

A P2P Architecture for Mobile Environments 5

FIGURE 2. Join process.

Algorithm 1 Initialize group (Gi).
Input: Ni : Set of nodes in Gi

Output: null
for j ← 1 to |Ni | do

Broadcast(nj .ID)
nj .NC ← 0

end
while setup_duration&&msg_rcvd(nj .ID) do

Add_neighbor(nj .ID)
nj .NC ← nj .NC + 1

end
choose_leader(Gi)

Algorithm 2 choose_leader (Gi).
Input: Ni : Set of nodes in Gi ,
MAX_BW // maximal BW in Gi over all heterogeneous
devices
Output: Li : Supper − peer of Gi

nj .prof ile ← compute_prof ile // profile score (1)
Li ← nj

best_prof ile ← 0
while selection_duration&&msg_rcvd(nj .prof ile) do

if nj .prof ile > best_prof ile then
Li ← nj

best_prof ile ← nj .prof ile

end
end

performance depredation. Therefore, in addition to recovering
the mobile P2P network state from SP failure/disruption, we
introduce the Role Changing Scheme, aiming at enhancing the
overall system reliability.

Algorithm 3 Join(Gi).
Input: nnew : new node joining Gi ,
MAX_BW
Output: null
nnew.prof ile ← compute_prof ile

Broadcast(nnew.ID, “join”, nnew.prof ile)
while wait_duration do

if msg_rcvd(nj .prof ile) > nnew.prof ile then
Li ← nnew

break //i.e. end search

end
end
best_prof ile ← nnew.prof ile

Broadcast(Li, best_prof ile)

Algorithm 4 Rcv_join_REQ(nnew).
Input: nnew : new node joining Gi

Output: msg_response
if msg_rcvd(“join” then

Unicast(nnew, “leader”, Li)

end

Algorithm 5 Leave(Gi).
Input: Li : current SP of Gi

Output: Li : new SP of Gi

Broadcast(“choose_leader”)
Li ← Choose_Leader(Gi)

4.2. SP selection

The efficiency of a P2P network is highly dependent on the
performance of its SPs and their communication. Selecting SPs
in P2P systems is always challenging. A SP must be capable

Section B: Computer and Communications Networks and Systems

The Computer Journal, 2014

 at Q
ueen's U

niversity on June 2, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

6 K. Elgazzar et al.

to improve the overall performance of P2P networks, otherwise
it might become a bottleneck. The goal of our SP selection
protocol is to satisfy the following criteria:

(i) Accessibility—SPs must be accessible with minimal
cost(delay) by all ordinary peers. Peers with multi-
homing capability (i.e. run multiple network interfaces)
must have preferences in SP selection, as they can
employ their different interfaces to communicate with
a wide range of other devices [28].

(ii) Resourcefulness—SPs must possess sufficient
resources to handle the group communications and
resolve queries with reasonable delay.

(iii) Distribution—SPs must be selected so that every node
in the P2P network has at least one reachable SP and
each SP must serve a reasonable number of ordinary
nodes according its current capacity.

(iv) Mobility—peers with low mobility profiles must
be given higher preferences to avoid frequent SP
selections.

(v) Context-awareness—SPs should be capable of detect-
ing their status and re-select new SPs or delegate their
responsibilities to the next best candidate node if they
expect service disruption or experience degradation in
their performance.

4.3. SP profile score

To measure whether a peer nj is a candidate to assume SP
responsibilities in a group Gi , we define the peer profile using
the score function in Equation (1). In this equation, b is the
current battery power level on nj , Emax denotes the maximum
energy level that any peer belongs to Gi might have, m is the
current mobility pattern of nj , Mmax is the maximum mobility
nj can reach, BW is the current available bandwidth of nj ,
BWmax represents the maximum bandwidth across Gi , ut is the
normalized mean uptime of nj , which denotes how stable the
peer is, NC represents the network connectivity, i.e. how many
peers in Gi can reach nj , w1 −w5 are weights that represent the
factor importance, where

