how the request was treated locally, for
example, hit or miss. The HTTP code is obtained from the first line of the HTTP reply

header. Non-HTTP requests may have zero reply codes.
e Size: the number of bytes transferred trom the proxy to the client.

e RequestMethod: the HTTP request method. For example, GET or GIMS (Ger If

Moditied Since).
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o URL: the URL of the requested object.

o HierarchyData/HostName: a description of how and where the requested object was

tetched.
e ContentType: the content type of the request object.

In our experiments, proxy trace files are used in two ways: raw-trace and controlled. In the
raw-trace data simulations, the traces are used to simulate the requests from client clusters. In
the controlled-parameter simulations, we modify the traces to examine the etfects of ditterent
parameters. We condense or expand the traces with difterent factors (shorten or enlarge the
interval between requests proportionally), and use different network link delays and difterent
numbers of cooperating cache servers to investigate their effects on the performance ot Web

caching schemes.

4.1.3 Web Caching Schemes

We evaluate the performance the ICP, Cache Digest, basic L5 and LB-L5 Web caching
schemes. We compare LB-L5 with ICP because it is the most popular Web caching protocol
in existing Web caching systems. In addition, LB-L5 is compared with Cache Digest because 1t
is also used in the NLANR network together with [CP. The performance comparison ot LB-
L5, ICP, and Cache Digest can show the improvement achieved by adopung the L5 switch to
support distributed caching. Moreover, LB-L5 is compared with the basic L5 scheme to
investigate to what extent the workload balancing and cache cooperation teatures of LB-L5

improve upon the performance of the basic L3.
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Figures 4.3 to 4.5 illustrate the basic HT TP request processing procedure in LB-L5. A non-

cacheable HTTP request is redirected to a Web server as shown in Figure 4.3.

Web Client LS Switch Proxy Cache Web Server
H s
Connectwe_sw
7= RTTwe_sw /2
Routingsw
) —* )} Connectsw_ws
) ¥ feq D BTTaw2
Processingws
< - HERRose Replyws
TTCP_Sphcingsw )
M B TR A" ) ATTw.w/2
TCP_Splicingsw
(—-.———'""‘Gp:nﬂ/ RTTwe_sw/2

Figure 4.3 Non-cacheable HTTP requests in LB-L5

Cacheable HTTP requests are processed as shown in Figures 4.4 and 4.5. The switch redirects

a cacheable request to one of a set ot cooperating cache servers. It the recerving cache server

finds the requested object in its cache, it replies with a HTTP response message and the object

(Figure 4.4). Otherwise, it fetches the objects from a Web server (Figure 4.5).

The detailed HTTP request processing tlow charts of the four Web caching schemes are

described in Appendix C. These tlow charts are drawn according to the scheme descriptions in

[CP [15,16], Cache Digest [19], basic L5 [23] and LB-L5. The simulation method is also used

by Chiang to model and evaluate hierarchical Web caching schemes [46]. The parameters used

in the simulation, such as the request processing time at proxy servers and the round trip ume
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between sibling proxy servers, are summarized in the next section.

Web Client L5 Switch Proxy Cache Web Server
_M\‘Gp:sw\’ Connectwe_sw
A RTTwe_sw /2
Routingsw
\‘Gﬂzsw\) Connectsw_pc
= RTTsw_pc/2
Searchpe
DiskAccesspec
TCP_Splicingsw
o —vRReemeT | _see PN 1) BTy, /2
TCP_Splicingsw
DU N Y o

Figure 4.4 Cacheable HTTP GET requests in LB-L5 (proxy cache hir)
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Figure 4.5 Cacheable HTTP GET request in LB-L5 (proxy cache miss)
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4.1.4 Simulation Parameter Settings

The parameters used in the simulation are chosen according to data measured by Rousskov

[47,48] and IBMs technical report on its L5 switch [25]. These parameters are summarized in

Tables 4.1 and 4.2.

. Nominal |
Parameter Meaning Value Source
The elapsed time since a proxy cache sends TCP_SYN to a Web server to the], - .

Connect pe_ws proxy receiving TCP_SYN_ACK from the Web server 330 ﬂb o _[:‘6’;{7]
C Theclapsed time since a L5 switch sends TCP_SYN to a proxy cache server to the 10~4’Om .

ONNECT sW_pe | ireh receiving TCP_SYN_ACK from the cache server I B 3 i s _* 'A )
C The clnpsed time since a L5 switch sends TCP_SYN to a Web server to the switch 3 50ms

ONINECT SW_WS | o ceiving TCP_SYN_ACK from the Web server 2JUms |

The elapsed time since a Web clienr sends TCP_SYN to a prosy cache server tof , X

Connect we_pc | e dient receiving TCP_SYN_ACK from the cache sexver 0~30ms [‘“’ ‘W]
C The elapsed time since a Web client sends TCP_SYN to a LS switch to the clienq 0~30ms

onnect we_sw receiving TCP_SYN_ACK from the switch ms ¢ o

- The tme it takes a proxy cache server to retrieve a cache object from disk to !
DiskAccess pe | 1 emory P 100r4n_sw - E?,:lj} )

. The dme it takes a Web server between receiving a request and retuming the firsg

Processing ws byte of the requested object L 33_0(1’157 ~ Eﬁ6] .
Processin The time it takes a proxy server to abort an outgoing HT TP connection setup
ws Tichutg request for a Web server 15000ms ['!’6I
Processin The time it takes a Web server between receiving a GIMS request and returning}  _ o i .
ws GIMS & the first byte of the requested object 250ms ["’6]
Relay pc The Gme it takes a proxy cache server to relay a response to the requesting party  {50ms [_[.6]

. The dme it takes a proxy cache server to reply an object in memory to thef, - )
Reply pc requesting party 150ms ) L—l—? %7]
RCEI}’ pc_304 The tme it takes a proxy cache server to reply a “304: not modified”” message SOms - [46,47]

r W The time it takes a Web server to reply an object in memory to [he requesun arty| 13 3
RCPI\ ws reply Hesing par 1_30:_113 _ -L()J

