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Abstract—Reinforcement Learning (RL) algorithms have includes growth in mobile data trafc and a higher den-
recently been proposed to solve dynamic radio resource man- sity of mobile users. This also involves a variety of radio
agement (RRM) problems in beyond 5G networks. However, 4ccass technologies, services, and applications. As a result,

RL-based solutions are still not widely adopted in commercial - S . o
cellular networks. One of the primary reasons for this is the Va&Ilous objectives, such as low latency, high reliability, and

slow convergence of RL agents when they are deployed in athroughput need to be fullled simultaneously based on
live network and when the network’s context changes signi- the service used. Moreover, resource allocation should be
cantly. Concurrently, the open radio access network (O-RAN) dynamically optimized based on the changing network condi-
paradigm promises to give mobile network operators (MNOs) ions Nevertheless, given the inherent uncertainty of wireless
more control over their networks, furthering the need for intelli- - .

gent and RL-based network management. O-RAN's standardized network enwronments,_ conventional approaches for resource
interfaces will allow MNOs to make real-time custom changes to Management that require perfect knowledge of the network are
intelligently control various RRM functionalities. We consider a inef cient [1]. Machine learning (ML), and speci cally rein-
RAN slicing scenario in which MNOs can modify the weights forcement learning (RL)-empowered next-generation wireless
of the RL reward function. This enables MNOs to change the networks are vital due to the following reasds, [3]:

priorities of ful lling the service level agreements of the slices. . "
However, this results in a practical challenge since the RL agent € Network ComplexityNext-generation networks (NGNs)

needs to adapt prompﬂy to the Changes made by the MNO. will be more Complicated due to the aforementioned rea-
This challenge is addressed in this paper, where we rst present sons. In such complex deployment scenarios, estimating
and discuss the results from an exhaustive experiment to exam- the optimal performance is computationally infeasible

ine the ef ciency of using transfer learning (TL) to accelerate iven its manv-si heter n nature. ML. how-
the convergence of RL-based RAN slicing in the considered sce- given its many-sided heterogeneous nature. » N0

nario. We then propose a novelpredictive approach to enhance ever, Ca_n_ address the network complexity while providing
the TL-based acceleration by selecting the best-saved policy for competitive performances.

reuse. By adopting the proposed policy transfer approach, RL € Model DebciencyModern cellular networks have been
agents are able to converge up to 14000 learning steps faster designed with many assumptions to approximate the
than their non-accelerated counterparts. The proposed machine end-to-end system behaviour using simple modelling

learning (ML)-based predictive approach also shows up to a
96.5% accuracy in selecting the best expert policy to reuse for approaches. ML-based approaches can be employed to

acceleration. capture the underlying unknown dynamic networks’ non-
Index Terms—O-RAN, RAN slicing, resource allocation, “near.ltles' . . .
predictive transfer leaming, accelerated reinforcement learn- € Algorithm DebciencyThe optimal algorithms are too
ing, 6G. complex to be practically implemented in some network
scenarios. This result in system designs that most likely
|. INTRODUCTION rely on heuristics based on simple rules. ML can strike

EXT-GENERATION wireless networks will have to deal the right balance between acceptable system performance

with growth and heterogeneity on many levels. This _ @nd complexity in such cases. _ o
RL algorithms have recently gained wide attention in
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In this paper, we consider a radio access network (RAN) perception (MLP) and extremely randomized trees (extra-
slicing scenario in which MNOs can change the priorities of trees) regressor models and compare their performance
ful lling the service level agreements (SLAs) of the avail- with a Euclidean distance metric.
able slices[7]. This can be done by tuning the weights of To the best of our knowledge, this is the rst study to
the corresponding KPIs in the RL reward function for each) identify the need, and propose TL, to mitigate convergence
slice. Different deployments and operators may have diffgroblems of RL-based O-RAN slicing when MNOs change
ent preferences that change over time. However, changing the reward function weights for different network slices, and
reward function weights can drastically change the systen?} propose a mechanism to ef ciently accelerate RL for this
performance. This raises a practical challenge as the RL agputpose by using a novel form giredictive TL. The rest
needs to adapt quickly to such changes. In such cases, MN#Dshe paper is organized as follows. In Sectibnwe give
need an ef cient way to accelerate the RL agent to quicklgn overview of the problem. Sectidi discusses the related
converge back to a good policy avoiding extreme instabiliti@gork. The system model, the acceleration approach, and the
and drops in performance for a long tiff&]. This RL-related experimental setup are described in Sectidnin SectionV,
challenge is rarely tackled in research studies developing Rke propose an approach to enhance policy transfer accel-
based RRM solutions. Even when it is tackled, the proposedhtion of RL-based RAN slicing. Sectiovil provides the
approaches are not thoroughly investigated to understand thader with a thorough analysis of the results. Lastly, our
resulting potential positive convergence behaviour. work is concluded, and some future directions are presented

Transfer learning (TL) is one of the commonly useéh SectionVil.
approaches to accelerate RL convergence in the wireless
networks’ domain[9]. One of the main categories of TL is II. BACKGROUND
po!lcy transfer. In policy transfer, the pohcy of a prewo_us%\_ Radio Access Network Slicing
trained RL agent, namely an expert agent, is used to guide the _ )
exploration phase of a learner agent instead of learning fromBCth radio access and core networks are considered parts
scratch. The work presented in this paper is related, but quetne end-to-end network slicing, each with a slightly differ-
different from our previous work ifiL0]. In our previous work, ent opt|m|zat|o_n gpa[ll]. Network slicing's ObJeCt'V,e IS to ,
we only investigated the viability of employing TL to addres§hare the phy§|caI infrastructure among several services. !n this
slow convergence in deep reinforcement learning (DRL)-basBgPe"» We mainly focus on the RAN part of network slicing.
RAN slicing. In this study, we focus on analyzing and enhan&AN slicing is mainly concerned with two RRM function-
ing the RL convergence acceleration behaviour when using fﬂénes, slice admission control, and resource allocation. Slice

policy transfer approach of TL in a speci ¢ O-RAN scenarioadmiSSion control allows an infrastructure provider to accept

