Enabling Cooperative Relaying VANET Clouds Over LTE-A Networks

Mohamed F. Feteiha, Member, IEEE, and Hossam S. Hassanein, Senior Member, IEEE

Abstract—This paper addresses the area of heterogeneous wireless relaying vehicular clouds. We devise an advanced vehicular relaying technique for enhanced connectivity in densely populated urban areas. We investigate the performance of a transmission scheme over a Long-Term Evolution-Advanced (LTE-A) network where vehicles act as relaying cooperating terminals for a downlink session between a base station and an end-user. The abundance of moving vehicles, operating in an ad hoc fashion, can eliminate the need for establishing a dedicated relaying infrastructure. However, the associated wireless links in vehicular clouds are characterized by a doubly selective fading channel; this causes performance degradation in terms of increased error probability. Hence, we propose a precoded cooperative transmission technique to extract the underlying rich multipath–Doppler–spatial diversity, which is a relay selection scheme to take advantage of the potentially large number of available relaying vehicles. We further contribute by the derivation of a closed-form error rate expression, diversity gain, and outage expressions and introduce our derived performance unconditional expressions as a benchmark to assess our analysis and future research studies of such an approach. Our analytical and simulation results indicate that significant diversity gains and reduced error rates are achievable. In addition, there is a noticeable reduction in the required transmitting power compared with traditional transmission schemes, as well as an increase in distance coverage.

Index Terms—Best relay selection, cooperative relaying, fourth generation (4G), Long-Term Evolution-Advanced (LTE-A), vehicular ad hoc network (VANET), vehicular communications.

I. INTRODUCTION

In cellular networks, inherent limitations on cell capacity and cell coverage exist. Due to the capacity limitation, in dense urban areas, such as downtown areas and major events, users tend to experience degraded performance. In the search for ways to enhance network performance, researchers have turned their attention to vehicles on the road. The abundant onboard vehicle resources [1] that are underutilized by traditional vehicular applications offer an opportunity for improved computing and connectivity in vehicular ad hoc networks (VANETs) [2]. Indeed, with its diverse resources, including sensing, processing, storage, and communication modules, a vehicle can be a potentially excellent candidate as a “mobile relay” to support what we call relaying vehicular cloud networking (RVC-Net). We propose the creation of a “cooperative RVC-Net” using vehicles equipped with short- and medium-range wireless communication technologies and low elevation antennas. The main reason for using vehicles as relays is to reduce power consumption at the end-user mobile terminal. By reducing the distance between the transmitter and the receiver, the required transmission power is also reduced. Unlike base stations (BSs), relay stations (RSs) are less complex and do not require wired backbone access. In addition, RSs provide higher throughput, increase coverage, lower operational and capital expenditure, allow for faster communication links to roll out, and offer a more flexible configuration. Cooperative RVC-Net can be an integral part of the next-generation cellular network, namely, Long-Term Evolution-Advanced (LTE-A); LTE-A is the de facto fourth-generation (4G) wireless system and is expected to dominate the next generation of wireless networks and to support a wide variety of applications that require higher data rates with more reliable transmission. To meet such demands, wireless communication system designers need to optimize network performance in terms of better link reliability, fewer dropped connections, and longer battery life [3]. LTE-A was ratified by the International Telecommunication Union as an International Mobile Telecommunications-Advanced (IMT-Advanced) 4G technology in November 2010 and has adopted relaying for cost-effective throughput enhancement and coverage extension [4], [5].

The utilization of the proposed cooperative RVC-Net architecture is aimed at increasing network performance without the expense of expanding network infrastructure. We remark that user cooperation has been recently applied to vehicular communications to extend coverage, enable ad hoc connectivity, and enhance link reliability through distributed spatial diversity [6]–[12]. To motivate vehicles to act as cooperative relays, incentive mechanisms for multiuser cooperative relaying have been proposed in the literature [13].

The main challenge facing the deployment of vehicular relaying networks manifests itself in the systems advantage, which is the lack of infrastructure. For such types of networks, the physical-layer designs have to cope with tremendous challenges, including an extendable relaying network area over the entire road with many participants and an extremely dynamic environment with a topology that is always changing. Furthermore, due to the high speed of moving vehicles, the
connectivity of the vehicular relaying could be compromised, changing frequently, which causes a higher probability of disconnection. As well in LTE-A wireless broadband vehicular relaying, intersymbol interference (ISI) introduces frequency selectivity, whereas Doppler spreads result in time selectivity. To realize the full potential of cooperative diversity using vehicular relaying networks, it is important to conduct an in-depth investigation of performance limits and develop enabling techniques to support such broadband transmission. In this paper, we investigate the performance gains of a transmission scheme in LTE-A networks where vehicles act as relaying cooperating terminals for an eNodeB-to-User Equipment (UE) downlink session. The associated wireless links are characterized by a double selective fading channel, which results in performance degradation, in terms of increased error probability. Hence, we propose a precoded cooperative transmission technique to extract the underlying rich multipath–Doppler–spatial diversity. Furthermore, we implement a best relay selection scheme to take advantage of the potentially large number of available relaying vehicles. We further contribute by

1) devising an effective precoding transmission scheme and a relay selection technique that significantly increase diversity gains and reduce error rates;
2) the derivation of closed-form formulas for error rate and outage probability as a benchmark to assess our analysis and future research studies of such an approach;
3) demonstrating the performance gains of the proposed approach, analytically and through simulation, compared with the traditional approaches.

The remainder of this paper is organized as follows. In Section II, we describe the proposed two-phase dual-hop cooperative system using a best relay selection from \(M \) available vehicles willing to be involved in the transmission session. In Section III, we derive a closed-form expression for the pairwise error probability (PEP) and demonstrate the achievable diversity gains. In Section IV, we derive the outage probability closed-form expression. In Section V, we present numerical results to confirm the analytical derivations and provide insight into the system performance. Section VI concludes this paper.

Notations: \((.)^T\), \((.)^*\), and \((.)^H\) denote transpose, conjugate, and Hermitian operations, respectively. \(E[.], ||.||\), and \(\otimes\) denote expectation, absolute value, and Kronecker product, respectively. Bold letters denote the matrices and vectors. \([H]_{k,m}\) represents the \((k, m)\)th entry of \(H\). \(I_N\) indicates an \(N \times N\)-size identity matrix. \(1\) and \(0\) represent, respectively, all-ones and all-zeros matrix with proper dimensions. \([\cdot]\) and \([.\] denote integer ceil and integer floor operations, respectively. \(*\) is the convolution operator. \(x, i, j, k\) are dummy variables. \(F(.)\) and \(f(.)\) are the cumulative distribution function (cdf) and the probability density function (pdf) for a given random variable, respectively. The distances, geometrical gains, and path-loss coefficient are denoted by \(d_{(.)}\), \(G_{(.)}\), and \(\alpha\) respectively. \(L_{(.)}\) denotes the number of multipath, and \(Q_{(.)}\) denotes the number of Doppler shifts. The number of available relaying vehicles willing to contribute in transmission is given by \(M\). We have \(P\) and \(Z\) as the precoder design parameters.