The tme it takes a L5 switch to make a routng decision -
Routing sw 8 50ms *
RTTpc ws The round tdp time berween a proxy cache server and a Web server B B0.0ms [+6]
RTTS\V pc o T]Tehfsa;dTﬁp time benween a L5 switch and a proxy cache server - 10 400&15 * ; -
RTTsw_ws  |The round trp time between a LS switch and 2 Web server 30()m> .
R’[T\;: —Pl_ " | The round mp tdp time berween a Web client and a prox'\ - cache server ().._ ‘)( ) ms [4(,J
R’I‘T‘ g we_sw The round tip ume e berween a Web client and 2 L3 ‘switch (O~ Zom_\ .
be"u—.';gpvc " |Thetime it takes a prow cache server to search an object from its cache 2 501:1‘18 [_l_() J
The time it takes a Cache Digest roxy cache server to search an object fromcache| _
ie archDigest digeos gest p 50ms 9.46]
TCP Splicing The time it takes a L5 switch’s port controller to translate T cP scquénu oumber | .
- <129usec |[25]

SwW

Table 4.1 Simulation parameters (Time values)

* Varying according to distance.

* Assumed value.



Chapter 4. Performance Evaluation

. Nominall -
Parameter Meanin - Source
g Value

The probability of object not modified (304) for af_ ;. )

E?Efffir‘i'is:&em GIMS request to a proxy cache server 50 A E’_G_’iz]___
. The probability of object not modified (304) for a| . .

Prob “'sf'GmIS-treSh GIMS request to a Web server 607 ° - EI:Q -

The probability of a request not gaining access to aj -, ,
Prob ws_TimeOut |y, secver because of timeout I [+6]

Table 4.2 Simulation parameters (Probability values)

We assume that the request processing time at a proxy cache server, which inccludes the time to

search for a requested object in a cache and the disk access time for movings the object trom

disk to memory, is proportional to the number of concurrent requests. Thais assumption ts

supported by the data collected by Rousskov [47] as shown in Figure 4.6.

RespaonseTime vs. Number of Concurrent Requests
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Figure 4.6 Proxy response time vs. number ot concurrent requests

The predicted response time plot in Figure 4.6 is obtained through linear re=gression analysis
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using the least squares method to fit a line through a set of observations.

4.1.5 Simulation Software Implementation

The simulator used in this thesis conducts discrete event driven simulation. [t is developed
using the Java programming language. The simulation software consists of the following six

Major COmMpOonents:

® Client Cluster: responsible for simulating a cluster of clients. It generates HTTP

request traffic using the request logs from proxy trace tiles.

® Basic L5 and LB-L5 Switch: responsible for simulating the basic L5 switch and
LB-L35 switch. The basic L5 switch redirects a cacheable request to its associated
cache server and a non-cacheable request to a Web server. The LB-L5 switch
supports extended ICP messages and communicates with cooperating cache
servers. [t redirects a cacheable request to one of a set of distributed cache servers
based on the cache content and access-frequency inforrmation, server workload,

and network link delays.

e [CP/CacheDigest/L53/LB-L5 Proxy Servers: responsible for simulating a proxy
cache server. They use the Least Recently Used (LRU) replacement algonthm o
maintain their caches. The basic L5 proxy server does not support cache
cooperation. Therefore, it only pertorms the LRU cache management funcrion.
Other proxy cache servers perform additional tunctions. The ICP proxy server

uses the ICP protocol to support query-based cache cooperation. The Cache
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Digest uses a Bloom Filter to represent cache content and supports directory-
based cache cooperation. The LB-L3 proxy server uses a weighted Bloom Filter to
represent cache content. It uses extended ICP messages to communicate with LB-

L5 switches to publish workload, cache content and access-trequency intormation.

¢ Web Server: responsible for simulating a Web server. It accepts HTTP requests

and then sends back HTTP responses and requested objects.

¢ Network Link: responsible for simulating 2 network link connecting proxy servers,
L5 switches, Web server and client clusters. It passes messages from one end to

the other with a specitied link delay.

¢ Event Manager: responsible for simulation event queuing and dispatching. All

stmulation events are handled by the event manager.

The detailed software structure and class description of the simulator are given in Appendix D.

4.2 Simulation Results

In this section, we describe and analyze raw-trace data and controlled-parameter simulation
experiments. In the raw-trace data simulations, proxy traces are used to generate HTTP
requests to drive the simulation. In the controlled-parameter simulations, proxy traces are
condensed or expanded using different factors (the interval between requests is shortened or
enlarged proportionally) to simulate different HTTP request intensities. The network link delay
(including propagation delay, packet transmission delay and network access delay) and the

number of cooperating proxy cache servers are other parameters used in both raw-trace data
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and controlled-parameter simulations.

4.2.1 Raw-trace Data Simulations

In the raw-trace data simulations, we use the proxy traces from proxy servers on the NLANR

network. The proxy traces used in the simulations are described in Table 4.3.

ProxyName Location NumOtRequests Date
BO1 Boulder 146211 Sept. 16, 2000
UuC Urbana-Champaign 374093 Sept. 16, 2000

Table 4.3 Proxy traces used in raw-trace data simulations

The two proxy servers are at the root level of the NLANR network. They accept HTIP
requests from proxies at lower levels. Approximately 90 proxies use BO1 as their parent cache
and 60 use UC. We choose HTTP requests from network domains by the client IP addresses
logged in the trace files, so that we can simulate the cache cooperation among ditferent

network domains.

4.2.1.1 HTTP request intensity and response time

The number of HTTP requests recetved by a proxy determines the workload ot the proxy. As
we shall see, the response time of a proxy cache server tollows the HT TP request intenstty.
Meanwhile, if a scheme adapts well to high HTTP request intensities, it should have a tHlarter

response time curve.

Figure 4.7 plots the HTTP request intensity in an experiment, where four proxy cache servers

cooperate in a 24-hour duration (The results after simulation warm-up time, 0:00am - 6:00am,
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are adopted). The request intensity ranges from 127 to 1043 messages per minute. The average

intensity is 465 messages per minute.

The average response times under difterent link delays are shown in Figures 4.8 — 4.11. The
simulation results show that LB-L5 outperforms the other three schemes, and has a better

adaprability to high HTTP request intensities.