The main contributions of this paper can be summarized %deny a service provider's slice request. While slice resource
follows: allocation is concerned with assigning the available physical

€ We present an O-RAN slicing scenario in which MNOLEsource block (PRBs) to the slices approved by the admis-

can change the weights of the RL reward functior‘?ion control function. An overview of RAN slicing and its
and consequently, the priorities of ful lling the slices’Man functionalities are depicted in Fig.

SLAs. Given such a scenario, we present an evaluation! e available resources at a given time are signi cantly

methodology to examine the convergence behaviour diected by the stochastic channel quality. Moreover, they
the accelerated RL algorithms when policy transfer &€ affected by the time-varying user demands for the pro-
applied. vided services. The traf c demand for each type of service

€ We perform a thorough analysis of around 3400 simulés- dynamic and cannot_ be_ easily pre_d?cted,_particularly in '_[he
tion runs to study the ef ciency of using policy transfershort term. At the beginning of a slicing window, the avail-

to accelerate RL-based RAN slicing. This includes ané‘-ble limited resources are assigned among the admitted slices.

lyzing the RL convergence speed gains when usingTQese allocated resources are expected to enable the services

policy reuse approach. This also considers the effect Bfovided by the admitted slices to comply with their differ-

the distance between the reward function weight vectcf&t Q0S requirements given the dynamic network conditions.

of expert and learner agents on the reward convergen-@%e exact requirements are de ned by the SLAs and should

error of the accelerated learner agents not be violated by the infrastructure provider, otherwise mon-

¢ We propose a novairedictiveapproach to enhance IOO|_etary penalties may be enforc_:ed. Hence, RAN'incing cannot
icy transfer acceleration in RL-based RAN slicing. Wéolerate the long RL exploration phase and this poses many

speci cally propose to save the policies of several expeffallénges for RL-based RAN slicing solutions.

RL agents that are trained using different network slic- _ _ o

ing reward weights. When a new reward function weigt- Reinforcement Learning-Based Slicing

combination is set by the MNO, an ML-based approach 6G networks are expected to have ubiquitous intelli-
is used to select the expert policy with the least expectgénce. They are also expected to adopt an open architecture.
reward convergence error. This is vital to efcientlyThis allows a customizable Al-native RAN slicinfl2].
accelerate a learner agent when an MNO changes thecordingly, various ML-based approaches have been recently
reward function weight vector that re ects the priority ofproposed to solve RAN slicing-related problerfis3]. The

the various slices’ SLAs ful iment. We train multilayer most important feature that distinguishes RL from the other
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Fig. 1. Overview of RAN slicing.

This is estimated based on the agent’'s sampled experience

L e from interacting with the RAN environment in a real-time

C‘;\'I';i;;'i;erzz’:éce Calculate reward based on and dynamic-open control fashion. In this study, we design a
observations relevant RANIslicing KPIs sigmoid-based reward function to control the effect of get-
ting closer to the minimum acceptable threshold of each
Stat:y (St+1) slice’s SLAs.
= - = Action (A Reward (R
State (s) (A) (Rt+1)

C. Transfer Learning-Accelerated RL-Based RAN Slicing

lilbmers Wi e ol sl o elizg Slow convergence of RL algorithms is a challenge that

e . relates to the number of learning steps needed to nd a
exploration probability (¢) Update value function good set of radio resource allocation con gurations given
the various system states. This can happen while training,
when the agents are newly deployed in a live network, and
when the network’s context changes signi canfi8}. The RL
agent needs to observe a representative variety of the RAN
system’s possible states several times. The learning happens
types of ML is that it evaluates the actions taken rather théy iteratively updating a value function until convergence. This
specifying correct actiongl4]. RL does not require completeprocess is referred to as the exploration phase. The value func-
knowledge of the RAN system or prior knowledge of théion gives an estimate of the expected return if the agent starts
network. Both requirements are inef cient and infeasible fon a given state or state-action pair, and then acts according
stochastic environments such as RANs in NGNs. Thus, RLts a particular policy.
an attractive approach to solve the resource allocation problenTL expedites the learning of new target tasks by exploiting
in RAN slicing [15], [16]. knowledge from related source taskis’]. This can shorten

An RL-based RAN slicing controller typically interacts withthe learning time of ML algorithms and enhance their robust-
the RAN environment bidirectionally as seen in FRJ At any ness to changes in wireless environments. TL is widely used in
given slicing time step, an RL agent observes the RAN systémage object classi cation, where pre-trained top-performing
state and chooses an action to take, i.e., resource allocationnfimdels are used as the basis for image recognition and related
each slice. The action taken changes the RAN environmentcomputer vision tasks. This includes but is not limited to,
a way and the RL agent receives feedback in terms of a rewandializing an arti cial neural network (ANN) with the archi-
value that represents the system performance. tecture and weights from such pre-trained models. This is

The RL agent aims at maximizing the reward feedback thdbne to accelerate the training of an object classi er using
it gets from its interaction with the NGNs RAN system. Thea local dataset that might include a different set of objects.
reward function is designed by network experts to guide tfi@. techniques have recently emerged as potential solutions to
RL agent’s search for the optimal policy, . It is often repre- RL practical challenges such as the long exploration phase in
sented in terms of a weighted sum of the relevant network’s ke constantly changing wireless environmejis
performance indicators (KPIs). This way, the RL-based RAN TL in RL is further categorized based on the knowledge being
slicing controller indicates how good the action taken wawansferred, and when and how to transfer such knowledge.