II. System Model

There are two main approaches to handle cooperative communications. The first approach involves adaptive transmission in which one or more transmission parameters (coding, modulation, power, etc.) are varied according to the channel conditions. This builds on a closed-loop implementation in which feedback from the receiver to the transmitter is required. The second approach is the use of either outer coding or precoding. These are open-loop implementations that do not require feedback. Such techniques are particularly useful over time-varying channels where reliable feedback is difficult to obtain. In our paper, considering the time-selective nature of the vehicular system under consideration, we used the linear constellation precoding approach. Such an approach is particularly useful over high-speed mobility communications, where reliable feedback is difficult to obtain. Taking this into consideration, we will build our communication scheme over orthogonal transmission protocol, cooperative relaying, as well as outer and linear signal precoding.

The utilization of multihop relaying techniques is aimed at increasing network performance without the high costs of expanding a networks’ infrastructure. The main principle in relaying results in reduced levels of power consumption for the mobile terminals. This is the outcome of reducing the transmitter-to-receiver distance and, hence, the required transmission power. Unlike BSs, RSs are less complex and do not require wires for the backbone access. In addition, they provide higher throughput, increase coverage, lower operational and capital expenditure, allow for faster roll out, and offer a more flexible configuration. An alternate approach for relaying is by making use of vehicles equipped with low elevation antennas and short- and medium-range wireless communication technologies.

Adopting such transmission model will directly utilize five inherent advantages of vehicular networking.

1) There is abundant energy and computing power (including both storage and processing).
2) There are predictable movement patterns of vehicles as they are in most cases limited to roads.
3) Road map information is often available from positioning systems and map-based technologies such as GPS.
4) The trajectory of a vehicle can be predicted given the average speed, current speed, and road map.
5) The frequent availability of traveling vehicles, operating in an ad hoc fashion, eliminates the need for establishing a dedicated relaying infrastructure.

With its diverse resources, including sensing, processing, storage, and communication modules, a vehicle can offer a distributed system that can manage signal processing tasks in a faster and a more efficient way than centralized computing. Although the expectations for this emerging technology are set very high, many practical aspects still remain unsolved for a vast deployment of vehicular networks. A vehicle can offer a distributed system that can manage cooperative relaying tasks in a more efficient way than a roadside dedicated relay by deploying a precoded transmission that can extract the rich underlying multipath–Doppler diversity. The Doppler diversity
is the outcome of the Doppler shifts resulting from the high-speed vehicle mobility.

We consider a cooperative communication scenario, as shown in Fig. 1, where an eNodeB antenna (source) directly communicates with UE (destination) and indirectly through a relaying vehicle (R) that serves as a best selected relaying terminal. All terminals are assumed to be equipped with single transmit-and-receive antennas and operate in half-duplex mode. We assume the orthogonal cooperation protocol of with decode-and-forward (DF) relaying [14]. In the broadcasting phase, the source (antenna) transmits its precoded signal to the relaying vehicle (R) and to the destination (UE). In the relaying phase, the relay is engaged in forwarding the received signal only if it was decoded correctly; otherwise, the relay is silent. The relay decodes and then forwards a newly decoded copy of the precoded signal to the destination. The destination makes its decision based on the two received signals over the broadcasting and relaying phases.

When the transmitter vehicle and/or the receiver vehicle are in motion, the Doppler phase shift, i.e., the amount of change due to the vehicles’ relative mobility, must be taken into account. Ignoring the additive noise, the bandpass path, \(\mathcal{Y}(t) \), can be written as [15], [16]

\[
\mathcal{Y}(t) = \text{Re} \left\{ \sum_{n=1}^{N(t)} \alpha_n(t)s_l(t - \tau_n(t)) e^{j(2\pi f_c + \omega_{D_n}(t))(t-\tau_n(t))} \right\}
\]

or, equivalently, the impulse response as

\[
h(\tau, t) = \sum_{n=1}^{N(t)} \alpha_n(t) e^{j(\omega_{D_1}(t) + \omega_{D_2}(t))(t-\tau_n(t))+2\pi f_c\tau_n(t)} \delta(\tau - \tau_n(t)).
\]

In the foregoing equations, \(N(t) \) is the number of resolvable multipath components, \(\alpha_n(t) \) is the attenuation factor of the \(n \)th path, \(s_l(t) \) is the equivalent low-pass signal, \(\tau_n(t) \) is the delay associated with the \(n \)th path, \(f_c \) is the carrier frequency, and \(\omega_{D_n}(t) \) is the Doppler phase shift associated with the \(n \)th path due to the mobility and is given by

\[
\omega_D(t) = 2\pi f_D(t) = \frac{2\pi}{\lambda} v(t) \cdot \cos(\vartheta)
\]

where \(\vartheta \) is the signal’s angle to the vehicle, \(v(t) \) is the vehicle’s velocity, \(\lambda \) is the wavelength of the carrier, and \(f_D(t) \) is the Doppler shift. The difference between the Doppler shifts in various signal components (contributing to a single fading channel tap) forms the Doppler spread of the channel and is given by \(f_d = 1/T_d \), where \(T_d \) is the coherence time of the channel.

Jakes’ model assumes an isotropic rich scattering around the mobile receiver antenna and builds upon a single-ring model. In this model, the angles of arrival \(\vartheta \) of the waves arriving at the receiving antenna are uniformly distributed in the interval of \([-\pi, \pi]\). This single-ring model is generally used for cellular systems that typically involve a stationary BS antenna above the rooftop level unobstructed by the local scatterers.

In highly scattered areas, there are a large number of paths along with the absence of a dominating line-of-sight path. The central limit theorem suggests that the complex fading coefficient can be modeled as zero-mean complex Gaussian. In vehicle-to-vehicle communication, the antenna is close to the ground level (1.5–2.5m) and is dynamic with higher speed and variation, which requires considering the local scattering around the vehicular antenna. In [18], Akki and Haber considered a scattering model surrounding the mobile terminals with omnidirectional antennas, assuming two communicating terminals moving with velocities \(v_1 \) and \(v_2 \). For this mobility scenario, each path will be subject to separate Doppler shifts, yielding to the impulse response [18], i.e.,

\[
h(\tau, t) = \sum_{n=1}^{N(t)} \alpha_n(t) e^{j((\omega_{D_1}(t) + \omega_{D_2}(t))(t-\tau_n(t))+2\pi f_c\tau_n(t))} \delta(\tau - \tau_n(t))
\]

where \(\omega_{D_1}(t) \) and \(\omega_{D_2}(t) \) are the Doppler phase shifts introduced by the two mobile vehicles. Here, the delay term can be expressed as

\[
\tau_n(t) = \tau_i + \delta\tau_n(t)
\]

where \(\tau_i \) is the mean value of multipath time delay, and \(\delta\tau_n(t) \) is the time delay variation for the \(n \)th path measured from that mean value. We can then express (5) as

\[
h(\tau, t) = \sum_{n=1}^{N(t)} \alpha_n(t) e^{j((\omega_{D_1}(t) + \omega_{D_2}(t))(t-\tau_i)+2\pi f_c\tau_i+\phi_n)} \delta(\tau - \tau_i - \delta\tau_n(t)).
\]