Under a small link delay (5 milliseconds), as shown in Figure 4.8, LB-L5 outperforms ICP by
31%, Cache Digest by 23%, and basic L5 by 13% on average. However, under very large link
delays, LB-L5’s performance is similar to that of the basic L5 scheme. LB-L5 avoids
redirecting requests to remote cache servers when the response time improvement is less than
the cost. As shown in Figure 4.11, when the link delay ts 200 milliseconds, LB-L5 outpertorms

ICP by 41%, Cache Digest by 17%, and basic L5 by only 2% on average.

The results also show that LB-L5 has a bertter adaprability to high HTTP request intenstty,
especially for small link delays. As shown in Figure 4.8, under a peak request intensity (time of

day =19:50) LB-L5 outperforms ICP and Cache Digest by 53%, and basic L5 by 28%.
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4.2.1.2 Hit rate

The cache hit rates of the four schemes under a link delay of 50 milliseconds (abour the delay

of a 100 kilometer network link) are shown in Figure 4.12. The results show that [CP achieves
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the highest hit rate. The average hit rates for [CP, Cache Digest, basic L5 and LB-L5 are

22.79%, 22.20%, 17.16% and 21.07%, respectively.

The results show that ICP has the highest hit rate, since it ts a query-based protocol. When an
[CP proxy server receives a request and cannot find the requested object in its own cache, it
asks all cooperating cache servers for that object. Theretore, it any one of a set of cooperatung
servers has a cached copy of the requested object then the request will result in a cache hit. In
the directory-based Cache Digest, the directory update delay prevents a proxy server trom
having the most up-to-date information about the cache content on cooperating servers, and
thus decreases the hit rate. The basic L5 scheme does not support cache sharing, and,
therefore, its hit rate is the lowest of all the schemes. Like Cache Digest, LB-L5 is a directory-
based approach, so the directory update delay is one of the reasons for its lower hit rate. The
second reason for LB-L3’s lower hit rate is that it sacnfices hit rate when it is cost-ettective not

to redirect a request to a remnote server or a server that has a high workload.

We have a hypothesis that using a weighted Bloom Filter to represent cache content improves
cache hit rate, because the weighted Bloom Filter has lower false prediction probability than
the basic Bloom Filter used in ICP and Cache Digest. However, the hit rate improvement s
oftset because LB-L5 sacrifices hit rate to balance server workload and ro avoid remote cache

hits. The combined effect of these factors on LB-L5’s hit rate needs turther study.

Although simulation results show that LB-L5 has a lower hit rate than ICP and Cache Digesr,

it has a better response time. This is because LB-L5 takes into consideration other tactors
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affecting the performance of Web caching systems, such as network link delay, HT TP request
intensity and proxy server workload balancing. The effects of these tactors are turther

investigated using controlled-parameter simulations in the next section.
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4.2.2 Controlled-Parameter Simulations

[n this section, we study the performance of the proposed LB-L5 Web caching scheme in a
controlled-parameter environment. LB-L5 is again compared with ICP, Cache Digest, and

basic Layer 5 ransparent Web caching.

The parameters used in the experiments are network link delay, HTTP request intensity, and

the number of cooperating cache servers. These parameters are set as follows:

® Network link delay: in the experiments, the network link delays are varied from 5 to 200
milliseconds, which represent a wide range of link distance and/or network congestion
levels.

® HTIP request intensity: the different HTTP request intensities are simulated by
condensing or expanding proxy traces with a controlled factor (shortening or enlarging the
interval between requests proportionally), and then using the modified traces to generate
HTTP requests. In the experiments, the HTTP request intensities are set trom 30%s to
250%. The intensity range is chosen according to the previous raw-trace dara simulation
results, where the peak request intensity (1043 requests per minute) is about 224% ot the
average request intensity (465 requests per minute).

® Number of cache servers: we vary the number of cooperating cache servers from a small
number (2) to a large number (12).

In the simulation experiments, results are sampled every minute in 30-minute durations atrer

warm-up time. Simulations are run large enough times to obtain 90% contidence level with

10% contfidence intervals. Plots in this section do not show the confidence intervals because

they are too small.
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4.2.2.1 Effect of network link delay

Figure 4.13 plots the response time versus network link delay. The experiments are conducted
with different HTTP request intensities and different numbers ot cooperating proxy cache
servers. We first note that LB-L5 outperforms the other schemes for all values of link delay

and HTTP request intensities.

Except for the basic L5 scheme, the response times of the Web caching schemes increase as
the network link delay increases. However, the extent to which the times increase is difterent
in each scheme. The response time of the basic L5 scheme is not atfected by link delay since it

does not support cache server cooperation.

ICP is highly affected by the network link delay since it is a query-based scheme. As described
in Chapter 2, if an ICP proxy cache server cannot find a requested object in its own cache, 1t
queries all other cooperating cache servers to find a cached copy of the object. As the network
link delay increases, the inter-proxy query/response time increases. As shown in Figure 4.13
(e.2), the response time of ICP increases up to 370 milliseconds as the link delay increases

from 5 to 200 mulliseconds.

In Cache Digest, when a proxy cache server cannot find the requested object trom its own
cache, it searches the digests of all other cooperating servers, and it it finds the object then it
fetches the object from other cache server. The Cache Digest scheme does nor involve inrer-
proxy query/response. Fetching an object trom a remote server, however. makes the FITTT
request response time still susceptible to network link delay. As shown in Figure 4.13 {¢.2). the
response time of Cache Digest increases up to 84 milliseconds as the link delay increases from

5 to 200 muilliseconds.
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Figure 4.13 Effect of link delay on response time

The basic L5 scheme is not afttected by network link delays because it does not supporr
distributed cache cooperation. On the other hand, the response time ot LB-L5 s greatly
affected by link delay. When the link delay is small, LB-L5’s routing decision is based manly
on the cache content and workload intormation ot cache servers. HTTP requests can be

redirected to any one of the cooperating cache servers to increase cache hit rate or to balance
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server workload. As the link delay increases, the response time improvement achieved by
redirecting requests to remote cache servers decreases. Therefore, when the link delay 15 very
large, LB-L5’s performance closely resembles the basic L5 scheme. As shown in Figure +.13
(e-2), the response time of LB-L5 increases up to 750 milliseconds as the link delay increases

from 5 to 200 milliseconds. However, LB-L5 akvays outpertorms the other schemes.