Fig. 2. RL-based slicing controller-environment interaction.
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[8], [9]. The authors of18] proposed two Q-learning-based
technigues to address interference mitigation in an mm-Wave
network with beamforming and NOMA. One of these tech-
nigues employs TL to speed up RL convergence. The expert
agent is trained to solve a user-cell association problem. Then,
a learner agent uses such knowledge to solve joint user-cell
association and selection of number of beams problem to cover
the associated users. Furthermore, the wofd @ applies TL
to make the system more prone to variation in network status
and topology and to improve the training process ef ciency.
The authors employ generative adversarial networks (GANs) to
capture unchanging features in different network environments
and utilize them to accelerate the training process.

Moreover, the work presented [B0] proposed deep transfer

Fig. 3. Example of policy reuse to accelerate RL-based RAN slicing. - ) .
RL-based joint radio and cache resource allocation. The authors
TABLE | reported that the proposed approach resulted in better network
LIST OF SvmBOLS performance and faster convergence speeds. Furthermore, the
Symbol | Definition authors of[21] developeq aTL mechanism to enabl'e aerial
e RL agent’s policy vehicles (AVs) to exploit valuable experiences. This helps
N Number of RL agent’s learning iterations until convergence in accelerating the training process when the AVS move to
S Number of slices sharing the available bandwidth . | . Additi I h h
5 Available bandwidih shared among slices a previously unseen enwronme_nt. itionally, the authors
z(a) An instance of slicing PRB allocation configuration of [22] discuss the idea of changing the parameters of a reward
X Possible slicing PRB allocation configuration function to balance the QoS requirements of users and system
L Inverse form of latency of the available slices i Th th bi |ati | DRL with
o Importance of the latency for each slice energy consump I_On' e authors C(?m _Ine re a lona wi
a(t) System state at time TL to address the insuf cient generalization ability and the slow
1(;; gandwbidt_h allocat?f(ii t;) sldice‘ih‘ e recovery when exposed to new conditions. Finally, it is worth
= ontribution to traffic load within a time window for @ach Sice | poting that other researchers address the issue of RL slow
[©) Expectation of the argument . T
w; Reward function weight for slice 4 convergence using approaches such as heuristics and meta-
r’ Coefficient of determination learning[23], [24], [25], [26]. However, the focus of this paper
SSresidual | Residual sum of squares : is the ef cient use of TL as it is one of the commonly used
S Stotal Total sum of squares associated with the outcome variable . . ,
T Predicted values approaches in the wireless networks’ domgdh
Ui Ground truth values The reviewed studies mainly use TL to accelerate the
n Number of observations in supervised learning training learning process of RL-based RRM-related solutions without

Policy transfer is a class of TL in which a source policy i%
transferred to an agent with a similar target t§&k In policy
reuse, one of the policy transfer sub-categories, a source po
that is learned by an expert agent is directly reused to gui
the target policy of a learner agef¥]. The expert RL agent
learns until converging to a good policy, while the learner R
agent reuses the expert policypert to tackle the practical M
challenge of RL slow convergence. This can be con guregi
in different ways. As shown in Fig3, this could be done by
initializing the target policy at a learner base station (BS) wit
the learned source policy from an expert BS as foll¢hgj:

@)

Learner Bs (t =0) =

Expert BS (t=N)

aying attention to the ef ciency of the acceleration process.
nlike these studies, we focus on analyzing and enhancing the
f ciency of the TL-based acceleration of RL convergence in
AN slicing. We propose a noveiredictive approach that
Slects the best-saved policy out of several stored policies
or more efcient TL-based acceleration. We also consider
vital deployment scenario of the O-RAN paradigm where
NOs can change the priorities of ful lling the available
ces’ SLAs. These priorities are mostly assumed as con-
tants when considered in other studj2g]. To the best of

ur knowledge, this is the rst research study to address the
abovementioned aspects in the context of RAN slicing in next-
generation wireless networks. The authors of the reviewed
studies can, for instance, revisit their work using our proposed

whereN is the number of leaming iterations carried out by, 1es to account for ef cient TL-based acceleration and to
the RL agent at an expert BS until convergence as de n%q]able reward function weight change by MNOs.

in Tablel.

Ill. RELATED WORK

IV. PoLICY TRANSFER FORACCELERATING RL-BASED
6G RAN S.ICING

TL has been gradually used in the wireless networks domain.
This includes but is not limited to, BSs switching, indoor loca/?- System Model

ization, and intrusion detectiof17]. However, most of these

As mentioned in Sectionl-A, resource management for

studies mainly use the supervised setting of TL. More recenthetwork slicing can be considered from several perspec-
some wireless network researchers started to employ TLtiees [11]. In this paper, we focus on the downlink case of
accelerate the learning process in their RL-based solutidhg radio access part, and more speci cally the RAN slicing
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TABLE I
SIMULATION PARAMETERS AND RL AGENT DESIGN DETAILS

(a) RAN Slicing Simulation Parameter Settings

Video

‘ VoLTE URLLC

Scheduling Algorithm

Round Robin

Bandwidth Allocation Window Size

40 scheduling time slots

(Expert and Learner Agents)

Packet Interarrival Time Distribution

Truncated Pareto (Mean = 6 ms,
Max = 12.5 ms)