∑5
k=1 wk = 1. In this score function,

we reverse the peer mobility, since peers with low mobility
pattern are of higher preferences. The peer profile ranges from
0 to 1. The higher the profile value, the higher the possibility a
peer could be selected as a SP. Each peer in Gi calculates and
shares its profile with other peers. The peer with the highest
profile declares itself the SP serving Gi . RobP2P assumes that
all peers are trustworthy when declaring profile values.

nj · profile = 1

5

(
w1

nj · b

Emax(Gi)
+ w2

Mmax − nj · m

Mmax

+ w3
nj · BW

BWmax(Gi)
+ w4nj · ut + w5

nj · NC

|Ni |
)

(1)

The SP selection procedure is shown in Algorithm 2. When
establishing connectivity in a group, we assume symmetric
communication between all nodes (however, no mandate for
direct 1-1 messaging to hold the diversity constraint). We
assume that BW is aggregated bandwidth over all interfaces of
a node. This gives preferences to nodes with multiple interfaces
in SP selection.

4.4. Role changing scheme

The role changing scheme aims to accommodate the dynamic
context change of mobile P2P networks, while maintaining
the system reliability. A peer initiates the procedure to
call for changing its current role, either promoting or
demoting itself according to its current situation. SPs invoke
the procedure shown in Algorithm 5 when they detect
degradation in their performance with more than 10% of
their original calculated profile. This enables peers with more
capability to assume SP responsibilities. An ordinary peer
may also initiate the procedure if it experiences a significant
improvement in its capability (such as battery life, bandwidth
or connectivity degree). This improvement in capability must
exceed the last reported profile value by the current SP. These
threshold values are chosen to maintain the network stability
and avoid undue overhead that might occur due to false
calls.

4.5. Fail-safe SP election

In a typical scenario, a SP would trigger the Leave procedure to
signal that it could no longer serve as leader of the group. This
would trigger a sequence of events, as previously highlighted,
to elect a new SP. It is unavoidable to consider the case where
a SP would fail to serve as a leader, and not get the chance
to trigger the Leave procedure. This is typical in cases of
intermittent/permanent failures. To be clear, this case does
not include degradation in profile score; that is handled in
Section 4.3.

Capturing a scenario where a SP had abruptly failed is non-
trivial. Since we have emphasized the design of a decentralized
approach to SP selection, there is little information for ordinary
peers to decide if the SP had failed, or lags in response. We
also note that adopting fail-safe schemes almost always incurs
additional control overhead. Thus, we present a fail-safe SP
election algorithm to augment the operation of RobP2P, to be
implemented in applications that require a fine-tuned resilience
measure. The procedures are detailed in Algorithm 6. The idea
is enlisting an ordered list of ordinary peers β that are close
contenders to the profile score of the SP, to keep an eye on it.
If they detect the SP is no longer responsive, and have not been
triggered through a graceful degradation (Sleep) procedure.
These nodes will take over in initiating a fail-safe choose leader
process again.

Section B: Computer and Communications Networks and Systems

The Computer Journal, 2014

 at Q
ueen's U

niversity on June 2, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A P2P Architecture for Mobile Environments 7

Algorithm 6 Fail-safe choose_leader (Gi).
Input: τi : Countdown window for Gi ,
�: % of the score to make cutoff as delegate ∈ [10, 50]
Output: Li : SP of Gi

βi ← φ

nj .prof ile ← compute_prof ile//profile score (1)
Li ← nj //i.e. the ID
Li.prof ile ← nj .prof ile

Broadcast (nj , nj .prof ile)
t imer ← τi

while !t imer&&msg_rcvd(nj .prof ile) do
if self.prof ile > Li.prof ile then

βi ← βi ∪ Li

Li ← self

Li.prof ile ← self.prof ile

end
else if self.prof ile × �+100

100 > Li.prof ile then
βi ← βi ∪ self

end
// I am the SP
if Li == nj then

Broadcast(Li, “leader”)
Wait(τ × 0.01)
if msg_rcvd(“leader”) then

α ← random(0, 1)