In (6), \(\phi_n = (2\pi f_c + \omega_{D_1}(t) + \omega_{D_2}(t))\delta\tau_n(t) \) is uniformly distributed in \([0, 2\pi]\). The time correlation function is given by

\[
C(\Delta t) = \sigma^2 J_0 \left(\frac{2\pi}{\lambda} v_2 \Delta t \right) J_0 \left(\frac{2\pi}{\lambda} v_2 \Delta t \right)
\]
with t_1 and t_2 referring to the two different time instants, and we have $\Delta t = t_2 - t_1$. The zero-order Bessel function is J_0, λ is the wavelength of the carrier frequency, and σ^2 is the channel variance. The power spectrum of the complex envelope is given by

$$S(f) = \frac{\sigma^2}{\pi^2 f_{D_{1m}}^2} K \left[\frac{1 + \eta}{2\sqrt{\eta}} \sqrt{1 - \left(\frac{f}{(1 + \eta)f_{D_{1m}}} \right)^2} \right]$$

(8)

where $\eta = v_2/v_1$, $f_{D_{1m}}$ is the maximum Doppler shift due to the motion of the transmitter, and $K[.]$ is the complete elliptic integral of the first kind. For $\eta = 0$ (i.e., $v_2 = 0$), the power spectrum and time correlation functions reduce back to Jakes’ model.

Our aggregate channel model takes into account both small-scale fading and path loss. Path loss is proportional to d^α, where α is the path-loss coefficient and d is the propagation distance. The path loss associated with the distance d from the eNodeB to the UE is modeled as [19]

$$\Omega(d) = 10^{128.1-36.7 \log_{10} d}/10.$$

(9)

Let d_{sd} denote the distance from source S to destination D ($S \rightarrow D$), with d_{sr_i} and d_{rd}, respectively, denoting the distances ($S \rightarrow R_i$) and ($R_i \rightarrow D$), $i = 1, 2, ..., M$. θ_i is the angle between lines $S \rightarrow R_i$ and $R_i \rightarrow D$. The relative geometrical gains are defined as $G_{sr_i} = (d_{sd}/d_{sr_i})^{\alpha}$ and $G_{rd} = (d_{sd}/d_{rd})^{\alpha}$ and can be further defined using the law of cosines as $G_{sr_i} = G_{rd} = 2G_{sr_i}G_{rd} \cos \theta_i = 1$.

As for short-term fading, it should be noted that relaying vehicles R and destination UE have low elevation antennas and are located within a highly scattering urban area. This requires considering the local scattering around transmitters and receivers. The time correlation function is given by

$$C(\Delta t) = \sigma^2 J_0 \left(\frac{2\pi}{\lambda} v_r \Delta t \right) J_0 \left(\frac{2\pi}{\lambda} v_r \Delta t \right)$$

(10)

where v_r and v_e are the velocities of the two communicating terminals. We have a stationary eNodeB antenna (i.e., $v_e = 0$). Assuming a single Rayleigh distribution with a single Doppler shift, the power spectrum and time correlation mathematical functions reduce to having the autocorrelation function and the power spectrum of the complex envelope. These are, respectively, given by $C(\tau) = \sigma^2 J_0 (2\pi v_r \tau / \lambda)$ and $S(f) = \sigma^2 (\pi f_{D_{1m}}^2 \sqrt{1 - (f/f_{D_{1m}})^2})^{-1}$, with v_r being the maximum velocity of relaying vehicles. In addition to time-selectivity results from the Doppler shifts, the channel is subject to frequency selectivity quantified through delay spread τ_d. The channel satisfies the condition $2f_d\tau_d < 1$ [20]. Note that in the vehicular channel, there are several instantaneous velocities due to the acceleration/decelerations. The earlier defined maximum Doppler shift $f_{D_{1m}}$ has been therefore calculated based on the maximum velocities experienced.

The block diagram of the proposed cooperative scheme is shown in Fig. 2. The input data blocks $s(i)$ (generated from an M-ary quadratic-amplitude modulation constellation) of length

![Block diagram of the proposed cooperative scheme](image)

N_t are divided into shorter subblocks of length N_s ($N_s \leq N_t$). Let each of these subblocks be denoted by $s(n)$, which are the input to a linear precoder Θ of size $N_s \times N_t$. We have $N_s = PZ$ and $N_t = (P + Q)(Z + L)$. The number of the resolvable multipath components is given by $L = [\tau_d/T_s]$, and the number of Doppler shifts experienced over the data block is given by $Q = [N_sT_d\tau_d]$; we have T_s as the symbol duration. The time-sampled orthogonal frequency-division multiplexing signal is converted into the frequency domain by implementing a discrete Fourier transform (DFT). The DFT renders a discrete finite sequence of complex coefficients. We choose the number of coefficients equal to $Q + 1$, and the signal is given by

$$[s(n)]_q = s(q)e^{-jqw_q}, \quad q = 0, 1, \ldots, Q$$

(11)

where $w_q = 2\pi(q - Q/2)/N_t$ is the finite Fourier bases that capture the time variation. From (11), the basis expansion model can be used to represent a discrete-time baseband equivalent channel for the vehicular doubly selective channel under consideration and is given by

$$h_B(\ell; l) = \sum_{q=0}^{Q} h_q(n;l)e^{j2\pi w_q\ell}, \quad \ell \in [0, L]$$

(12)

where $h_q(n;l)$ is zero-mean complex Gaussian. Here, ℓ denotes the serial index for the input data symbols. The block index is given by $n = [\ell/N_t]$. For the cooperative scheme under
consideration, define $\mathbf{H}_{sd,q}^{(0)}$, $\mathbf{H}_{sr,q}^{(0)}$, and $\mathbf{H}_{rd,q}^{(0)}$ as the lower triangular Toeplitz channel matrices with entries given by (12). Let L_{sd}, L_{sr}, and L_{rd} denote the channel multipath lengths for the $S \rightarrow D$, $S \rightarrow R$, and $R \rightarrow D$ links, respectively. Further, let Q_{sd}, Q_{sr}, and Q_{rd} denote the number of resolvable Doppler components for corresponding links.