Simulation results show that performance advantage of LB-L5 over the other schemes is even
more apparent when the request intensity is high. This is because, as the request intensity
increases, the imbalance of the server workloads increases, which means that the performance
improvement achieved by LB-L5’s server workload balancing increases. As shown in Figure
4.13 (a.2), when the request intensity is 50%, the response time ot LB-L5 is lower than that ot
[CP, Cache Digest, and the basic L5 schemes by up to 560, 353, and 250 muilliseconds,
respectively. Figure 4.13 (e.2) shows that under a request intensity of 250%, the response time
of LB-L5 is lower than that of ICP, Cache Digest, and the basic L5 scheme, up to 1966, 1422,
and 895 milliseconds, respectively. The effect of request intensity on the response time under

ditferent link delays is further studied in the next section.

4.2.2.2 Effect of request intensity

Figure 4.14 plots the response time versus HTTP request intensity under difterent link delays.
The experiments are conducted for different numbers of cooperating cache servers. We first
note that regardless ot the network link delay, the HTTP request response time for all Web
caching schemes increases as we increase the request intensity. Again, LB-L5 outpertforms the

other three schemes under all combinations of request intensity and link delay, as shown in
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Figure 4.14.

Simulation results also show that LB-L5 adapts better to high request intensities than the other
schemes. As shown in Figure 4.14 (a.2), under a small link delay (5 milliseconds), LB-L5’s
response time increases by only 23% as the request intensity increase from 50% to 250%. The
corresponding response time increases for ICP, Cache Digest and basic L5 are 114%, 106%,

and 77%, respectively.

These results again retlect the performance improvement achieved by LB-L5’s server workload
balancing. As the network link delay increases, the cost of redirecting requests to remote
servers increases. Therefore, when the link delay is very large, requests are less likely to be
redirected to remote servers and the response time ot LB-L5 is very close to that of the basic

L5 scheme. This case is shown in Figure .14 (£.1, £.2).
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Figure 4.14 Eftect of HTTP request intensity on response time
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4.2.2.3 Effect of number of cooperating cache servers

Figure 4.15 plots the response times of the various schemes versus the number ot cooperating
cache servers. These experiments are conducted under different request intensities and link

delays.

The basic L5 scheme does not support cache server cooperation. Therefore, it is not attected
by the number of cache servers and link delays. Increasing the number of cooperating cache
servers does not guarantee performance improvements in ICP and Cache Digest. This is
because ICP and Cache Digest try to achieve the best hit rate but do not consider cache server
workload and network link delay. Simulation results show that the response times of ICP and
Cache Digest increase as more requests are redirected to remote or busy cache servers to

achieve higher hit rates.

On the other hand, in LB-L35, as the number of cooperaung cache servers increases, L5
switches are better able to redirect requests to balance server workloads. Thus the performance
gain increases. When the link delay is small, the performance improvement is significant. As
shown in Figure 4.15 (a.1, a.2), the response time is reduced by 29% as the number of
cooperating cache servers increases from 2 to 12. However, under very large link delays,
requests are not likely to be redirected to remote servers. LB-L5 cannot gain the benetits of

server workload balancing and cache sharing in this case, as shown in Figure 4.15 (£:1, £.2).
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4.2.2.4 Effect of request imbalance

The experiments in this section study the server workload balancing capability of LB-L5. Four
client clusters generating ditferent intensities ot requests are used in the simulanions. Figure
4.16 (a-d) plots the number of messages processed per minute by each proxy cache server for
each scheme. Figure 4.16 (e) plots the standard deviations of these numbers. These

experiments are conducted under different network link delays.

As shown in Figure 4.16, server workload is not balanced in ICP, Cache Digest or the basic L5
scheme, since they do not have a server workload balancing capability. LB-L5, on the other
hand, ensures balanced server workloads when the network link delay is relatively small. As the
network link delay increases, the cost of redirecting requests to remote servers increases, and
the benefits of workload balancing decreases. LB-L5 avoids redirecting requests to remotc

servers when the link delay 1s very large.

Simulation results show that the server workload balancing capabiity ot LB-L5 is apparent
when the network link delay is not larger than 75 milliseconds. Therefore, by balancing server
workload, LB-L5 can achieve performance improvement tor distributed cache systerns

deployed on a local area network or a metropolitan area network.
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4.3 Summary

In summary, this chapter evaluated the performance of the proposed LB-L5 Web caching
scheme. The performance of LB-L5 was compared to that of [CP, Cache Digest, and the basic
L5 Web caching scheme via simulation. In addition, the adopted network model, simulation
experiment settings, and simulation software implementation were described. Two types of
simulation experiments, raw-trace data and controlled-parameter, were conducted to
investigate the effects of network link delay, HTTP request intensity, and the number of

cooperating proxy servers on the performance of the Web caching schemes.

The simulation experiments showed that LB-L5 outperforms ICP, Cache Digest, and the basic
L5 scheme, with respect to HT'TP request response time under various network link delays.
Regardless ot the HTTP request intensity, the response time of ICP, Cache Digest, and LB-L5,
increases as the network link delay increases, whereas the basic L5 scheme 1s not affected by
link delay. Under large link delays, the response time of LB-L5 is close to that of the basic L3

scheme, since LB-L5 avoids redirecting requests to remote servers when the cost is too high.

The results obtained trom the experiments conducted on the eftect of HTTP request intensity
showed that LB-L5 adapts better to high request intensities than the other three schemes.
Under high request mtensity, LB-L5’s server workload balancing produces significant

performance improvement.

Likewise, LB-L5 demonstrated a better capability of supporting cache cooperation than the
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other three schemes. As the number of cooperating cache servers increases, LB-L5 has more
opportunities to redirect requests, which helps to balance server workloads and increase cache

sharing. These two factors mean that the performance improves.

