
1170 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Accelerating Reinforcement Learning via Predictive
Policy Transfer in 6G RAN Slicing

Ahmad M. Nagib , Graduate Student Member, IEEE, Hatem Abou-Zeid,Member, IEEE,
and Hossam S. Hassanein, Fellow, IEEE

Abstract—Reinforcement Learning (RL) algorithms have
recently been proposed to solve dynamic radio resource man-
agement (RRM) problems in beyond 5G networks. However,
RL-based solutions are still not widely adopted in commercial
cellular networks. One of the primary reasons for this is the
slow convergence of RL agents when they are deployed in a
live network and when the network’s context changes signi�-
cantly. Concurrently, the open radio access network (O-RAN)
paradigm promises to give mobile network operators (MNOs)
more control over their networks, furthering the need for intelli-
gent and RL-based network management. O-RAN’s standardized
interfaces will allow MNOs to make real-time custom changes to
intelligently control various RRM functionalities. We consider a
RAN slicing scenario in which MNOs can modify the weights
of the RL reward function. This enables MNOs to change the
priorities of ful�lling the service level agreements of the slices.
However, this results in a practical challenge since the RL agent
needs to adapt promptly to the changes made by the MNO.
This challenge is addressed in this paper, where we �rst present
and discuss the results from an exhaustive experiment to exam-
ine the ef�ciency of using transfer learning (TL) to accelerate
the convergence of RL-based RAN slicing in the considered sce-
nario. We then propose a novelpredictiveapproach to enhance
the TL-based acceleration by selecting the best-saved policy for
reuse. By adopting the proposed policy transfer approach, RL
agents are able to converge up to 14000 learning steps faster
than their non-accelerated counterparts. The proposed machine
learning (ML)-based predictive approach also shows up to a
96.5% accuracy in selecting the best expert policy to reuse for
acceleration.

Index Terms—O-RAN, RAN slicing, resource allocation,
predictive transfer learning, accelerated reinforcement learn-
ing, 6G.

I. I NTRODUCTION

NEXT-GENERATION wireless networks will have to deal
with growth and heterogeneity on many levels. This

Manuscript received 1 May 2022; revised 17 October 2022 and 7 February
2023; accepted 14 February 2023. Date of publication 17 March 2023; date
of current version 6 July 2023. This research was supported by the Natural
Sciences and Engineering Research Council of Canada (NSERC) under
Grant RGPIN-2019-05667 and Grant RGPIN-2021-04050. The associate edi-
tor coordinating the review of this article and approving it for publication was
N. Zincir-Heywood.(Corresponding author: Ahmad M. Nagib.)

Ahmad M. Nagib is with the School of Computing, Queen’s University,
Kingston, ON K7L 2N8, Canada, and also with the Faculty of Computers and
Arti�cial Intelligence, Cairo University, Giza 12613, Egypt (e-mail: ahmad@
cs.queensu.ca).

Hatem Abou-Zeid is with the Department of Electrical and Software
Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
(e-mail: hatem.abouzeid@ucalgary.ca).

Hossam S. Hassanein is with the School of Computing, Queen’s University,
Kingston, ON K7L 2N8, Canada (e-mail: hossam@cs.queensu.ca).

Digital Object Identi�er 10.1109/TNSM.2023.3258692

includes growth in mobile data traf�c and a higher den-
sity of mobile users. This also involves a variety of radio
access technologies, services, and applications. As a result,
various objectives, such as low latency, high reliability, and
throughput need to be ful�lled simultaneously based on
the service used. Moreover, resource allocation should be
dynamically optimized based on the changing network condi-
tions. Nevertheless, given the inherent uncertainty of wireless
network environments, conventional approaches for resource
management that require perfect knowledge of the network are
inef�cient [1]. Machine learning (ML), and speci�cally rein-
forcement learning (RL)-empowered next-generation wireless
networks are vital due to the following reasons[2], [3]:

€ Network Complexity:Next-generation networks (NGNs)
will be more complicated due to the aforementioned rea-
sons. In such complex deployment scenarios, estimating
the optimal performance is computationally infeasible
given its many-sided heterogeneous nature. ML, how-
ever, can address the network complexity while providing
competitive performances.