Uniform (Min = 0, Max = 160
ms)

Exponential (Mean = 180 ms)

Packet Size Distribution
(Expert and Learner Agents)

Truncated Pareto (Mean = 100
Byte, Max = 250 Byte)

Constant (40 Byte) Truncated Lognormal (Mean = 2
MB, Standard Deviation = 0.722

MB, Max = 5 MB)

(b) RAN Slic

ng RL Design

The contribution to traffic load within a specific time window for each slice

State
(dvoLTE, dURLLC, Dvideo)

Action Bandwidth allocated to each slice (15 allocation configurations)
(bVoLTE; DURLLC bvideo)» 8-t bvoLTE + DURLLC + Dvideo = B

Reward A weighted sum of an inverse form of latency experienced in a slicing

window by the various slices

RL Parameters

RL Algorithms

Q-Learning and SARSA

Total Number of Time Steps

20,000 per simulation run

Number of Expert Agents

16 reward function weight combinations

Number of Learner Agents

3392 (106 weight combinations, each accelerated using all expert policies)

Epsilon

Expert Agent: 1, Learner Agent: 0.1

Epsilon Decay

Expert Agent: 0.9, Learner Agent: 0.5 (every 100 steps)

Learning Rate (alpha)

Expert Agent: 0.1, Learner Agent: 0.5

resource allocation problem. The main goal is to allocate tle Mapping to Reinforcement Learning

limited PRBs to the available slices, maintaining an acceptablegased on the model de ned in SectidwA, an RL agent
spectral ef ciency (SE) while keeping an acceptable delay, ajghyd take an action at the beginning of each slicing window
generally, quality of experience (QoE) satisfaction. Given thg gecide the PRB allocation for each sli¢es (b, ..., bs),

list of symbols in Tabld, the slice resource allocation problenpiect tob; + ---+ bs = B. Such action is taken based on

can be mathematically formulated as follojd9], [28]. the observed system state, de ned in this paper as the contri-
There exists a set & slices that share the available bandgytion to traf ¢ load within a speci ¢ time window for each

width B. A parameter that controls the number of PRBSjice d = (dj,...,ds). We de ne the reward function as

allocated to each slice needs to be optimized for each sligge weighted sum of an inverse form of latency as detailed in

This can be described by the vectar R®. At a given gectionlV-E1b. The goal is to maximize the long-term reward
instance, a RAN slicing controller decides to choose a spggpectation

ci ¢ slicing PRB allocation con guration, i.e.x(a), out of
the X possible con gurations, whe@=1,2,3,...,X. Based
on such a decision, the system performance is affected. For
the purpose of this paper, the system performance is repre-

sented in terms of the_ latency of the admitted slices and Calere the notatiorE(-) is the expectation of the argument,
be represented by a single value as follows:

that is,

E{f(x(a), ()}, (4)

f(x(@), )= L R, (2)
argmax E{f (x(a), (t))} =argmax E{ L(x(a), (1))}

wherelL is a function that represents an inverse form of the X X
latency of the available slices, while represents the impor- = argrtr‘1ax E{R(b,d)} ®)
tance of the latency for each slice. Moreove(t) is the
system state at time This function is unknown to the con- . .
troller, therefore it can not explicitly relate input to output 1his allows the agent to learn a policy, that takes a
and can only observe the function’s outcome. The systeift€d as input and outputs an actioh,= (d) A, to
state can be represented by the trafc load, the chandBpXimize rewardR. The key challenge to solvs) lies in
quality, or other external factors that might affect the RANN€ time-varying demand in terms of trafc models and the
system performance. The majority of these variables evolQgmber of users for each service type. The optimal solution
in a way that is hard to infer theoretically, especially ifo" the problem can be precisely calculated by carrying out
time scales of seconds or shorter. The RAN slicing controll@f exhaustive search. In such a case, all the possible alloca-
explores different slice allocation con gurations and observd@ns should be considered at the beginning of every slicing

the corresponding system performance in search of the optift4idow and the corresponding system performance should be
con guration that maximizes the performance, i.e., noted. This approach, however, is computationally expensive
and practically infeasible. Hence, RL is a good alternative to
x = argmaxf (X) 3) solve the problem. The RAN slicing RL design parameters are
X highlighted in Tablell-(b).
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TABLE Il
REWARD FUNCTION WEIGHT COMBINATIONS OF EXPERT AND LEARNERAGENTS

Format: [wvoLTE, WURLLC, WVideo]
[0.1, 0.8, 0.1], [0.1, 0.1, 0.8], [0.1, 0.45, 0.45], [0.1, 0.7, 0.2], [0.1, 0.2, 0.7], [0.1, 0.6, 0.3], [0.1, 0.3, 0.6],
[0.1, 0.5, 0.4], [0.1, 0.4, 0.5], [0.3333, 0.3333, 0.3333], [0.8, 0.1, 0.1], [0.4, 0.5, 0.1], [0.4, 0.4, 0.2],
[0.4, 0.1, 0.5], [0.4, 0.2, 0.4], [0.4, 0.3, 0.3]

[0.1, 0.1, 0.8], [0.1, 0.8, 0.1], [0.8, 0.1, 0.1], [0.6, 0.2, 0.2], [0.2, 0.6, 0.2], [0.2, 0.2, 0.6], [0.4, 0.3, 0.3],
[0.3, 0.3, 0.4], [0.2, 0.4, 0.4], [0.4, 0.2, 0.4], [0.4, 0.4, 0.2], [0.1, 0.2, 0.7], [0.1, 0.7, 0.2], [0.2, 0.1, 0.7],
[ I 1, 1 [ 1,
[ 1. I 1, 1,