It is noteworthy that the experiments conducted to investigate LB-L5’s server workload
balancing showed that the workloads of cooperating cache servers are well balanced when the
link delay is not very large. However, the workload is not well balanced when the link delay 1s
very large, since the cost of redirecting a request becomes too high. The obtained results also
reflected that LB-L5 does not over-emphasize any one of the factors that deterrmine the

performance of a Web caching system.

During the simulation experiments it was found that the cache hit rate of LB-L5 is not as high
as that of ICP and Cache Digest, although it is better than that of the basic L5 scheme. The
main reason is that LB-L5 sacrifices hit rate when the cost of redirecting a request to a remote
or high-workload server is too high. This again showed that LB-L5 tries to give balanced
consideration to the multiple factors affecting performance. Thus, we can conclude that LB-L5

is more adaptable than the other schemes.



Chapter 5

Conclusion

5.1 Concluding Remarks

Web caching is considered one of the most effective approaches to improving the
performance and scalability of the Web. The emerging Layer 5 switching-based transparent
Web caching not only makes the deployment and configuration of the caching system easier,
but also improves its performance by redirecting non-cacheable HTTP requests to bypass

cache servers.

The main thesis of this research is that transparent Web caching can be combined with
distributed cache cooperation to provide improved cache performance. We proposed the Load
Balancing Layer 5 switching-based (LB-L3) Web caching scheme, which uses transparent Web

caching techniques to support distributed Web caching.

LB-L5 uses a weighted Bloom Filter to represent cache content in order to support directory-
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based cache cooperation. The weighted Bloom Filter has two salient properties. First, the
weighted Bloom Filter can be used to represent cache content and carry cache access-
frequency information at the same time. Second, the weighted Bloom Filter gives lower talse
prediction probability than the basic Bloom Filter used in Cache Digest and Summary Cache.
By using the weighted Bloom Filter to represent cache content, LB-L5 can support directory-
based HTTP request routing in order to avoid the query/response delay existing in query-
based schemes such as ICP. Meanwhile, the access-frequency information carried in a
weighted Bloom Filter enables LB-L5 to support access-frequency-aware cache cooperation,

which helps to reduce the duplication of caching,

LB-L5 uses cache content and access-frequency information, cache server workload
intormation and network link delay information to route HTTP requests to one of a set ot
cooperating cache servers. This routing policy makes LB-L5 suitable to support distributed
Web caching since it avoids fetching objects from remote or busy cache servers whenever a
less expensive copy can be found. LB-L5 achieves backward compatbility with existing Web
caching methods by extending ICP, the most popular Web caching protocol, to facilitate

communication between the cache servers and the switches.

A detailed simulation model was developed to study the pertormance ot LB-1.5. LB-L5 was
compared with three existing Web caching schemes, namely ICP, Cache Digest, and basic
Layer 5 transparent Web caching. The results show that LB-L5 outpertorms these cxisting

schemes in terms of HTTP request/response time and proxy server workload balancing. LB-
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L5 is also shown to adapt better to high HTTP reques t intensity.

5.2 Future Work

While LB-L5 Web caching has a number of advantages that enable it to outpertorm existing
schemes, several aspects of the research need further investigation. The hash functions used in
LB-L5 to generate cache content representation are based on MD5, which s a one-way hash
function that produces a 128-bit hash value, or message digest, of an arbitrary-length input
message. MD5’s collision-resistance property makes it suitable for building the weighted
Bloom Filter, since we want different objects to have different representations. However, we
believe it is possible to find a more computationally efficient hash function for the Web
caching context. This is because, first, MD5 was designed to process input messages ot much
larger size (n 512-byte blocks) than a typical URL (50 bytes on average). Second, the avalanche
ettect, which is bringing the previous blocks hash values to the tollowing blocks, in MD5 1s
used to strengthen MD5’s one-way property and may be simplified in our case. In addition, a
hash function that produces hash values reflecting the similarity of input messages (that is,

URLs) may be used to more precisely represent cache content access characteristics.

In LB-L5, the cache servers periodically publish the cache content and access-trequency
information to the switches. Using compression techniques and incremental updates is
possible, since the content and access-frequency information on a particular cache server

changes gradually.
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We have a hypothesis that using a weighted Bloom Filter to represent cache content improves
cache hit rate, because the weighted Bloom Filter has a lower false prediction probability than
the basic Bloom Filter used in [CP and Cache Digest. However, the hit rate improvement 1s
offset because LB-L5 sacrifices hit rate to balance server workload and to avoid remote cache

hits. The combined effect of these factors on LB-L5’s hit rate needs turther study.

With some modifications, LB-L5 can be used in a Web server cluster scenario. The Web
servers can either contain duplicated Web documents, or can be optimized tor ditterent
docurnent types. For example, some Web servers can be optimized tor image documents,
while other Web servers are optimized for text documents. This makes the Web server cluster
easy to maintain, and possess better performance. A Layer 5 switch can be integrated into a
Web server cluster to redirect incoming HTTP requests to one ot the Web servers according
to the workload and the content information of the Web servers. A weighted Bloom Filter
can be used to represent a Web server’s content and preference of the different sets of
document requests. For example, the Web server optimized for image documents can also
contain some text documents, but it has a better response time tor image document requests,

and thus prefers these requests.
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Appendix A

Weighted Bloom Filter

LB-L5 uses a weighted Bloom Filter to represent cache content. Each cache server divides all
cache objects into different sets and assigns a weight to each set according to their access-
frequencies. The weight of a set is the number of hash tunctions that should be used, or the
number of bits set to 1 in the filter, for an object belonging to the set. We call this method

weighted Bloom Filter because it assigns a weight to each cache-object set.

The weighted Bloom Filter assigns a heavier weight to a set with higher access-frequency.
Thus, objects with higher access frequencies are represented with more bits set to 1 in the
filter. At the time of looking up an object, the number of bits set to 1 indicates the access-

tfrequency rank of the object.

To analyze the false prediction probability and derive an optimum weight assignment, we

formalize the problem using an approach similar to that in [39].
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Assume that the set S of ali possible objects in a cache is partitioned into n subsets 5, S,, ...
S,, which are disjoint and whose union is S, that is
S=85US,..US,
and
S;NS; =D ,where I<i<n,l<j<nandi#]

Let D, be the number of objects in S, and D= D+ D. ...+ D, be the total number ot objects
in the cache. We define the access probability for objects in §; to be P, and the weight tor S, to

be W,. Assume the filter length is F.