In the broadcasting phase, the received signals at the relay can be expressed in a matrix form as

$$y_{sr}(n) = \sqrt{G_{sr}E_s} \sum_{q=0}^{Q} \mathbf{D}(w_q)\mathbf{H}_{sr,q}^{(0)}(n)\mathbf{u}(n) + \mathbf{n}_{sr}(n) \quad (13)$$

where $\mathbf{u}(n) = \Theta S(n)$ is the transmitted data block, $Q = \max(Q_{sd}, Q_{sr}, Q_{rd})$, and E_s is the modulated symbol energy. We have $\mathbf{D}(w_q) := \text{diag}[1, \ldots, \exp(jw_q(N_t-1))]$, and $\mathbf{n}_{sr}(n)$ is the $S \rightarrow R$ additive white Gaussian noise (AWGN) vector with entries of zero mean and $N_0/2$ variance. Using the commutativity of products of Toeplitz matrices with vectors, we can replace $\mathbf{H}_{sr,q}^{(0)}(n)\mathbf{u}(n)$ with $\mathbf{U}(n)\mathbf{h}_{sr,q}(n)$ and rewrite (13) as

$$y_{sr}(n) = \sqrt{G_{sr}E_s} \sum_{q=0}^{Q} \mathbf{D}(w_q)\mathbf{U}(n)\mathbf{h}_{sr,q}(n) + \mathbf{n}_{sr}(n). \quad (14)$$

Defining the augmented matrices

$$\mathbf{h}_{sr}(n) = [h_{sr,0}(n) \cdots h_{sr,Q}(n)]^T$$
$$\Phi(n) = [\mathbf{D}(w_0)\mathbf{U}(n) \cdots \mathbf{D}(w_Q)\mathbf{U}(n)]$$

we have

$$y_{sr}(n) = \sqrt{G_{sr}E_s}\Phi(n)\mathbf{h}_{sr}(n) + \mathbf{n}_{sr}(n). \quad (15)$$

Similarly, the received signal at the destination during the broadcasting phase is given by

$$y_{sd}(n) = \sqrt{E_s}\Phi(n)\mathbf{h}_{sd}(n) + \mathbf{n}_{sd}(n) \quad (16)$$

where $\mathbf{n}_{sd}(n)$ is the associated $S \rightarrow D$ AWGN vector with entries of zero mean and $N_0/2$ variance. During the relaying phase, the relay-received signals are fed to the maximum-likelihood (ML) detector given by

$$\arg\min_{\hat{\mathbf{u}}} \left\{ \left\| y_{sr}(n) - \sqrt{G_{sr}E_s} \sum_{q=0}^{Q} \mathbf{D}(w_q)\mathbf{H}_{sr,q}^{(0)}(n)\Theta S \right\|^2 \right\} \quad (17)$$

with $\hat{\mathbf{u}}$ as all the possible signal block combinations. We implement “ideal DF” at the relay [21], and the relay then forwards a fresh decoded copy of the received precoded signal, i.e., $\hat{\mathbf{u}}(n)$. The received signal during the relaying phase at the destination is then

$$y_{rd}(n) = \sqrt{G_{rd}E_s}\Phi(n)\mathbf{h}_{rd}(n) + \mathbf{n}_{rd}(n) \quad (18)$$

where $\mathbf{n}_{rd}(n)$ is the associated $R \rightarrow D$ AWGN vector with entries of zero mean and $N_0/2$ variance. $\Phi(n) = \mathbf{D}(w_0)\mathbf{U}(n) \cdots \mathbf{D}(w_Q)\mathbf{U}(n)$.

ML detection is then performed at the destination with the following metric:

$$\arg\min_{\hat{s}} \left\{ \left\| y_{sd}(n) - \sqrt{E_s} \sum_{q=0}^{Q} \mathbf{D}(w_q)\mathbf{H}_{sd,q}^{(0)}(n)\Theta S \right\|^2 + \left\| y_{rd}(n) - \sqrt{G_{rd}E_s} \sum_{q=0}^{Q} \mathbf{D}(w_q)\mathbf{H}_{rd,q}^{(0)}(n)\hat{\mathbf{u}} \right\|^2 \right\} \quad (19)$$

with $\hat{\mathbf{u}}$ as all the possible signal block combinations for the relayed signal. Please note that the orthogonal receive diversity uses the maximal ratio combiner protocol, which is equivalent to the ML detection metric [22], [23].

The aforementioned signal model developed for single relay can be easily extended for a multirelay scenario with relay selection. Let $\gamma_{sd}(n)$, $\gamma_{sr}(n)$, and $\gamma_{rd}(n)$ denote the average end-to-end SNRs per block for the $S \rightarrow D$, $S \rightarrow R_i$, and $R_i \rightarrow D$ links, respectively. As shown in Fig. 3, the best relay will be chosen based on

$$r_{sel} = \arg\max_{r_i} \{ \min(\gamma_{sr,1}, \gamma_{r_i,d}) \} \quad (21)$$

with r_{sel} as the selected relaying vehicle. We have (21) as a well-known “bound” to the SNR best relay selection method [24], [25]. It was proved, i.e., in [27], that the performance metrics (i.e., diversity gains, bit error rate (BER), PEP, throughput, capacity, etc.) for the cooperative transmission are bounded by the minimum SNR of the $S \rightarrow R$ and $R \rightarrow D$ links, and then,
the selection is done by selecting the maximum of the minimal SNR of the cooperating vehicles’ $S \rightarrow R$ and $R \rightarrow D$ links. The received signal matrix has a similar form as in (19).

III. PAIRWISE ERROR PROBABILITY DERIVATION AND DIVERSITY GAIN ANALYSIS

Here, we investigate the achievable diversity gain of the precoded cooperative communication using the best relaying vehicle. We assume perfect channel state information (CSI) at the relay and the destination. For the orthogonal cooperative protocol with DF relaying, after removing the block index n for mathematical convenience, the PEP at the destination node is given by [21]

$$P_{\text{Pe},m} \left(S \rightarrow \hat{S} \middle| h_{sd}, h_{sr,r}, h_{rd} \right) \leq P_{\text{Coop},m} \left(S \rightarrow \hat{S} \middle| h_{sd}, h_{sr} \right)$$

$$+ P_{sr} \left(S \rightarrow \hat{S} \middle| h_{sr} \right) P_{sd} \left(S \rightarrow \hat{S} \middle| h_{sd} \right)$$

(22)

with \hat{S} representing the erroneously decoded data matrix instead of the originally transmitted S. $P_{\text{Pe},m}(S \rightarrow \hat{S})$ is the end-to-end PEP, $P_{\text{Pe},m}(S \rightarrow \hat{S})$ is the PEP results from the $S \rightarrow R_i$ link, $P_{sd}(S \rightarrow \hat{S})$ is the PEP results from the $R \rightarrow D$ link, and $P_{\text{Coop},m}(S \rightarrow \hat{S})$ is the PEP results from the cooperative link (i.e., $S \rightarrow R_i$ and $R_i \rightarrow D$, in the case that the relay detects the signal correctly but the signal resulting from the cooperative link is detected wrong). The conditional PEP for each individual term in (22) is given by [26]

$$P(S \rightarrow \hat{S}|h) = Q \left(\frac{1}{2N_0} d^2(S, \hat{S}|h) \right).$$

(23)

Using the lower bounds recently proposed in [28], (23) can be tightly lower bounded by

$$P(S \rightarrow \hat{S}|h) \approx \sum_{m=1}^{3} \varepsilon_m e^{-\frac{\rho_m}{\varepsilon_m} d^2(S, \hat{S}|h)}$$