[ [ 1,

[

Expert Agents Reward
Function Weights

0.3, 04, 0.3],
0.2, 0.7, 0.1],
0.7, 0.2, 0.1], [0.7, 0.1, 0.2], [0.1, 0.3, 0.6], [0.1, 0.6, 0.3], [0.3, 0.1, 0.6], [0.3, 0.6, 0.1], [0.6, 0.3, 0.1], [0.6, 0.1, 0.3],
0.2, 0.3, 0.5], [0.2, 0.5, 0.3], [0.3, 0.2, 0.5], [0.3, 0.5, 0.2], [0.5, 0.3, 0.2], [0.5, 0.2, 0.3], [0.1, 0.4, 0.5], [0.1, 0.5, 0.4],
0.4, 0.1, 0.5], [0.4, 0.5, 0.11, [0.5, 0.4, 0.1], [0.5, 0.1, 0.4], [0.1, 0.15, 0.75], [0.1, 0.85, 0.05], [0.8, 0.15, 0.05],

0.6, 0.25, 0.15], [0.2, 0.55, 0.25], [0.2, 0.25, 0.55], [0.4, 0.35, 0.25], [0.3, 0.45, 0.25], [0.3, 0.35, 0.35], [0.2, 0.45, 0.35],
[0.4, 0.25, 0.35], [0.4, 0.45, 0.15], [0.1, 0.25, 0.65], [0.1, 0.75, 0.15], [0.2, 0.15, 0.65], [0.2, 0.75, 0.05], [0.7, 0.25, 0.05],
Learner Agents Reward | [0.7, 0.15, 0.15], [0.1, 0.35, 0.55], [0.1, 0.65, 0.25], [0.3, 0.15, 0.55], [0.3, 0.65, 0.05], [0.6, 0.35, 0.05], [0.6, 0.15, 0.25],
Function Weights [0.2, 0.35, 0.45], [0.2, 0.55, 0.25], [0.3, 0.25, 0.45], [0.3, 0.55, 0.15], [0.5, 0.25, 0.15], [0.5, 0.25, 0.25], [0.1, 0.45, 0.45],
[0.1, 0.55, 0.35], [0.4, 0.15, 0.45], [0.4, 0.55, 0.05], [0.5, 0.45, 0.05], [0.5, 0.15, 0.35], [0.15, 0.1, 0.75], [0.15, 0.8, 0.05],
[0.85, 0.1, 0.05], [0.65, 0.2, 0.15], [0.25, 0.5, 0.25], [0.25, 0.2, 0.55], [0.45, 0.3, 0.25], [0.35, 0.4, 0.25], [0.35, 0.3, 0.35],
[0.25, 0.4, 0.35], [0.45, 0.2, 0.35], [0.45, 0.4, 0.15], [0.15, 0.2, 0.65], [0.15, 0.7, 0.15], [0.25, 0.1, 0.65], [0.25, 0.7, 0.05],
[0.75, 0.2, 0.05], [0.75, 0.1, 0.15], [0.15, 0.3, 0.55], [0.15, 0.6, 0.25], [0.35, 0.1, 0.55], [0.35, 0.6, 0.05], [0.65, 0.3, 0.05],
[0.65, 0.1, 0.25], [0.25, 0.3, 0.45], [0.25, 0.5, 0.25], [0.35, 0.2, 0.45], [0.35, 0.5, 0.15], [0.55, 0.2, 0.15], [0.55, 0.2, 0.25],
[0.15, 0.4, 0.45], [0.15, 0.5, 0.35], [0.45, 0.1, 0.45], [0.45, 0.5, 0.05], [0.55, 0.4, 0.05], [0.55, 0.1, 0.35]

5
5
5
5
5

C. Simulation Environment RL-based RAN slicing via policy reuse. We mainly focused on

Reproducing an existing RL-based RAN slicing solution i§1€ scenario when an MNO needs to change the priorities of
not straightforward due to the lack of RL-based RRM bencff?€ various slices, and hence, the weights of the reward func-
mark environments that can be easily integrated and reused #i- T0 do so, we followed a similar acceleration approach
of the box. Hence, the algorithms and environment implemeff. the one mentioned in SectidhC but to extensively study
tations will vary. We improved the OpenAl GYM-compatiblethe reward_ convergence behaviour of the acceler_ated learner
RL environment that was initially implemented in our previoudgents. This constitutes a step towards a more ef cient way for
research study10]. The improved implementation of the envi-acceleration when the context. changes. It provides |n§|ghts into
ronment is available on GitHubThis allows further analysis NOW to choose an expert policy to use for acceleration when
and comparison of the various RL convergence acceleratidf MNO decides to change the slices’ priorities. We started
approaches in RAN slicing. with tramlng and saving 16 basic models, namely the gxpert

The simulation environment was changed to suppdﬁOde_'Sv using a I|m|ted. number of rewar_d_funcnon weight-
interfaces that enable the MNOs to change the SLA ful limerflombinations as seen in Tallke. The policies of each of
priorities of the available slices. This was done by allowin§'€se trained models are then reused to initialize the policies
the change of reward function weights. Such interfaces al8b106 learmner agents re ecting 106 different reward function
enable the consultation of supervised models to select the bd¥§ight combinations as de ned in the table. The evaluation
policy to load given a certain reward function weight vectoPr0cess includes accelerating 3392 RL.Iearner agents in total
With the rise of the O-RAN paradigm, this is a vital scenari¥ia policy reuse. We used two RL algorithms, and hence, we
that will be more feasible in 6G networks. We also mad@mployed policy transfer to accelerate 1696 agents per RL
the following changes: algorithm. o