€ Model DeÞciency:Modern cellular networks have been
designed with many assumptions to approximate the
end-to-end system behaviour using simple modelling
approaches. ML-based approaches can be employed to
capture the underlying unknown dynamic networks’ non-
linearities.

€ Algorithm DeÞciency:The optimal algorithms are too
complex to be practically implemented in some network
scenarios. This result in system designs that most likely
rely on heuristics based on simple rules. ML can strike
the right balance between acceptable system performance
and complexity in such cases.

RL algorithms have recently gained wide attention in
the wireless networks domain[4]. They are considered
promising approaches to solving dynamic Radio Resource
Management (RRM) problems in NGNs. RL algorithms can
deal with the multifaceted complexities of wireless network
environments given their capabilities to build an approximate
and continuously updated model of such environments. The
open radio access network (O-RAN) paradigm will allow
the network to be more customizable. It will also enable
data-driven network management[5]. With O-RAN, NGNs
will include generic modules and interfaces for data collec-
tion, distribution, and processing[6]. This way, the mobile
network operators (MNOs) will have more control over the
network.

1932-4537 c� 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-9193-9755
https://orcid.org/0000-0003-0260-8979

NAGIB et al.: ACCELERATING RL VIA PREDICTIVE POLICY TRANSFER IN 6G RAN SLICING 1171

In this paper, we consider a radio access network (RAN)
slicing scenario in which MNOs can change the priorities of
ful�lling the service level agreements (SLAs) of the avail-
able slices[7]. This can be done by tuning the weights of
the corresponding KPIs in the RL reward function for each
slice. Different deployments and operators may have differ-
ent preferences that change over time. However, changing the
reward function weights can drastically change the system’s
performance. This raises a practical challenge as the RL agent
needs to adapt quickly to such changes. In such cases, MNOs
need an ef�cient way to accelerate the RL agent to quickly
converge back to a good policy avoiding extreme instabilities
and drops in performance for a long time[8]. This RL-related
challenge is rarely tackled in research studies developing RL-
based RRM solutions. Even when it is tackled, the proposed
approaches are not thoroughly investigated to understand the
resulting potential positive convergence behaviour.

Transfer learning (TL) is one of the commonly used
approaches to accelerate RL convergence in the wireless
networks’ domain[9]. One of the main categories of TL is
policy transfer. In policy transfer, the policy of a previously
trained RL agent, namely an expert agent, is used to guide the
exploration phase of a learner agent instead of learning from
scratch. The work presented in this paper is related, but quite
different from our previous work in[10]. In our previous work,
we only investigated the viability of employing TL to address
slow convergence in deep reinforcement learning (DRL)-based
RAN slicing. In this study, we focus on analyzing and enhanc-
ing the RL convergence acceleration behaviour when using the
policy transfer approach of TL in a speci�c O-RAN scenario.

The main contributions of this paper can be summarized as
follows:

€ We present an O-RAN slicing scenario in which MNOs
can change the weights of the RL reward function,
and consequently, the priorities of ful�lling the slices’
SLAs. Given such a scenario, we present an evaluation
methodology to examine the convergence behaviour of
the accelerated RL algorithms when policy transfer is
applied.

€ We perform a thorough analysis of around 3400 simula-
tion runs to study the ef�ciency of using policy transfer
to accelerate RL-based RAN slicing. This includes ana-
lyzing the RL convergence speed gains when using a
policy reuse approach. This also considers the effect of
the distance between the reward function weight vectors
of expert and learner agents on the reward convergence
error of the accelerated learner agents.

€ We propose a novelpredictiveapproach to enhance pol-
icy transfer acceleration in RL-based RAN slicing. We
speci�cally propose to save the policies of several expert
RL agents that are trained using different network slic-
ing reward weights. When a new reward function weight
combination is set by the MNO, an ML-based approach
is used to select the expert policy with the least expected
reward convergence error. This is vital to ef�ciently
accelerate a learner agent when an MNO changes the
reward function weight vector that re�ects the priority of
the various slices’ SLAs ful�llment. We train multilayer

perception (MLP) and extremely randomized trees (extra-
trees) regressor models and compare their performance
with a Euclidean distance metric.