(24)

where $\varepsilon_1 = 2\varepsilon_2 = 12$, $\rho_1 = 12(\sqrt{3} - 1)/\pi$, $\rho_2 = 4(3 - \sqrt{3})/\pi$, and $\rho_3 = 2\sqrt{3}\pi$. The Euclidean distance conditioned on the fading channel coefficients is $d^2(S \rightarrow \hat{S}|h) = h^H(S - \hat{S}) h$. Starting with $P_{\text{Coop},m}(S \rightarrow \hat{S}|h)$, (24) can be rewritten as

$$P_{\text{Coop},m}(S \rightarrow \hat{S}|h) \approx \sum_{m=1}^{3} \varepsilon_m e^{-\frac{\rho_m}{\varepsilon_m} d^2(S, \hat{S}|h)}$$

(25)

where $\chi = (\Phi - \hat{\Phi})^H(\Phi - \hat{\Phi})$. Note that the channel autocorrelation matrix is given by $C_{h,sd} := E[h_{sd} h_{sd}^H]$, and the channel rank is $r_a := \text{rank}(C_{h,sd}) \leq (Q_{sd} + 1)(L_{sd} + 1)$. For the $S \rightarrow D$ link, we have $Q_{sd} = 0$ and $r_a \leq (L_{sd} + 1)$. Using the eigenvalues decomposition of the autocorrelation matrix, we have $C_{h,sd} = V_{sd} D_{sd} V_{sd}^H$, where $D_{sd} := \text{diag}([\sigma_1^2, \sigma_2^2, \ldots, \sigma_{r_a-1}^2])$ and $V_{sd} V_{sd}^H = 1$. Let the normalized channel vector be denoted by h_{sd} of size $r_a \times 1$, whose entries are independent and identically distributed (i.i.d.) Gaussian random variables with zero mean and unit variance. We can replace h_{sd} with $V_{sd} D_{sd}^{1/2} h_{sd}$ since both will have an identical distribution; thus, the PEP will remain statistically invariant. Further define $A_{sd} := (V_{sd} D_{sd}^{1/2} h_{sd})^H V_{sd} D_{sd}^{1/2}$, where A_{sd} is Hermitian (i.e., $A_{sd} = A_{sd}^*$), thus, there exist a unitary matrix V_{sd} and a real nonnegative definite matrix D_{sd} such that $V_{sd} A_{sd} V_{sd}^H := D_{sd}$. The eigenvector of A_{sd} is $D_{sd} := \text{diag}([\lambda_1, \lambda_2, \ldots, \lambda_{r_a-1}])$. Since V_{sd} is unitary, the vector $h_{sd} = V_{sd} h_{sd}$ will have a correlation matrix identical to h_{sd}, namely, we have $C := E[h_{sd} h_{sd}^H] = E[V_{sd} h_{sd} V_{sd}^H h_{sd}^H]$. From (25), we have

$$P_{\text{Coop},m}(S \rightarrow \hat{S}|h) \approx \sum_{m=1}^{3} \varepsilon_m e^{-\frac{\rho_m}{\varepsilon_m} d^2(S, \hat{S}|h)}.$$

(26)

Following similar steps, we obtain $P_{sd}(S \rightarrow \hat{S}|h_{sd})$ and $P_{sr}(S \rightarrow \hat{S}|h_{sr})$, and substituting in (22), we have

$$P_{\text{Pe},m} \left(S \rightarrow \hat{S} \middle| h_{sd}, h_{sr}, h_{rd} \right) \leq \sum_{m=1}^{3} \varepsilon_m e^{-\frac{\gamma_{sd} + \gamma_{sr} + \gamma_{rd}}{\varepsilon_m} d^2(S, \hat{S}|h)}$$

(27)

where $\gamma_{sd} = h_{sd}^H x h_{sd} = \sum_{k=0}^{r_a-1} \lambda_k |h_{sd}^H|^2$, $\gamma_{sr} = g_{sr} h_{sr}^H x h_{sr}$, and $\gamma_{rd} = g_{rd} h_{rd}^H x h_{rd}$. Define $\gamma_{m} = \min(\gamma_{sd}, \gamma_{sr}, \gamma_{rd})$ and $\gamma_{m}' = \max(\gamma_{sd}, \gamma_{sr}, \gamma_{rd})$. Note that $\gamma_{m}' \leq (\gamma_{m}' - \gamma_{m}) \leq 0$. Based on the analysis of the single relay scenario, by selecting a relay that is close to the destination [27], $g_{sr} \ll g_{rd}$, and $\gamma_{m}' \ll \gamma_{m}'$. We can rewrite (27) as

$$P_{\text{Pe},m} \left(S \rightarrow \hat{S} \middle| \gamma_{sd}, \gamma_{sr}, \gamma_{rd} \right) \leq \sum_{m=1}^{3} \varepsilon_m e^{-\frac{\rho_m}{\varepsilon_m} d^2(S, \hat{S}|h)}$$

(28)

where $\gamma_{sd}' = \gamma_{sd} + \gamma_{sr} + \gamma_{rd}$ is the SNR results from the $S \rightarrow D$ link. $\gamma_{m}' = \max(\gamma_{sd}, \gamma_{sr}, \gamma_{rd})$, and $\gamma_{m}' = \min(\gamma_{sd}, \gamma_{sr}, \gamma_{rd})$. Define $\gamma_{m}' = \gamma_{sd}' + \gamma_{m}'$ as the total end-to-end SNR. The cdf of γ_{m}' is given by [29]

$$F_{\gamma_{m}'}(x) = 1 - P_{sr} \left(S \rightarrow \hat{S} \middle| \gamma_{sr} > x \right) \times P_{rd} \left(S \rightarrow \hat{S} \middle| \gamma_{rd} > x \right).$$

(29)

In (29), γ_{sr} and γ_{rd} are a summation of weighted independent exponential distributed random variables and follow the hypoexponential distribution, which is also known as the generalized Erlang distribution, and will have the pdf’s given in [30] and [31]. The pdf of γ_{m}' can then be calculated and results in the form

$$f_{\gamma_{m}'}(x) = \sum_{j_1=0}^{r_{sr}-1} \sum_{j_2=0}^{r_{rd}-1} \left(\alpha_{j_1,j_2} + \kappa_{j_1,j_2} \right) e^{-\left(\alpha_{j_1,j_2} + \kappa_{j_1,j_2} \right) x}$$

(30)
where
\[
\mathcal{C}_{i,j_1,j_2} = \prod_{k=0}^{r_{j_2}d-1} \frac{(\gamma_{i,k} - \alpha_{i,j_1})}{(\gamma_{i,k} - \kappa_{i,j_2})} \prod_{k=0}^{r_{j_1}d-1} (\kappa_{i,k} - \lambda_{k}) \times \prod_{k=0}^{r_{j_2}d-1} \frac{\lambda_{k}}{(\lambda_{k} - \lambda_{p_7})}.
\] (31)