€ We changed the environment state representation to re ect/Ve use settings that are known to be used in slicing-related

the slices’ contribution to the overall traf ¢ load within aStudies for better interpretability of TL efciency results.
previous time window instead of the number of packetd/oreover, we run a large number of simulations to be con-
¢ We updated the scheduling algorithm to support scheduflent about the generality of our analysis and approach as
ing multiple transmissions per transmission time intervAescribed in the next sectlon_s. The rqund-robm algorithm is
(TTI) if resources were available (i.e., PRBS). one of the common scheduling algo_rlthms th_at ensure falr-
€ A user priority mode was added as a scheduling setting 86SS[16]. We used it as the scheduling algorithm per slice
thatif on, the transmissions belonging to one user are givélinilar to the case if29]. We simulated a scenario with three
priority within the same TTI if resources were availablelYP€S Of services; voice over LTE (VOLTE), video, and ultra-
€ We updated the environment so that the unsatis ed uségiiable low-latency communications (URLLC). The prevalent
who have multiple unful lled transmission requests leav8G networks mainly classify services into voice and best
the system. effort, hence it is hard to have access to live network traces

€ The reward function was updated to re ect more corff the services addressed in this paper. Therefore, we decided
trol over the effect of getting closer to the minimunfO Use tra}fc that follows known mathematical models similar
acceptable threshold of each slice’s SLAs. to those in[29].
User requests are generated based on the distributions shown
D. Transfer Learning Evaluation Setup in Tablell-(a). In such cases, URLLC users generate the
largest, but the least frequent packets compared with users of

We conducted an exhaustive experiment to investigate e, e services. VOLTE users generate the smallest packets,
transferability of various expert policies when acceleraur\gh”e video packets are the most frequently generated ones.

Lavailable at http:/mmww.github.com/ahmadnagib/TLARL. Users belonging to the same slice share bandwidth equally.
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More speci cally, the round-robin scheduler is used withitby the agent will lead to non-optimal latency performance.
each slice at the granularity of 0.5 ms. Moreover, the slicinbherefore, the RL agent’s recovery to an optimal policy after
window size is 40 scheduling time slots. In other words, ththe changes made by an MNO needs to be as fast as pos-
RL agent takes an action to adjust the PRB allocation to easible. It is worth noting that the issue of slow convergence
slice every 20 ms. We summarize the parameters used to credt®L agents is not directly related to the latency de ned in
the environment and train various RL agents in Tadbih). the reward function. However, the agent’s convergence to the
We used two RL algorithms to train and accelerate thaptimal solution will lead to the best performance in terms of
RL-based RAN slicing agents, namely Q-Learning and statglices’ latency. Accordingly, the faster the agent’s convergence,
action-reward-state-action (SARSA). The implementation tfie better the slices’ latency performance. We also assume that
both is available on GitHub.The implementation was adoptedthe policies learned by the expert agents are saved and can be
and modi ed to accommodate the acceleration process usiogded by a learner agent before the latter starts the exploration
the policy reuse approach of TL. The trained expert poligyrocess.
is loaded to initialize the learner agent's policy. Moreover, a 1) Expert and Learner Agents Settings:
decaying epsilon greedy is incorporated to better control the 5y Reinforcement learning agent&le decided to employ
exploration-exploitation behaviour of the RL agent. Finalljne policy learned by the expert agents to be later transferred
the code was modi ed to log the various leaming steps’ relgg initialize all the learner agents' policies. In the case of
vant information for better tracing and debugging. The tW@).| earning and SARSA, this means initializing the Q-tables
aforementioned RL algorithms are used to decide the pgfthe learner agents. Q-learning and its variants are among
centage of PRBs to be allocated to each slice. Afterwarighe most popular RL algorithms that have shown impressive
round-robin scheduling is followed within each slice. The nofpgy|ts in RL-based RRM-related studié. It gained popu-
accelerated agents were compared against their accelergiggl as it allowed the development of an off-policy temporal
counterparts having the same reward function weights. Thgference (TD) algorithm. It is sample ef cient, and any pol-
accelerated agents were guided by policies from the 16 sayggl can be used to generate experience. However, Q-learning
basic models. Each one of these basic expert models hagagants still lack convergence guarantees for non-linear func-

different reward function weight vector. tion approximators. Hence there is still room for improving
_ _ o the convergence performance using approaches such as policy
E. Reinforcement Learning for Network Slicing transfer. Our framework supports any other RL algorithms via

We use the RL mapping de ned in SectioW-B for both OpenAl Gym standardized interfacg30]. For instance, we
the expert and learner agents. The objectives of both the ex@dso used SARSA as it has a different value function update
and the learner agents are the same. As seen in Taliy, procedure. This allowed us to examine the effect of using a
we use 106 reward function weight combinations to simulatedéfferent algorithm on the acceleration process.
wide range of possible MNO con gurations of the slices’ pri- We mainly focus on analyzing and enhancing the acceler-
orities. This enables us to observe the reward function weigtion process when using different reward function weights.
vectors of the saved expert policies and study their effect étfence, when we con gured the RL settings, we intended to
the learner agents’ reward convergence, and hence, accelbgye a con guration that converges to the optimal solution for
tion. The 3392 simulation runs executed allowed us to ass@dsthe non-accelerated agents. The expert and learner agents
our proposed approach’s capacity for generalization. hyperparameters are shown in TableWe used smaller val-