Broadcast(nj , “contending”)
while msg_rcvd(“contending”) do

if self.α > Li.α then
// i.e. the other node won
Li ← self

end
end

end
end
if Li == nj then

foreach nj ∈ βi do
Unicast(self.order, |βi |)

end
end

end

Initially, all nodes will compute their profile scores, assign
themselves as temporary SPs and broadcast their computed
utility scores.A timer will be triggered, during which each node
would wait to hear back from all other nodes in Gi . The duration
of this timer is application/scenario sensitive, and is a tunable
parameter that is an input to the leader election Algorithm 7.
For every message received during the wait period, each node
will decide if the received utility score is higher than the current
best (initially its own) score, and accordingly update the current
leader. If not, it will check if the received score is within % of the
top utility score seen so far, and insert that node in order inβ.The
set of supporting ordinary peers β will be populated as nodes

communicate. As the algorithm terminates (due to timeout), it
would have populated β and elected the best SP.

The elected SP would broadcast its selection at the end of
this period. To ensure that multiple SPs are not chosen, in
case for example there was a tie in utility scores, a wait period
(0.10 * initial countdown timer duration) would be granted for
contention requests. That is, if a node believes it was elected as
SP, yet received that announcement from another node, it would
broadcast a contention message with a random value in [0, 1]
to break this tie. The node with the highest random value would
be recorded as the SP between all nodes in Gi . Then, the SP
would unicast to each of its delegates in β a number, indicating
its order in the list.

Algorithm 7 Check-leader(Li).
Input: oi : Order in list of delegates in Gi ,
Oi : Size of list of delegates,
CF: Check_f requency

Output: null

k ← 0
wait_increment = check_f requency × oi

while current_leader = Li do
Wait(wait_increment + Oi × k)

Unicast(Li, “checking_on_U”)
Wait(t imeout)

if !msg_rcvd(“alive”) then
Broadcast(“choose_leader”)

end
k ← k + 1

end

It is important for the delegates assigned by the SP to check
its survival in a consistent and predictable fashion. Each node
in βi will be assigned an interval to check the survival of the SP.
Algorithm 7 details the procedure followed by each node in βi .
The idea is instilling a schedule of survival checks that alternates
between the delegates. Each delegate will wait for its turn
(incremental over all nodes in βi) and unicast a checking-on-U
message to the SP. This message has an empty payload, with a
static type. If the SP responds with the m-alive acknowledgment,
again an empty payload message, then all goes well (as far as
this delegate is concerned at this round). Otherwise, a failure is
detected and all nodes in Gi would receive a request to initiate
the Join process highlighted in Algorithm 6.

Although a lack of response might be attributed to a lag
in response (i.e. the SP did not fail, but slowed down), we
still classify this as failure. That is, the SP initially broadcasts
the Check frequency which is correlated with its Accessibility
metric. That is, if it claims it is highly accessible (hence won the
election) then this should be manifested in the check frequency
tolerated. If it then fails to respond (acknowledge survival)
within the time-window dedicated for checking, then it has
failed in its SP duties.

Section B: Computer and Communications Networks and Systems

The Computer Journal, 2014

 at Q
ueen's U

niversity on June 2, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

8 K. Elgazzar et al.

FIGURE 3. A deterministic FSM of the operational states and transitions of nodes in RobP2P.

Lastly, it is important to note that different nodes will manifest
different roles in the operation of RobP2P. An overview of
these states is presented in a deterministic finite state machine
(FSM) in Fig. 3. In general, a node will typically transition over
different roles at different phases in the operation of RobP2P.
Initially, all nodes in a given region will start the Join process,
after computing their profile score, and initiating a contention
for the designated SP role. After each nodes settles in a given
state depending on its profile score, regular operation mandates
that delegates constantly monitor the survivability of the SP, and
trigger maintenance schemes (re-initiating the Join phase) when
it abruptly fails. Nodes joining the network post the initial Join
process will contend to take on a SP role, or join as an ordinary
peer as depicted in Fig. 3. The saturating/final state for any node
would be its failure, should it not be able to gracefully degrade
in operation.