To the best of our knowledge, this is the �rst study to
1) identify the need, and propose TL, to mitigate convergence
problems of RL-based O-RAN slicing when MNOs change
the reward function weights for different network slices, and
2) propose a mechanism to ef�ciently accelerate RL for this
purpose by using a novel form ofpredictive TL. The rest
of the paper is organized as follows. In SectionII , we give
an overview of the problem. SectionIII discusses the related
work. The system model, the acceleration approach, and the
experimental setup are described in SectionIV. In SectionV,
we propose an approach to enhance policy transfer accel-
eration of RL-based RAN slicing. SectionVI provides the
reader with a thorough analysis of the results. Lastly, our
work is concluded, and some future directions are presented
in SectionVII .

II. BACKGROUND

A. Radio Access Network Slicing

Both radio access and core networks are considered parts
of the end-to-end network slicing, each with a slightly differ-
ent optimization goal[11]. Network slicing’s objective is to
share the physical infrastructure among several services. In this
paper, we mainly focus on the RAN part of network slicing.
RAN slicing is mainly concerned with two RRM function-
alities, slice admission control, and resource allocation. Slice
admission control allows an infrastructure provider to accept
or deny a service provider’s slice request. While slice resource
allocation is concerned with assigning the available physical
resource block (PRBs) to the slices approved by the admis-
sion control function. An overview of RAN slicing and its
main functionalities are depicted in Fig.1.

The available resources at a given time are signi�cantly
affected by the stochastic channel quality. Moreover, they
are affected by the time-varying user demands for the pro-
vided services. The traf�c demand for each type of service
is dynamic and cannot be easily predicted, particularly in the
short term. At the beginning of a slicing window, the avail-
able limited resources are assigned among the admitted slices.
These allocated resources are expected to enable the services
provided by the admitted slices to comply with their differ-
ent QoS requirements given the dynamic network conditions.
The exact requirements are de�ned by the SLAs and should
not be violated by the infrastructure provider, otherwise mon-
etary penalties may be enforced. Hence, RAN slicing cannot
tolerate the long RL exploration phase and this poses many
challenges for RL-based RAN slicing solutions.

B. Reinforcement Learning-Based Slicing

6G networks are expected to have ubiquitous intelli-
gence. They are also expected to adopt an open architecture.
This allows a customizable AI-native RAN slicing[12].
Accordingly, various ML-based approaches have been recently
proposed to solve RAN slicing-related problems[13]. The
most important feature that distinguishes RL from the other

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

1172 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

Fig. 1. Overview of RAN slicing.

Fig. 2. RL-based slicing controller-environment interaction.

types of ML is that it evaluates the actions taken rather than
specifying correct actions[14]. RL does not require complete
knowledge of the RAN system or prior knowledge of the
network. Both requirements are inef�cient and infeasible for
stochastic environments such as RANs in NGNs. Thus, RL is
an attractive approach to solve the resource allocation problem
in RAN slicing [15], [16].

An RL-based RAN slicing controller typically interacts with
the RAN environment bidirectionally as seen in Fig.2. At any
given slicing time step, an RL agent observes the RAN system
state and chooses an action to take, i.e., resource allocation for
each slice. The action taken changes the RAN environment in
a way and the RL agent receives feedback in terms of a reward
value that represents the system performance.

The RL agent aims at maximizing the reward feedback that
it gets from its interaction with the NGNs RAN system. The
reward function is designed by network experts to guide the
RL agent’s search for the optimal policy,� � . It is often repre-
sented in terms of a weighted sum of the relevant network’s key
performance indicators (KPIs). This way, the RL-based RAN
slicing controller indicates how good the action taken was.

This is estimated based on the agent’s sampled experience
from interacting with the RAN environment in a real-time
and dynamic-open control fashion. In this study, we design a
sigmoid-based reward function to control the effect of get-
ting closer to the minimum acceptable threshold of each
slice’s SLAs.