In a filter representng D objects, the probability that a particular bit 1s 0 is:

F—l W,D,+W,D, +.+W, D, 1 )WlDI«{-WlDz-r_..q‘—W”D"
RO =} — — =|]-—
F F J

or

W, D, +W, D+ +W, D,
Ry =|l-e d (when L << F)

Hence, the probability that a particular bitis 1 1s:

W,0,+W, D, +..+W,D,

R=1-R,=l-¢ F (0

The talse prediction probability is:
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F,=PBR" + P,R™ + ..+ P R"™ @)

To find the optimum W, for each subset S, such that the talse prediction F, 1s minimized, we

differentiate F, with respect to W/'s:

oF . :
£ =0 ,where 1<i<n (3

ow,

oF - _ "
Because —£ = I-RD, | _R E-R.RW' InR+ Z PjoRW' , we have
R F|[1-RD, e
-l-R—Rggk“’- InR+ Y PW,R" =0 (l<i<n) )

=

Equation (4) 1s equivalent to

W, » RV P RY F . )
AR = AR =..=—" =—2 =K (Kisaconstant independent ot /) (3)
D, D, D, D
Substituting equation (5) into (4), we have:
R n
K| F InR+ > WD, |=0
1_ R j=t
or
W D,
R _ /21 A} 6)
I-R FInR (

From equations (1) and (6), we have:
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R _In(l—-R)
1-R InR

Substituting equation (7) into (6), we have:

S'W,D, = Fln2

=
Substituting equation (7) into (5), we have:

W,=~l—- lnR—an (1€i<n)
In2| D,

!

Substituting equation (9) into (8), we have:

- F(In2)*+> D, In £
i={ D,

InK =
D

Substituting equation (10) into (9), we give the optimum values tor the W's:

n P
EDJ. ln—D—’I

=l
D

2
w=fm2, i £ _
DI

' D n2 (lsi<sn)
n2

From equation (5) and (10), we give the solution for F;:

i

P

. S0
5

nD F(ln2)y 5 D,

F =e b b

O

(8)

)

(10)

(11)
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The Bloom Filter used in ICP and Cache Digest is a special case ot the weighted Bloom Filter.
[f we do not divide objects into subsets (n=1), equations (11) and (12) reduce to the
corresponding tormulas of the Bloom Filter without weights, as shown in equations (13) and

(14), respectively.

W = (n=1) (13)

F,=e (n=1) (14)

To compare the weighted Bloom Filter with the Bloom Filter without weights, let us first
investigate Web access characteristics. Researchers have found that a small traction ot the
objects receives a large fraction of the accesses. More precisely, HTTP request distributions

follow a Zipft's distribution [49,50,51,52,53,54,55]. The number ot accesses tor the " most

. N . - : .

popular object is: R, = — . The Zipf exponent ¢ reflects the degree of populariry skew, and N
i

represents the number of requests for the most popular object. In the reported Web access

analysis, the exponent & ranges trom 0.6 to 0.8.

For example, we assume that 30% of objects receive 70% of access requests. We divide S into
subset S, and S, with P,=0.7, P,=0.3, and D,/D.=3/7. The comparison of the talse prediction

probability ot these two Bloom Filters is shown in Table A.1 and Figure A.1.
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Bloom Filter without weights Weighted Bloom Filter
F/D W Fp W1 w2 Fp

2 |1.386294361 |0.382546379 |3.097643751 |0.652858908 [0.272579682
3 |2.079441542  10.236606212 |3.790790932 [1.346006089 0.168591443
4 |2.772588722 ]0.146341732 |4.483938112 |2.039153269 |0.10427437
5 ]3.465735903 0.09051285  |5.177085293 |2.73230045 [0.064+494046
6 |4.158883083 ]0.0559825 5.870232473 13.425447631 [0.039889783
7 |4.852030264 |0.034625363 16.563379654 [4.118594811 |0.024671964
8 |5.545177444 ]0.021415902 [7.256526834 |4.811741992 |0.015259692
9 [6.238324625 [0.013245807 [7.949674015 |5.504889172 {0.00943817
10 {6.931471806 |0.008192576 {8.642821195 16.198036353 {0.00583754
11 {7.624618986 10.005067136 |9.335968376 {6.891183533 ]0.003610538
12 |8.317766167 10.00313404  |10.02911556 |7.584330714 |0.00223313
13 {9.010913347 {0.001938414 |10.72226274 |8.277477894 |0.001381198
14 [9.704060528 10.001198916 [11.41540992 18.970625075 |0.000854276
15 {10.39720771 10.000741533 [12.1085571 ]9.663772256 |0.000528372
16 [11.09035489 [0.000458641 [12.80170428 {10.3569194+ {0.0003268
17 [11.78350207 |0.000283671 [13.49485146 {11.05006662 (0.000202127
18 [12.47664925 0.000175451 [14.18799864 |11.7432138 10.000125016
19 [13.16979643 10.000108517 |14.88114582 [12.43636098 |7.73229E-05
20 [13.86294361 [6.71183E-05 |15.574293 13.12950816 [4.78245E-05

Table A.1 Weighted Bloom Filter vs. Bloom Filter without weights

False prediction
probability

0.5

o o
w B
/

© o
- N

NN
F/D

—e— BloomFilter —a— weighted Bloom Filter

Figure A.1 Weighted Bloom Filter vs. Bloom Filter withourt weights
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MDS5 Hash Function

MD5 processes the input text in 512-bit blocks, which are divided into 16 32-bit sub-blocks.
The output of the algorithm is a set of four 32-bit blocks, which concatenate to form a single

128-bit hash value. The algorithm consists of tollowing steps:

e Step 1: Pad the message, make the message length = 512 xn

First, the message is padded so that its length is just 64 bits short of being a multiple ot 512.
This padding is a single 1-bit added to the end of the message, followed by as many zeros as
are required. Then, a 64-bit representation of the message’s length (before padding birs were
added) is appended to the result. These two steps serve to make the message length an exact
multiple of 512 bits in length (required for the rest of the algorithm), while ensuring that

different messages will not look the same after padding.

e Step 2: Initialize chaining variables

Four 32-bit chaining variables are initialized:

98
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99

O0w
1

e Step 3: Main loop

01234567 (Hex)
89abcdef (Hex)
fedcba%98 (Hex)
= 76543210 (Hex)

As shown in Figure B.1, the main loop has four rounds. The loop continues tor every 512-bit

block in the message.