5. EXPERIMENTAL RESULTS AND DISCUSSIONS

We conducted several experiments to evaluate the performance
of RobP2P, focusing on its distinguishing features. We limit
the scope of our evaluation setup to investigate the following
aspects: (1) the overhead of SP selection, (2) how RobP2P
maintains a stable state while reducing the number of
unnecessary SP selection, which will test the quality of our score
function, (3) how RobP2P handles the churn of mobile networks
(i.e. frequent join and leave of nodes), while maintaining the
system reliability. Toward these objectives, we measure the
overall network traffic versus the mobility of nodes and churn
rate.

We also conducted specific experiments to investigate the
query failure rate and the associated overall generated network
traffic. The failure rate is defined as the number of unsuccessful

TABLE 1. Summary of the experimental parameters.

Parameter Value

Number of peers 200
Communication range 100 m
Topology area 1 km × 1 km
Time to live (TTL) 10(sec)
Experiment time 100 TTL
Node energy Random 100–2500 J
Mobility (m/s) Random 0–2.5

queries to the total number of submitted queries.We compare the
performance of RobP2P with the milestone results presented by
Kim et al. [11], since their approach is superior to the established
MOB scheme [13], which in turn outperforms Greedy and MIS
approaches [29].

The performance evaluation is performed using the network
simulator NS3 [30]. The topology area is set to 1 km × 1 km,
while the communication range of each peer is set to 100 m.
The total number of the peers is 200, in our setup we assume
symmetric communication between all nodes. Each node sends
a hello message every 50 s. The mobility pattern of nodes is
set to the random way point mobility model. Peers move with
a speed between 1 and 2.5 m/s with a pause duration between
0 and 20 s. We have defined five categories of energy levels
from 100 to 2500 J, where each peer starts the simulation with a
random remaining battery life and changes over time. Each peer
has random periods where it is disconnected from the network.
While disconnected, the peer does not receive or transmit any
packets. A random failure pattern is set for each individual
peer. All parameters in the utility function that calculate the
peer profile are assigned equal importance (i.e. w = 0.2).

Section B: Computer and Communications Networks and Systems

The Computer Journal, 2014

 at Q
ueen's U

niversity on June 2, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A P2P Architecture for Mobile Environments 9

FIGURE 4. Query failure versus join/leave rate.

FIGURE 5. Total network traffic versus join/leave rate.

Table 1 summaries the experimental parameters we used in our
simulation.

Figure 4 reveals that the query failure rate is much lower in
our system, which reflects the system reliability and stability.
This improvement is attributed to our SP utility function and
the role changing scheme, both of which contribute the most to
our system stability through efficient selection of SPs. However,
this stability comes at the expense of generating limited extra
traffic, as Fig. 5 shows; where newly joining peers exchange
messages to check whether they are more capable to assume
SP functionalities or not. Although this little extra traffic is
negligible compared with other approaches, the performance
benefits to the system reliability are remarkable. We also note
that RobP2P outperforms [11] due to the survivability of peer-
exchanged data. Evidently, its effect is manifested when the
system experiences low join/leave rates. However, as this rate
increases the overhead imposed by RobP2P outweighs the
advantage of survivability in exchanged data.

Figure 6 shows that RobP2P is less-prone to query failure in
mobile environments, where most of the nodes are always on the
move. The result proves that our SP selection is efficient, giving
preference to peers with lower a mobility profile and higher
connectivity factor. Taking into account the ability of SPs to

FIGURE 6. Query failure versus node mobility.

FIGURE 7. Total network traffic versus node mobility.

communicate over multiple interfaces significantly reduces the
query failure rate, since SPs and ordinary peers are reached
through different wireless technologies. Figure 7 shows that
RobP2P accommodates peer mobility while maintaining the
network state, with lower cost than other architectures.