The average SNR for the relaying link \(S \rightarrow R_i \rightarrow D \) is given by \(\bar{\gamma}_i = \mathbb{E}[\gamma_i] \). Recalling the definition of \(\gamma_{th} = \max(\gamma_i) \), we have
\[
F_{\gamma_i}(x) = P\left(\max_{i \in R}(\gamma_i) < x \right) = \prod_{i=1}^{R} P(\gamma_i < x) \quad (32)
\]
where \(P(\gamma_i < x) \) is given by
\[
P(\gamma_i < x) = \int_{0}^{x} f_{\gamma_i}(z) dz = \frac{1}{\gamma_i} \prod_{j_1=0}^{r_{j_1}d-1} \sum_{j_2=0}^{r_{j_2}d-1} \left(\mathcal{C}_{i,j_1,j_2} \right) e^{-\left(\alpha_{i,j_1} + \kappa_{i,j_2}\right)x}. \] (33)

Noting \(\sum \sum \mathcal{C}_{i,j_1,j_2} = 1 \) [31], from (32) and (33), we obtain
\[
F_{\gamma_i}(x) = \prod_{i=1}^{R} \left(\frac{1}{\gamma_i} - \frac{1}{\gamma_i} \prod_{j_1=0}^{r_{j_1}d-1} \sum_{j_2=0}^{r_{j_2}d-1} \left(\mathcal{C}_{i,j_1,j_2} \right) e^{-\left(\alpha_{i,j_1} + \kappa_{i,j_2}\right)x} \right). \] (34)

In the following, we consider two cases: 1) i.i.d. channels and 2) independent and nonidentically distributed (i.n.i.d.) channels. For the i.i.d. case, we derive the unconditional PEP by averaging (28) and using the binomial theorem [32] along with some mathematical manipulations; note that the relay index \(i \) has been removed for the sake of presentation, and the pdf for the end-to-end SNR is \(f_{\gamma_i}(x) = f_{\gamma_{out}}(x) \). The resulting PEP is given by
\[
P_{i}(S \rightarrow \hat{S}) \leq 3 \sum_{m=1}^{3} \varepsilon_{m} A \sum_{r_{sd}=0}^{r_{sd}-1} \sum_{p_{rd}=0}^{r_{rd}-1} \left(B_{j_3} \sum_{p_{sd}=0}^{r_{sd}-1} \sum_{p_{rd}=0}^{r_{rd}-1} \mathcal{G}_{1} \right) \quad (35)
\]
with
\[
A = \frac{M}{(\gamma)^{M}} \sum_{j_1=0}^{r_{j_1}d-1} \sum_{j_2=0}^{r_{j_2}d-1} (\alpha_{j_1} + \kappa_{j_2}),
\]
\[
B_{j_3} = \left(M - 1 \right) \left(-1 \right)^{j_3} \prod_{p_{sd}=0}^{r_{sd}-1} \prod_{p_{rd}=0}^{r_{rd}-1} c_{p_3,p_4}. \] (36)

We have \(D_{j_3,p_5,p_6,p_7} \) and \(\mathcal{G}_{1} \), as defined in following equations:
\[
D_{j_3,p_5,p_6,p_7} = \frac{1}{\left(1 + \gamma (\alpha_{p_5} + \kappa_{p_6}) - \gamma j_3 \sum_{p_{sd}=0}^{r_{sd}-1} \sum_{p_{rd}=0}^{r_{rd}-1} (\alpha_{p_4} + \kappa_{p_7}) \right)}
\]
\[
\mathcal{G}_{1} = D_{j_3,p_5,p_6,p_7} \times \left(\frac{4}{1 + 4 (\alpha_{p_5} + \kappa_{p_6}) + 4 j_3 \sum_{p_{sd}=0}^{r_{sd}-1} \sum_{p_{rd}=0}^{r_{rd}-1} (\alpha_{p_4} + \kappa_{p_7}) - \frac{4 \rho_{m} \gamma}{4 + \rho_{m} \lambda_{p_7}} \right). \] (38)

Likewise, for the i.n.i.d. case, we have \(P_{ni}(S \rightarrow \hat{S}) \), as shown in the following equation:
\[
P_{ni}(S \rightarrow \hat{S}) \leq \sum_{k=1}^{3} \sum_{j_1=0}^{r_{j_1}d-1} \sum_{j_2=0}^{r_{j_2}d-1} \left(\frac{1}{\gamma_{j_1}} \sum_{j_2=0}^{r_{j_2}d-1} \sum_{p_{sd}=0}^{r_{sd}-1} \sum_{p_{rd}=0}^{r_{rd}-1} A_{i,j_1,j_2} \right) \quad (40)
\]
where
\[
A_{i,j_1,j_2,j_3} = \frac{4 \rho_{m} \gamma}{4 + \lambda_{j_3} \rho_{m} \gamma} - 1 + 4 (\alpha_{p_{i,j_1} + \kappa_{p_{j_2}}}) \]
\[
T_{p_{i,j_1,j_2}} = \frac{\rho_{m} \gamma (\alpha_{p_{i,j_1} + \kappa_{p_{j_2}}})}{\lambda_{j_3} \rho_{m} \gamma (\alpha_{p_{i,j_1} + \kappa_{p_{j_2}}}) - 1}. \]

From (35) and (40), assuming sufficiently high SNR, we find that the asymptotic diversity gain \(D_{gain,M} \) is given by
\[
D_{gain,M} = r_{sd} + M \left(\min(r_{sr}, r_{rd}) \right). \quad (41)
\]

The diversity gain is a function of the number of relaying vehicles involved in the best relay selection, as well as the channel order of all the underlying links.

IV. MAXIMUM DISTANCE FOR MULTIHOP COMMUNICATION

Wireless transmission is constrained by a regulated transmission power, which limits the coverage area. We show that using cooperative transmission can improve the quality of received signal, in addition to extending the coverage area. The outage probability \(P_{out} \) is the probability that the error probability exceeds a specified value \(\gamma_{th} \). Mathematically speaking,
\[
P_{out} = \int_{\gamma_{th}}^{\infty} f_{\gamma}(\gamma) d\gamma \] [33], which is the cdf of \(\gamma_i \), namely, \(F_{\gamma}(\gamma_{th}) \). By defining our unnormalized aggregate channel model that takes into account both path loss and small-scale fading, the relative geometrical gains are redefined as \(G_{sd} = d_{sd}^{-\alpha} \), \(G_{sr} = d_{sr}^{-\alpha} \), and \(G_{rd} = d_{rd}^{-\alpha} \). These can be related to one another through the cosine theorem \(G_{sr}^{-2/\alpha} + G_{rd}^{-2/\alpha} - 2G_{sr}^{-1/\alpha} G_{rd}^{-1/\alpha} \cos \theta = G_{sd}^{-2/\alpha} \) and assuming a normalized
gain for a 1-m distance [34]. Hence,

\[\gamma_{sd} = G_{sd} h_{sd}^H \chi_{sd} = G_{sd} \sum_{p=0}^{R_{sd}} \lambda_p |\beta_p|^2. \]

From (40) and the definition of cdf, the outage probability is given by

\[P_{out,co} = \sum_{m=1}^{3} \varepsilon \sum_{k=1}^{M} \sum_{p_1=1}^{M-k+1} \sum_{p_2=p_1+1}^{M-k+2} \cdots \sum_{p_k=p_{k-1}+1}^{M} \frac{(-1)^{k+1}}{\rho \gamma} \prod_{i=1}^{k} \Psi_i \]

where

\[\Psi_i = \sum_{j_1=0}^{R_{sr,p_1}-1} \sum_{j_2=0}^{R_{sr,p_2}-1} T_{i,j_1,j_2} \left(\rho \gamma \left(1 - e^{-\left(\frac{\rho \gamma}{\mu} \right)^\gamma} \right) \right) \]

From (42), \(d_{sd} \) can be shown as an effective parameter on the resulting outage probability of our proposed scheme.