Input message
(block 1)

Input message
{block 2)

Input message
(block 3)

b

Round 1

o>

N

Round 2 Round 3

Round 4

_— @“—.
— FH H—

Figure B.1 MD5 main loop

Each round uses a different operation 16 times. As shown in Figure B.2, each operation

performs a nonlinear function on three varibles of A, B, C, and D. Then it adds the result to

the fourth variable, a sub-block of the text and a constant. Then it rotates that result to the

right a variable number of bits and adds the result to one ot A, B, C, or D. Finally the resulr

replaces one of A, B, C, or D.
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L= |

Nonlinear L_!

¢ Function + + << —‘@

: I
Msg

Sub block

Constant

Figure B.2 One operation in one round in MD5

There are four nonlinear functions, one used in each operation (a different one for each
round).

E(X,Y12) = (X AND 1) OR ((— X) AND 2)

G(X,Y,2) = (X AND 2) ~ (¥ (- 2)

H(X.Y.2) = XXORYXOR Z

[(X.Y.2) = YXOR (X OR (= 2))
These tunctions are designed so that if the corresponding bits of X, Y’ and Z are independent

and unbiased, then each bit of the result will also be independent and unbiased. The function

F 1s the bit-wise conditional: If X then Yelse Z. The tunction H is the bit-wise parity cperator.



Appendix C

The Flow Charts of Web Caching Schemes

In this study, we evaluate the performance ot ICP, Cache Digest, basic L5 and LB-L5 Web
caching schemes. The HT TP request processing flow charts of the four schemes are shown in
Figure B.1 to Figure B.8. These tlow charts are drawn according to the scheme descriptions in
ICP [15,16], Cache Digest [19], the basic L5 caching [23], and LB-L5 as described in Chapter 3.
A similar simulation model was used by Chiang to model and evaluate hierarchical Web

caching schemes [46].

-As shown in Figure C.1, in an ICP tully distributed cache server mesh, HTTP requests
generated by clients using the GET method are processed as follows. When a proxy cache
server receives a HTTP GET request, it searches its cache tor the requested objecr. It the
requested object 1s found in the cache, the proxy cache server returns the object to the
requesting client. Otherwise, the proxy cache server sends an ICP query message to all the

siblings, which in tum search their own caches for the requested object and reply with an [CP
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HIT or MISS according to the search result. If nwone of its sibling replies with an ICP HIT
message, the proxy cache server forwards the requesst to the original Web server. It at least onc
of its siblings replies with an [CP HIT message, thee proxy server tetches the requested objecr
from the sibling whose reply comes tirst, and then sends the requested object to the requesting

client.

HTTP requests generated by clients using the GIMS (Get It Moditied Since) method are
processed as shown Figure C.2. The HTTP GIMS request is used when a client has a cached
copy of the requested object. The GIMS request carrries a imestamp indicating when the client
has cached the object. A proxy cache server or the original Web server should reply to the
GIMS request with the requested object if and only if the object 1s modified after the
umestamp. If the requested object has not been rraodified after the umestamp, a short HTTP
message, Code 304, should be sent to the client. "Thus HTTP GIMS requests are processed
ditterently trom the GET requests after the reques ted objects are found: an extra step is taken

to check it the object has been modified since the client cached 1t
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Figure C.1 HTTP GET requests in [CP scheme
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Figure C.2 HTTP GIMS requests in ICP scheme

Unlike query-based ICP, Cache Digest is a directory-based Web caching scheme. When a
proxy cache server cannot find a requested object in its cache it searches the siblings’ digests
(the directory of cache contents). If the requested object is tound in the digest ot 2 sibling

cache, the proxy cache server requests the object from the sibling. As described in Chaprer 2,
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Cache Digest uses a Bloom Filter to represent the cache contents, which can introduce talse
predictions, that is an object is shown in the filter but is not actually in the cache. [f the sibling
server receiving the request does not find the requested object, then it forwards the request to
the original Web server. The processing flow charts of HTTP GET and GIMS requests are

shown in Figure C.3 and Figure C.4, respectively.
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Figure C.3 HTTP GET requests in Cache Digest
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Figure C.4 HTTP GIMS requests in Cache Digest

[n the basic L3 Web caching scheme, every L5 switch transparently inspects HTTP requests
from a client cluster. [t redirects the cacheable requests to its associated proxy cache server,

and non-cacheable requests to the original Web servers. The HTTP GET and GIMS requesr
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processing tlow charts are shown in Figure C.5 and Figure C.6 respectively.
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Figure C.5 HTTP GET requests in the basic L5 scheme
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Figure C.6 HTTP GIMS requests in the basic L5 scheme

In LB-L3, the switch inspects the HTTP requests in the same way as in the basic L5 scheme.

The non-cacheable HTTP requests are redirected to the original Web servers. However. The
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cacheable HTTP requests are redirected to one of a set ot cooperating cache servers according
the switch’s routing decision, which is based on the cache content and workload information
of cache servers, as well as the network link delay between the routing switch and cache
servers. Figure C.7 and Figure C.8 show the HTTP GET and GIMS requests processing tlow

chats 1in the LB-L5 scheme.
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Figure C.7 HTTP GET requests in LB-L5
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Appendix D

The Simulation Software Structure

The simulator used in this study uses discrete event driven simulation to simulate [CP, Cache
Digest, basic L5, and the LB-L5 Web caching schemes. The simulation sottware is developed

using the Java programming language.