Figure 8 illustrates the impact of changing the TTL on the
query failure rate. The longer the TTL is the more query failures
occur. However, RobP2P outperforms Kim’s approach [11].
There are two reasons that explain this observation. First, our
SP selection function takes into account the various factors that
accommodate the inherent dynamics of P2P mobile networks,
which by itself makes the SP selection efficient. Secondly,
the role changing scheme, that we introduced to handle the
network churn and the dynamic change in the node context,
enables peers to request changing their role regardless of the
TTL. This reduces the number of unnecessary invocations to
the SP selection algorithm, while maintaining an overall high
reliability. On the other hand, Fig. 9 shows that a significant
reduction of the network maintenance traffic occurs as a natural
result of extending theTTL period. However, RobP2P is capable
of maintaining a stable network state, while others fail when
the TTL period becomes longer. The results depicted in Fig. 9

Section B: Computer and Communications Networks and Systems

The Computer Journal, 2014

 at Q
ueen's U

niversity on June 2, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

10 K. Elgazzar et al.

FIGURE 8. Query failure versus varying TTL periods.

FIGURE 9. Total network traffic versus TTL periods.

demonstrate the edge of RobP2P in reducing the frequency of
updates, since it depends on an aggregation of profiling factors
that result in a more stable topology. However, at short TTL
rates the overhead of accounting for granular profiling renders
the solution by [11] more efficient under this case.

We carried out several experiments to quantify the impact of
the fail-safe leader election mechanism, detailed inAlgorithms 6
and 7, on the resilience of RobP2P when handling high
failure rates. Our primary concern is the impact of failures of
current leaders in carrying their task, under different failure
domains. For this purpose, we run simulations to evaluate
the performance of the fail-safe mechanism under varying
join/leave rates. Figure 10 demonstrates the resilience of the
fail-safe mechanism in handling frequent changes in leader
selection, due to intermittent or permanent failures of peers.
Evidently, increasing join/leave rates impact the time taken to
choose a new leader, however, the robustness of the fail-safe
scheme is demonstrated in its ability to elect a leader quicker,
especially due to the frequent timer operation and the interplay
of leader selection and checking carried out when new peers
join a neighborhood.

FIGURE 10. Contrasting the impact of peers joining/leaving
network, on the time spent without a leader.

FIGURE 11. Impact of leader mobility on maintaining a leader.

FIGURE 12. Varying theTTL index for peers and its impact on leader-
void under both leader election schemes.

An important factor to consider, especially as we advocate
for mobility in peers, is the resilience of RobP2P with the fail-
safe scheme in handling peer mobility, and maintaining leader

Section B: Computer and Communications Networks and Systems

The Computer Journal, 2014

 at Q
ueen's U

niversity on June 2, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://comjnl.oxfordjournals.org/

A P2P Architecture for Mobile Environments 11

selection under varying mobility rates. Figure 11 depicts the
evaluation of varying mobility rates (in meters per second) of
leader nodes in light of original position when they were elected
as leaders. While there is an increasing rate of leader ‘void’ time
created when leaders move (and hence loose connectivity with
stationary peers or others moving in a different direction), the
fail-safe mechanism shows better mobility handling. In fact,
this improvement increases in multiple folds as the mobility of
leaders increases, and hence offers a more resilient solution to
high-mobility scenarios.

Figure 12 shows the enhancements that the fail-safe
mechanism brings with varying TTL. While evidently the trend
of improvement is seemingly insignificant, we attribute the
similarity in performance to the beaconing and overhead in
communication that results from extending the TTL. In general,
we note that there is significant hindrance in handling mobility
and failures while attempting to maintain a connected clique for
longer times.

6. CONCLUSION

This paper presents RobP2P, a robust mobile P2P architecture
that enables efficient resource sharing. In a domain where
frequent topology changes and high-sensitivity to mobility
dictate resilient schemes, we present RobP2P as a dynamic
architecture that caters for the heterogeneity and volatility of
mobile resources. At its core, it introduces an aggregate score
function that determines whether a peer is a candidate to assume
SP responsibility. This score function takes into account both
the mobile node constraints and mobile network dynamicity.
RobP2P also introduces a scheme that enables peers to call for
changing their role based on a significant change in their current
profile. This scheme renders the mobile P2P network topology,
constructed with RobP2P, more stable. It also significantly
reduces the network maintenance overhead while maintaining
a high level of reliability. Simulation results show that RobP2P
outperforms other P2P architectures. In addition, we introduced
the fail-safe scheme that improves the resilience of RobP2P and
makes it more capable of handling intermittent and permanent
failures, leaves and joins in the network. While it introduces
more overhead in checking for existence of leader and stringent
timers schemes, it compensates with improved resilience.