It is expected that the reward distribution of the learnefes for the exploration rate (epsilon), and larger values for the
agents will vary from the expert agents as the reward funiearning rate when accelerating the learner agents. This setting
tion weights are changed intentionally by the MNO. This cais used to accelerate the deployed learner agents’ adaptation to
happen when a new RL agent is deployed from scratch athe new context taking advantage of the knowledge captured
BS. This can also happen when the MNO decides to charlgje the expert policies.
the slices’ priorities by changing the reward function weights b) Reward functionWe used the reward function stated
after following another set of weights for a given time. In thign Table Il. Based on the system performance function de ned
paper, we present a RAN slicing scenario in which the MN@ SectionIV-A, the reward function was improved to re ect
recon gures the weights of the RL reward function. This scamnore control over the effect of getting closer to the minimum
nario happens after deploying the RL agent in a live networicceptable threshold of each slice’s SLAs as follows:

After recon guring the reward function weights, the policy
that has been followed by the RL agent can lead to non-optimal

resource allocation actions. Hence, if the RL agent does not s 1 .

recover quickly to an optimal or a near-optimal policy, this R= Ws m,that IS,

will lead to taking non-optimal actions for a long duration. s=1 1
In this study, we give more weight to latency in deciding the R = WyoLTE .

system’s performance, and hence the reward function is purely 1+ eChoure  (ISC2voure )

represented in terms of latency for better TL ef ciency results’ + WURLLC 1 i,

interpretability. As a result, such non-optimal actions taken 1+ e°1UR5L° (ISc2uruie )
2pvailable at https://github.com/dennybritz/reinforcement-learning. *+ Wyideo 1 + eClvideo (IS C2vigeo ) (6)
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We designed sigmoid function-basfRl] rewards to fulll learner agent. We speci cally build ML models based on the
that purpose. In this study, we focus on the delay requirexpert and learner agents’ weight vectors and compare their
ments, so we used latency as a variable. Such a reward funcpenformance to that of a distance metric. These trained models
penalizes actions that come close to violating slices’ latenpyedict the expected convergence error of accelerating a given
requirements. Two parameters], andc2, are con gured to learner agent using a certain expert policy when the context
tune the shape of the functiocl re ects the point from where changes. Having such a model will allow the MNOs to esti-
the slope of the sigmoid function begins to change for thaate the expected convergence error when reusing each of the
rst time. This de nes when to start penalizing the agent'saved expert policies. Hence, they can choose the one with the
actions. Whilec2 represents the in ection point, i.e., the low-minimum expected error to load for guiding the learner agent
est acceptable delay performance for each slice based ondhénterest, allowing more ef cient policy reuse acceleration.
slice’s SLAs. We use different, but constaat, andc2 values We speci cally propose the following procedure:
for each slice type. 1) First, an MNO chooses a group of expert policies that

The weights of the reward function are adjustable to allow  have the minimum relative convergence error and store
the MNOs to prioritize some slices over others. This will lead them.
to a change in context and the actions taken based on th@) Before the MNO decides to change the slices’ weights,
policy at hand may lead to extreme performance drops. We in other words, slices’ delay SLAs ful liment priorities,
explore the effect of accelerating the agent with knowledge the switch to the new reward function weights should
from already trained agents, namely expert agents, having dif- be scheduled.
ferent slice delay weight combinations in their reward function 3) Scheduling such a change should trigger an automated
when trained. Tabldll lists the base weights used in the expert process. Such a process should employ an ML-based
agents’ reward functions and those of the learner agents to be model previously trained using data collected via O-

accelerated by the expert policies. RAN interfaces. The model predicts the expected con-
¢) Trafbc load modelVe generated one traf c model per vergence error of using all the stored expert models
service for the expert and the learner agents as seen in Table to accelerate a learner agent that includes the provided
(a). It is represented in terms of inter-arrival times, and packet  scheduled weights in its reward function.
sizes. 4) Based on the predicted errors, the stored expert policy
with the least error will be chosen.
V. PREDICTIVE PoLICY TRANSFER FORACCELERATING 5) Atthe scheduled weight change time, the chosen expert
RL-BASED RAN SLICING policy should be loaded to initialize the policy of the

A. Network Slicing SLAs and Weights of RL Reward learner agent and guide the exploration phase as soon
Function as the context changes.

6) Concept driff32] can happen if the network conditions
are signi cantly different from those experienced when
training the prediction model. Hence, it is important to
update the model whenever any drifts are detected. The
performance of the various expert policies concerning
guiding the learner agents should be regularly logged.
This info should serve as feedback to be used to update
the ML-based models for up-to-date reward convergence
error predictions.

It is practically vital for an MNO to have the ability to tune
the weights of an RL agent’s reward function. This enables the
MNO to change the priority of ful lling the SLAs of the admit-
ted network slices. This is important as different services might
have similar traf ¢ patterns but signi cantly different network
requirements. For instance, two massive machine-type com-
munications (mMMTC) deployments may have the same trafc
pattern. However, each of them can have a signi cantly dif-
ferent latency tolerance depending on the exact application.
If both slices are treated equally as generic mMMTC slices in
the RL reward function, this will lead to unnecessary ovez. Models and Evaluation Metrics

. . X ic, the second is based on
efcient use of the available spectrum and results in feWe[ y 4 itional ML approach, and the third is based on a deep
SLA violations and consequently fewer monetary penaltieg, ning approach. This allows us to analyze how a representa-

However, changing such weights can drastically change e, sample from each of these three categories performs. This
system’s performance. Hence, MNOs need an ef cient way 10

| h hat it quickl gso enables us to observe whether a simple metric can get a
accelerate the RL agent so that it quickly recovers to a 90BBrformance that is comparable to the more sophisticated ML

policy. approaches.
In the rst model, we use a simple Euclidean distance mea-
B. Proposed Approach sure as a baseline. In such a case, the distances between the