As shown in Figure C.1, client clusters, L3 switches, proxy cache servers, Web servers, and
network links are modeled and simulated with ditferent simulation objects. Both the
communication between objects and tasks performed are modeled as simulation events. Every
simulation object has an event handler to process received events, and can schedule events tfor
its associated objects. All events are sent to the EventManager module, where events are

queued and then dispatched to handle objects according to time ordering.
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Figure D.1 Simulation software structure

The sirnulation software package consists of 31 classes. The major classes are described as

follows:

e Interface SimuObiject

Intertace SimnObject detines the virtual method public boolean erentHandle(SimuErent se). All
simulation object classes implement this intertace, and process received events in their own

erentHandle methods.
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e (lass ClientCluster

Class ClientCluster stmulates a client cluster by reading proxy trace tiles and generating FI'TTP
requests. For example, it can schedule a ReadNextl_ogEntry to itself for getting a log entry tfrom
trace files and generate a HT TP request. [t can also schedule TPC_SYN or HTTP_Reguest events
for sending a request to a proxy server. ClentCluster handles events from its associated links.

For example, TCP_ACK, HTTP_Response for processing messages from proxy servers.

e (Class L5Switch
Class L5Switch simulates a basic L5 switch. It conducts TCP Spoofing to inspect the HTTP

requests from a client cluster, and then directs cacheable requests to 1ts associated cache server
and non-cacheable requests to the Web server. [5Snztch can handle events trom its associated
links. For example, it handles TCP_SYN and HTTP_Requesst events trom a link to a ChenrCluster,
and TCP_ACK and HTTP_Response events trom a link to a WebSerzer: It also schedules events
for its associated links. For example, it schedules TCP. ACK and HTTP_Regrest events to a

W ebServer, and TCP_ACKand HTTP_Response events to a ClientCluster-

e C(Class LB_L5Switch

Class LLB_L5Switch simulates a LB-L5 switch. In addition to the functions of a basic L3 switch,
it communicates with cache servers to obtain their workload, cache content and access
frequency information. It also measures network link delay between itselt and cache servers.
[.B_I.58uitch uses the obtained information to redirect HTIP requests to onc ot the

cooperating cache servers.
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LB_L585witch supports extended ICP messages in its ezentHandle method, and schedules events
corresponding to such messages on its associated links. For example, it handles
ICP_UPDATE_CONTENT events ftrom links t©o  LS5PrmnyCaches: and  schedules

[CP_QUERY_WORKLOAD events to L5ProxyCaches.

e (lass ProxyCache

Class ProxyCacte 1s the super class of all proxy classes. It implements the Least Recenty Used
(LRU) cache replacement algorithm to simulate a LRU cache. All proxy classes derived trom

this class inherit its methods implementing LRU cache.

e Class LBL5_ProxyCache

Class LBL5_ProxyCache simulates a proxy cache server supporting LBL5 switches. In addition
to the functions of a basic LRU proxy cache server, it communicates with L5 swirches for

updating its workload, cache content and access trequency intormation.

LB_L5S8nuteh supports extended ICP messages in its ezentHandle method, and schedules events
corresponding to extend ICP messages tor its associated links. For example, it handles
ICP_QUERY_WWORKLOAD events from links to L5PrmayCaches: and  schedules

ICP_UPDATE_CONTENT events tor links to L5ProxyCuches.

¢ Class ICP_ProxyCache

Class ICP_ProxyCuche simulates a proxy cache server supporting the [CP protocol. In addition
to the functuions of a basic LRU proxy cache server, it communicates with cooperating [CP

proxy cache servers to share cached Web objects.
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[CP_ProxyCache supports ICP messages in its eentHandle method, and schedules events
corresponding to [CP messages for its associated links. For example, it handles ICP_QUERY
events from links to other [CP_ProxyCaches; and responds the query by scheduling ICP_HIT or

ICP_MISS events tor the link to the querying proxy.

e (lass CD_ProxyCache

Class CD_ProxyCache simulates a proxy cache server supporting the Cache Digest protocol. In
addition to the functions of a basic LRU proxy cache server, it communicates with cooperating

Cache Digest proxy cache servers to share cached Web objects.

A CD_ProxyCache computes its cache digest represented with a Bloom Filter periodically, and
publishes the digest to other cooperating Cache Digest proxy servers. Whenever a
CD_ProxyCache receives a request and cannot find the requested object in its own cache, it
searches the cache digests of cooperating cache servers, and tetches the object trom a

cooperating server that has this requested object.

e Class WebServer

Class WebSener simulates a Web server. It accepts HTTP requests and sends back HTTP
responses. WebServer supports TCP and HTTIP messages in its ewentFlundle method, and
schedules events corresponding to TCP and HTTP messages tor its assocrated links. For
example, it can handle a TCP_SYN evenr from a link: and respond the TCP message by

scheduling a TCP_ACK event to the link.
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o (lass EventManager

Class EventManager uses a linked list to queue simulation events scheduled by all simulation

objects, and then dispatch the events to their receiving objects in time order.

e C(Class MD5

Class MD5 implements MD5 hash function. The wzputeHashl “alne method of this class 1s used
for building the Bloom Filter in the Cache Digest scheme and the weighted Bloom Filter in the

LB-L5 Web caching scheme.



Appendix E

Confidence Intervals

The accuracy of simulation results can be described in terms ot contidence intervals placed on
the mean values of the results. The contidence interval calculation procedure is described as

tollows:

Let Y. Y5,...,Y,; be the statsucally independent results trom N ditterent runs ot the same

simulation. The sample mean, Y , ot these results is:

Y =& (1)

- - . . - ki .
The varrance ot the distribution of the sample values, S, :

<

>

_}7)3
S)f ==t (2

N -1
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The standard deviation of the sample mean is:

Sy

N G

Under the assumption of independence and normality, the sample mean s distributed n
accordance to the t-distribution. The upper and lower limits ot the contidence interval

regarding the simulation results are:

LowerLimit =Y —SY['Z—’W— -h
JN

Loyan-
alIN-l (5)

JN

.= Sy
UpperLimit =Y +
where tg,. \ . 1s the upper &/ 2 percentle of the t-distribution with IN-7 degrees ot treedom.

The simulation experiments in this thesis were run large enough times to ensure a 90%o

confidence level with 10% contidence intervals.