In future, we plan to utilize Principal Component Analysis
techniques to estimate the parameters with significant impact
on the score function to reduce the transmission overhead
of less significant parameters. More importantly, models that
incorporate a dynamic and resilient score function would be
investigated; shifting from an aggregation scheme to a non-
linear assignment of scores to different preferential variables
that each heterogeneous node would possess. Lastly, a core
principal in RobP2P is the exchange of profile information,
such that nodes can assign themselves higher profile scores
potentiating their election as leaders. The intrinsic assumption

has been the honest and collusion free calibration and
exchange of this information. However, a future direction
would encompass security measures that ensure such scores are
governed and checked for consistency, fairness and resilience to
malignant efforts in tampering with system stability and load-
balancing.

REFERENCES

[1] Ylianttila, M., Harjula, E., Koskela, T. and Sauvola, J. (2008)
Analytical Model for Mobile P2P Data Management Systems.
Proc. 5th IEEE Consumer Communications and Networking
Conf., Las Vegas, NV, USA, January, pp. 1186–1190.

[2] Barolli, L. and Xhafa, F. (2011) JXTA-overlay: A P2P platform
for distributed, collaborative, and ubiquitous computing. IEEE
Trans. Ind. Electron., 58, 2163–2172.

[3] Yu, C., Yao, D., Li, X., Zhang, Y., Yang, L.T., Xiong, N. and Jin,
H. (2013) Location-aware private service discovery in pervasive
computing environment. Inf. Sci., 230, 78–93.

[4] Elgazzar, K., Martin, P. and Hassanein, H. (2012) A Framework
for Efficient Web Services Provisioning in Mobile Environments.
Proc. 3rd Int. Conf. on Mobile Computing, Applications, and
Services, Lecture Notes of the Institute for Computer Sciences,
Social Informatics and Telecommunications Engineering 95,
pp. 246–262. Springer, Berlin, Heidelberg.

[5] Hefeeda, M. (2004). Peer-to-Peer Systems. School of Computing
Science. Simon Fraser University, Surrey, Canada.

[6] Yang, B. and Garcia-Molina, H. (2002). Designing a super-peer
network. Technical report, Stanford University. Available online:
http://infolab.stanford.edu/∼byang/pubs/superpeer.pdf.

[7] Gnutella website. http://www.gnutella.com (accessed January,
2013).

[8] Freenet website. http://freenet.sourceforge.net (accessed January,
2013).

[9] Kazaa website. http://www.kazaa.com (accessed January, 2013).

[10] Lo, V., Zhou, D., Liu, Y., GauthierDickey, C. and Li, J. (2005)
Scalable Supernode Selection in Peer-to-Peer Overlay Networks.
Proc. 2nd Int. Workshop on Hot Topics in Peer-to-Peer Systems,
La Jolla, California, USA, July, pp. 18–25.

[11] Kim, S.-K., Lee, K.-J. and Yang, S.-B. (2011) An Enhanced
Super-Peer System Considering Mobility and Energy In Mobile
Environments. Proc. 6th Int. Symp. on Wireless and Pervasive
Computing, February, pp. 1–5.

[12] Mahdy, A.M., Deogun, J.S. and Wang, J. (2007) A Dynamic
Approach for the Selection of Super Peers in Ad Hoc Networks.
Proc. 6th Int. Conf. on Networking, April, pp. 673–677.

[13] Kim, J.-H., Song, J.-W., Kim, T.-H. and Yang, S.-B. (2011)
An enhanced double-layered P2P system for the reliability in
dynamic mobile environments. Comput. Inf., 30, 1001–1023.

[14] Soro, S. and Heinzelman, W.B. (2009) Cluster head election
techniques for coverage preservation in wireless sensor networks.
Ad Hoc Netw., 7, 955–972.

[15] Alsaliha, W., Hassaneinb, H. and Aklb, S. (2010) Placement of
multiple mobile data collectors in wireless sensor networks. Ad
Hoc Netw., 8, 378–390.