Based on the analysis results, we propose a data-driveeight vectors of the learner agent of interest and all the stored
novel approach to select the expert policy with the leaskpert policies are calculated, and hence, the one with the least
expected reward convergence error to be used to acceleratistance is chosen. We then investigate whether we can get a
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TABLE IV

relatively higher accuracy for choosing the best—.save.d policy. MULTILAYER PERCEPTRONHYPERPARAMETERS
Thus, we proposed to leverage the embedded intelligence of
the O-RAN and make use of ML approaches to predict t eN — ygltilay}fz;’erieptron (MLP)
S 1 . umbper o ayers ense nidden layers
expert pOIICIeS convergence errors and choose the best p(_)“ :lélumber of Units First hidden layer: 6, Second hidden layer: 3
For that purpose, we propose the extremely randomizeq oss Function Mean Squared Error (MSE)
trees (extra-trees) regressor as the traditional ML methgdOptimizer Adam
Extra-trees regressor is based on the Commomy used, aprtivation Function Hidden layers: ReLU, Output layer: Linear
. .. . . Learning Rate 0.001
exible, decision trees. It is an ensemble learning methoeg ri—sie 75
that is faster to train than methods such as random far~Number of Epochs 300 for each run
est while maintaining comparable accuraf83]. We also | Pre-processing Standardization
; ; Validation Split 20% of the training data
employ automated machine leamlng (AUtON[B)l-] to search Test Split 10% of the dataset, 10-fold cross validation
1

for a good-performing traditional ML approach. We used a
AutoML tool called H20[35]. Such a tool trains several model

types,Eand several hyperparameter settlnr?s for”eac? mc ﬁbreSSesidual is the residual sum of squares, @8 is
type. xtra_-trees regressor was among the well-performie 15 sym of squares associated with the outcome variable.
models trained by H20. Thus, H20 allowed us to further 2) Root Mean Square Error (RMSERMSE is a measure
optlmlgg theh extra-tre(_es regressor model with the goal 8F accuracy used to compare prediction errors of different
minimizing the regression error. egression models for a particular dataset. RMSE represents

Finally, we propose to train a multilayer perceptron (MLP e guadratic mean of the differences between predicted val-

model to re ect one of the potential deep leaming archite%-es and observed values. In general, a lower RMSE is better,
tures. MLP is one of the common data-driven approach d it can be calculated as follows:

used in supervised learning tasks given multi-attribute networ
data [36]. Our implemented framework supports the adop- 1 "

. : . . - 2

tion of and comparison against other approaches. This can RMSE = o (i Svi) (8)
be other deep learning approaches such as convolutional neu- i=1

ral networks (CNNSs), other traditional ML approaches, Qiherey; represents the predicted values, whijerepresents
even non-ML approaches. Using other ML approaches afitt ground truth values, amtis the number of observations.
other hyperparameter settings will lead to a different prediction 3) Expert Policy Prediction AccuracyThe built models are
performance in terms of regression error for instance. Singfan used to predict the reward convergence error for the stored
we propose to load the policy with the least expected error, thigpert policies given a certain learner agent's reward function
will affect the accuracy of our proposed ML-baseetdictive \yeight vector. Hence, the expert policy with the least predicted
policy transfer approach. Hence, a model that combines a l@gnvergence error is selected for acceleration via policy reuse.
root mean squared error (RMSE), and a high coef cient ofqe accuracy of such selection is the main concern of our
determination(r # score), as de ned later in this section, iSyork. It constitutes a signi cant step towards having more
expected to have the highest expert policy prediction accscient acceleration. We also compare the accuracy of the

racy. Such a model should always be selected to be used {ir_hased models to that of the simpler Euclidean distance
reward convergence error prediction. Exhaustively comparipgseline.

the various ML-based methods for predicting the convergencea| the experiments carried out in this study including

error is an interesting area to explore. However, it is not thge ones for building the ML models were carried out on a
focus of this paper. We speci ed multiple values for the differt jnyx machine having 8 CPUs, 64 GB of RAM, and NVIDIA
ent parameters of the trained MLP and applied a grid seargrForce RTX 2080Ti GPU. Keras, with TensorFlow as the
through them. The best hyperparameter settings among fkend, and sklearn are the Python packages used to imple-

ones tested are shown in Tabilé. ment the deep learning models and the extra-tree regressors
The following metrics are used to evaluate the performanggspectively.

of the built ML modelq37]. The test split of the dataset is used
to compare the model's predictions against the ground truth to
calculate both the? scores and th&@MSE Additionally, the ]
accuracy of choosing the expert policy with the least rewafty Reward Convergence Behaviour
convergence error is also evaluated. We rst explored the reward convergence behaviour of the
1) Coefbcient of Determination:2 score indicates the pro- learner agents when policy transfer is employed to initialize
portion of the variance in convergence error that is explainége policy of a learner agent using the saved expert policies.
by the model. It is normally a number between zero and orfdg- 4 shows such behaviour for 4 samples out of the 106
The closer the value to one, the better the performance of {Rarner agent contexts when accelerated using all the expert

regression modet.? score can be calculated as follows: ~ policies. All the sub- gures also show convergence behaviour
when the learner agent is left to learn from scratch without any

guidance from the expert policies. It is evident from the gures
SSesidual 7 and the statistics compiled in Tablethat the non-accelerated
SSotal Y versions of the learner agents need more learning steps to

VI. RESULTS

r2=19%
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