V. Simulation Results and Discussion

Here, we present numerical results to demonstrate the error rate and outage probability performance. LTE-A targets peak data rates up to 1 Gb/s with up to 100 MHz supported spectrum bandwidth and by making use of high-order multiple antenna transmissions, we also plot results for these two traditional scenarios. The curves showing direct transmission indicate the traditional noncooperative relaying, whereas the curves for \(M = 3 \) indicate the traditional cooperative transmission for a single stationary relay. Comparing the two traditional scenarios with our best relaying vehicle selection case and using a precoded cooperative transmission to extract the underlying Doppler diversity resulting from the relaying vehicle mobility, we observe that the results conform to those obtained from the derived expression (41), and the full underlying multipath–Doppler–spatial diversity is extracted. In Fig. 6, we investigate the effect of imperfect channel state information (I-CSI) on the BER of cooperative vehicular relaying schemes through Monte Carlo simulation. A single known pilot symbol is periodically inserted in each input block \(s(n) \). In the I-CSI, we need to estimate the direct \(S \rightarrow D \) channel and the indirect \(S \rightarrow R \rightarrow D \) channel. We consider the strategy in [36], which is called cascaded channel estimation,
where the cascaded $S \to R \to D$ channel is estimated at the destination terminal, avoiding the need for channel estimation at the relay terminal. We adopt the pilot symbol assisted modulation technique [37], which relies on the insertion of known pilot symbols in information-bearing data. The known symbols are periodically inserted into the data sequence. Following the well-known minimum mean square estimation (MMSE) technique, a Wiener filter is used to minimize the variance of the estimation error. The corresponding set of the filter coefficients is optimized for minimizing the estimation error variance. The optimum interpolation coefficient matrix of the estimator and the received pilot vector autocorrelation will then be a function of the channel autocorrelation matrix. A sliding window covering a total of 11 pilots from preceding and following blocks is used for channel estimation of the fading coefficient. It is observed that the imperfect channel estimate degrades the performance for the BER performance, resulting in error floors when no relay selection is performed. This observation of the error floor effect is analytically presented in the Appendix.

The main reason is that the asymptotical performance metrics become independent of γ and result in the presence of an error floor. On the other hand, due to extra spatial diversity achieved by our proposed relay selection scheme, we are able to suppress the error floor in the simulated SNR ranges.

Fig. 7 shows the coverage extension gains for the opportunistic cooperative transmission compared with the direct transmission using the outage probabilities in (42), for $\gamma = 10$ dB and $\gamma_{th} = 5$ dB [38]. For the outage probability of 10^{-4}, coverage extension advantages of ≈ 1.1, ≈ 1.6, and ≈ 1.7 km are observed for cooperative transmission with $M = 1$, $M = 2$, and $M = 3$, respectively, compared with traditional direct transmission.

The effect of changing the $S \to R$ and $R \to D$ cooperative angle θ is plotted in Fig. 8. We assume a number of available relays to cooperate in the transmission $M = 3$ and $\theta = (\pi, 3\pi/4, \pi/2, \pi/4)$. The results indicate similar diversity gains with small shifts in the pairwise error curves, indicating tightly closed coding gains (the change in the required SNR to achieve a similar error rate). The optimum transmission angle is at
\(\theta = \pi \), indicating that the eNB/BS, the relaying vehicle, and the designated end-user equipment are in a straight alignment.

The result confirms our analytical derivations and closed-form expression and shows that based on the basis expansion model for the time-variant channels (12), the maximum diversity order of time-selective channels depends on the number of bases. The linearly precoded transmissions maximize the available Doppler diversity order and efficiently implementable transmissions that are designed to enable the maximum achievable multipath–Doppler diversity order, which turned out to be the rank of the underlying channel correlation matrix. In our study, we assume precoder parameters of \(P = 2 \) and \(Z = 2 \). Hence, the input data block \(s(n) \) is of length \(N_\times \times 1 \) (i.e., \(PZ \)), and the output of the precoder \(u(n) \) is of length \(N_t \times 1 \) (i.e., \((P + Q)(Z + L) \)). We then have the precoder output rate equal to \(N_\times /N_t = PZ/((P + Q)(Z + L)) \). It is clear that increasing the precoder output rate can be achieved by increasing \(P \) and/or \(Z \). This comes at the expense of higher system complexity (mainly received signal detection), as the length of transmitted/received blocks is increased. Furthermore, the diversity order is a function of the channel order \((Q + 1)/(L + 1) \).

From the definition of \(P \) and \(Z \), we have \(Q(1 - (Z + L)T_{f_d}) - 1 < P(Z + L)T_{f_d} \leq Q(1 - (Z + L)T_{f_d}) \). Hence, we can choose \(P \) and \(Z \) to satisfy a minimum required \(Q \), as shown in Table I. The diversity order is then a function of the fading channel delay spread, the Doppler shifts (the relative mobility), the symbol duration, and the precoder design (i.e., dimensions). In many communication problems, ML detection reduces to solving an integer least squares problem, i.e., a search for the closest integer lattice point to the given vector, and the \(N_t \)-dimensional vectors will have to span the \(N_t \)-dimensional lattice. Applications involving higher speed vehicles and/or those with large precoder dimensions result in a large search space for ML, rendering ML computationally intractable. In such cases, sphere detection techniques [39] can be used.

VI. Conclusion

We propose an enabling cooperative vehicular relaying transmission scheme to contribute toward the formation of an advanced heterogeneous telecommunication network to provide increased networking capabilities for heavily populated urban areas. Our transmission scheme makes use of vehicles equipped with low elevation antennas and short- and medium-range wireless communication technologies, allowing new functionalities and capabilities. To realize the full potential of the proposed architecture, we conduct an in-depth investigation of performance limits and gains, as well as development of enabling techniques to support such broadband transmission. We demonstrate that using vehicles for cooperative relaying in broadband cellular networks not only potentiates reduced levels of power consumption but also provides higher throughput, increases coverage, lowers operational and capital expenditures, allows for faster roll out, and promises more flexibility. Our proposed scheme can be particularly useful in heavily populated urban areas, where we can take advantage of the potentially large number of relaying vehicles to extract extra spatial diversity and assist in the broadband signal transmission.