Section B: Computer and Communications Networks and Systems

The Computer Journal, 2014

 at Q
ueen's U

niversity on June 2, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://infolab.stanford.edu/~byang/pubs/superpeer.pdf
http://www.gnutella.com
http://freenet.sourceforge.net
http://www.kazaa.com
http://comjnl.oxfordjournals.org/

12 K. Elgazzar et al.

[16] Yu, J., Wang, N., Wang, G. and Yu, D. (2013) Connected
dominating sets in wireless ad hoc and sensor networks a
comprehensive survey. Comput. Commun., 36, 121–134.

[17] Khabbazian, M., Blake, I.F. and Bhargava, V.K.B. (2012) Local
broadcast algorithms in wireless ad hoc networks: Reducing
the number of transmissions. IEEE Trans. Mob. Comput., 11,
402–413.

[18] Elgazzar, K., Ibrahim, W., Oteafy, S. and Hassanein, H.S. (2013)
RobP2P: A Robust Architecture for Resource Sharing in Mobile
Peer-To-Peer Networks. Proc. 4th Int. Conf. on Ambient Systems,
Networks and Technologies, Halifax, NS, Canada, pp. 356–363.

[19] Skype website. http://www.skype.com (accessed January, 2013).
[20] TerraNet website. http://terranet.se/ (accessed January, 2013).
[21] Vishnumurthy, V. and Francis, P. (2007) A Comparison of

Structured and Unstructured P2P Approaches to Heterogeneous
Random Peer Selection. Proc. USENIX Annual Technical Conf.,
Santa Clara, CA, USA, pp. 1–14.

[22] Iamnitchi, A., Foster, I. and Nurmi, D. C. (2002) A Peer-to-Peer
Approach to Resource Discovery in Grid Environments. Proc.
High Performance Distributed Computing, Edinburgh, Scotland.

[23] Chawathe, Y., Ratnasamy, S., Breslau, L., Lanham, N. and
Shenker, S. (2003) Making Gnutella-Like P2P Systems Scalable.
Proc. 2003 Conf. on Applications, Technologies, Architectures,
and Protocols for Computer Communications, Karlsruhe,
Germany, pp. 407–418.

[24] Min, S.-H., Holliday, J. and Cho, D.-S. (2006) Optimal
Super-Peer Selection for Large-Scale P2P system. Proc. Int.
Conf. on Hybrid Information Technology, ICHIT’06—Volume
02, Washington, DC, USA, pp. 588–593. IEEE Computer
Society.

[25] Merz, P., Priebe, M. and Wolf, S. (2008) Super-Peer Selection
in Peer-to-Peer Networks using Network Coordinates. Proc. 3rd
Int. Conf. on Internet and Web Applications and Services,Athens,
Greece, June, pp. 385–390.

[26] Liu, M., Harjula, E. and Ylianttila, M. (2013) An efficient
selection algorithm for building a super-peer overlay. J. Internet
Serv. Appl., 4, 1–12.

[27] Jelasity, M., Kowalczyk, W. and Steen, M.V. (2003) Newscast
Computing. Technical Report IRCS-006. Department of Com-
puter Science, Vrije Universiteit, Amsterdam. 24 pages.

[28] Meads, A. and Warren, I. (2010) Extending Mobile Service
Middleware with Support for Context-Aware Service Processing.
Proc. IEEE Region 10 Conf., Fukuoka, Japan, November,
pp. 2418–2423.

[29] Han, J.-S., Lee, K.-J., Song, J.-W. and Yang, S.-B. (2008)
Mobile Peer-to-Peer Systems using Super Peers for Mobile
Environments. Proc. Int. Conf. on Information Networking,
Busan, South Korea, January, pp. 1–4.

[30] The Network Simulator website. http://www.nsnam.org
(accessed January, 2013).

Section B: Computer and Communications Networks and Systems

The Computer Journal, 2014

 at Q
ueen's U

niversity on June 2, 2015
http://com

jnl.oxfordjournals.org/
D

ow
nloaded from

http://www.skype.com
http://terranet.se/
http://www.nsnam.org
http://comjnl.oxfordjournals.org/