Our work involves investigating the performance of the proposed cooperative vehicular relaying system over the LTE-A downlink session, in which the eNodeB point communicates with a UE using cooperating vehicles as relaying terminals, where best relay selection is deployed. For the doubly selective (time- and frequency-selective) vehicular channel under consideration, we employ a precoded cooperative transmission technique to extract the underlying rich multipath–Doppler–spatial diversity. We derive a closed-form expression for the PEP as a benchmark to assess our analysis and future research studies of such an approach, as well the derivation of the outage probability expression. We further conduct Monte Carlo simulations against analytical derivations and present the error rate performance under various mobility scenarios. Analytical and simulation results demonstrate significant performance gains, where notable diversity gains are achieved, as well as a notable reduction in error rates. Additionally, a reduction in the required transmitting powers compared with traditional transmission schemes is observed. The coverage distance gains are analyzed using our outage probability expression, indicating the advantage of our proposed transmission technique over traditional transmissions. The effect of I-CSI is also studied through an asymptotical PEP analysis. We mathematically proved the existence of an error floor on the performance metrics under the I-CSI assumption for such scenarios. Our results show that I-CSI severely degrades the performance for low diversity gain transmission when assuming a single relaying vehicular deployment and results in error floors. However, due to extra spatial diversity extracted when using our transmission technique with multiple relaying vehicles, our scheme shows superior performance in suppressing the error floor for various SNR ranges.

Appendix

Pairwise Error Probability With Imperfect Channel Estimation

Here, we analyze the effect of imperfect channel state information of the PEP expression. We consider the PEP of the cooperative \(S \rightarrow D \) and \(S \rightarrow R \rightarrow D \) (25). Let \(e_{sd} \) and \(e_{srd} = e_{sr}e_{rd} \) denote the imperfect channel information/estimation error vectors for the associated links. Therefore, we can write

\[
\begin{align*}
\hat{h}_{sd} & = \underbrace{[h_{sd}]^{H}}_{h} [\hat{h}_{srd}]^{H} - [h_{sd}]^{H} e_{sd} \quad e_{sd} \\
\hat{h}_{srd} & = \underbrace{[h_{srd}]^{H}}_{h} - [h_{srd}]^{H} e_{srd} \quad e_{srd}
\end{align*}
\]

where \(\hat{h}_{srd} = \hat{h}_{sr} \hat{h}_{rd} \) are the “estimated” channel vectors for the direct \(S \rightarrow D \) channel and the indirect \(S \rightarrow
R → D channel, respectively. In the case of imperfect channel estimation, the output of the ML detector at the destination terminal can be expressed as

\[Y_C = h_Q^H Y = \sqrt{E_s} h_Q^H h_Q S + h_Q^H n \]

(A.2)

where \(h_Q = \sum_{q=0}^{Q} \text{diag} [D(w_q)] \text{diag} [H_{sd,q}^{(0)}, H_{sr,q}^{(0)}], \) and \(h_Q \) is its estimate related to each other through \(h_Q = \hat{h}_Q + e_Q. \) The estimate can be further rewritten as

\[
\hat{H}_Q^H = \text{diag} \left[\left(\sum_{q=0}^{Q} H_{sd,q}^{(0)} \right)^H, \left(\sum_{q=0}^{Q} H_{sr,q}^{(0)} \right)^H \right]
\times \text{diag} \left[(D(w_q))^H, (D(w_q))^H \right]
\]

(A.3)

where \([H_{sd,q}^{(0)}(n)]_{k,m} = h_{sd,q}(n; k-m) \) and \([H_{sr,q}^{(0)}(n)]_{k,m} = h_{sr}(n,h_{sd,q}(n-k,m)), k,m \in [0,N_t-1]. \) Since the Doppler spread matrix is calculated with respect to a known velocity, estimation is needed only over the channel matrix. Noting \(e_Q = \sum_{q=0}^{Q} \text{diag} [D(w_q)], \) \(D(w_q)] \times \text{diag} [e_{sd,q}, e_{sr,q}], \) where \(e_{sd,q} \) and \(e_{sr,q} \) are the estimation errors for channel matrices \(H_{sd,q}^{(0)} \) and \(H_{sr,q}^{(0)} \) respectively, we have

\[Y_C = \sqrt{E_s} h_Q^H h_Q S + h_Q^H (\sqrt{E_s} e_Q + n). \]

(A.4)

The second term includes the effect of both noise and imperfect estimation and is zero-mean complex Gaussian with the variance of \(E_s \sigma_{e_Q}^2 + N_0. \) The effective SNR \(\gamma \), including the effect of both noise and imperfect estimation, is then given by

\[
\gamma (\gamma) = \frac{\sigma_{e_Q}^2 + \sigma^2 - \text{E}(h_Q e_Q)}{\gamma \sigma_{e_Q}^2 + 1}
\]

where the estimation error variance vector \(\sigma_{e_Q}^2 \) is [37]

\[\sigma_{e_Q}^2 = \gamma \sigma_{e_Q}^2 - w_c^H R_c^{-1} w_c \]

(A.6)

we have \(w_c \) and \(R_c \) as the MMSE optimum filter coefficients and the channel autocorrelation, respectively [37]. Using the results from [40], we can rewrite (A.6) as

\[
\sigma_{e_Q}^2 = \left(\frac{\sigma_c^2}{E_s^2} \right) \left(\frac{1}{1 + E_s^2 R^{-1}} \right)
\]

(A.7)

where \(R \) is the normalized channel autocorrelation.

Under the assumption of the I-CSI, the conditional PEP can be therefore revised as

\[
P_{\text{Coop}}(S \rightarrow S|h)_{\text{I-CSI}} \approx \frac{3}{\sum_{m=1}^{3}} \sum_{m=1}^{3} \varepsilon_m
\times \exp \left(-h_{sd}^H h_{sd} + G_{r,d} h_{r,d}^H h_{r,d} - \frac{\rho_m \gamma}{\rho_m \gamma_2 + 1} \right) \]

(A.8)

For sufficiently high SNR, i.e., by taking the limit of \(\gamma \to \infty \), we have

\[
\lim_{\gamma \to \infty} P_{\text{Coop}}(S \rightarrow S|h)_{\text{I-CSI}} \approx \frac{3}{\sum_{m=1}^{3}} \sum_{m=1}^{3} \varepsilon_m \exp \left(-h_{sd}^H h_{sd} + G_{r,d} h_{r,d}^H h_{r,d} \right) \]

(A.9)

which becomes independent of \(\gamma \) and indicates the presence of an error floor. As observed in Fig. 6 and the analytical justification presented in the Appendix, the imperfect channel estimate degrades the performance for the error rate performance, resulting in error floors in the performance curves when no relay selection is performed. The error floor results in wasting the transmitted power, whereas the performance will be saturated at a constant level; in other words, it means that even by increasing the transmitted power, the performance will not be improved. The main reason is that the asymptotical performance metrics become independent of the SNR \(\gamma \) and result in the presence of the error floor. On the other hand, due to extra spatial diversity achieved by our proposed relay selection scheme, we are able to suppress the error floor in the simulated SNR ranges by increasing the number of the involved relays and, hence, extracting additional virtual MIMO spatial diversity.

References