C. Transfer Learning-Accelerated RL-Based RAN Slicing

Slow convergence of RL algorithms is a challenge that
relates to the number of learning steps needed to �nd a
good set of radio resource allocation con�gurations given
the various system states. This can happen while training,
when the agents are newly deployed in a live network, and
when the network’s context changes signi�cantly[8]. The RL
agent needs to observe a representative variety of the RAN
system’s possible states several times. The learning happens
by iteratively updating a value function until convergence. This
process is referred to as the exploration phase. The value func-
tion gives an estimate of the expected return if the agent starts
in a given state or state-action pair, and then acts according
to a particular policy.

TL expedites the learning of new target tasks by exploiting
knowledge from related source tasks[17]. This can shorten
the learning time of ML algorithms and enhance their robust-
ness to changes in wireless environments. TL is widely used in
image object classi�cation, where pre-trained top-performing
models are used as the basis for image recognition and related
computer vision tasks. This includes but is not limited to,
initializing an arti�cial neural network (ANN) with the archi-
tecture and weights from such pre-trained models. This is
done to accelerate the training of an object classi�er using
a local dataset that might include a different set of objects.
TL techniques have recently emerged as potential solutions to
RL practical challenges such as the long exploration phase in
the constantly changing wireless environments[9].

TL in RL is further categorized based on the knowledge being
transferred, and when and how to transfer such knowledge.

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

NAGIB et al.: ACCELERATING RL VIA PREDICTIVE POLICY TRANSFER IN 6G RAN SLICING 1173

Fig. 3. Example of policy reuse to accelerate RL-based RAN slicing.

TABLE I
LIST OF SYMBOLS

Policy transfer is a class of TL in which a source policy is
transferred to an agent with a similar target task[9]. In policy
reuse, one of the policy transfer sub-categories, a source policy
that is learned by an expert agent is directly reused to guide
the target policy of a learner agent[9]. The expert RL agent
learns until converging to a good policy, while the learner RL
agent reuses the expert policy,� Expert to tackle the practical
challenge of RL slow convergence. This can be con�gured
in different ways. As shown in Fig.3, this could be done by
initializing the target policy at a learner base station (BS) with
the learned source policy from an expert BS as follows[10]:

� Learner BS (t = 0) = � Expert BS (t = N) (1)

where N is the number of learning iterations carried out by
the RL agent at an expert BS until convergence as de�ned
in Table I.

III. R ELATED WORK

TL has been gradually used in the wireless networks domain.
This includes but is not limited to, BSs switching, indoor local-
ization, and intrusion detection[17]. However, most of these
studies mainly use the supervised setting of TL. More recently,
some wireless network researchers started to employ TL to
accelerate the learning process in their RL-based solutions

[8], [9]. The authors of[18] proposed two Q-learning-based
techniques to address interference mitigation in an mm-Wave
network with beamforming and NOMA. One of these tech-
niques employs TL to speed up RL convergence. The expert
agent is trained to solve a user-cell association problem. Then,
a learner agent uses such knowledge to solve joint user-cell
association and selection of number of beams problem to cover
the associated users. Furthermore, the work in[19] applies TL
to make the system more prone to variation in network status
and topology and to improve the training process ef�ciency.
The authors employ generative adversarial networks (GANs) to
capture unchanging features in different network environments
and utilize them to accelerate the training process.

Moreover, the work presented in[20] proposed deep transfer
RL-based joint radio and cache resource allocation. The authors
reported that the proposed approach resulted in better network
performance and faster convergence speeds. Furthermore, the
authors of[21] developed a TL mechanism to enable aerial
vehicles (AVs) to exploit valuable experiences. This helps
in accelerating the training process when the AVs move to
a previously unseen environment. Additionally, the authors
of [22] discuss the idea of changing the parameters of a reward
function to balance the QoS requirements of users and system
energy consumption. The authors combine relational DRL with
TL to address the insuf�cient generalization ability and the slow
recovery when exposed to new conditions. Finally, it is worth
noting that other researchers address the issue of RL slow
convergence using approaches such as heuristics and meta-
learning[23], [24], [25], [26]. However, the focus of this paper
is the ef�cient use of TL as it is one of the commonly used
approaches in the wireless networks’ domain[9].

The reviewed studies mainly use TL to accelerate the
learning process of RL-based RRM-related solutions without
paying attention to the ef�ciency of the acceleration process.
Unlike these studies, we focus on analyzing and enhancing the
ef�ciency of the TL-based acceleration of RL convergence in
RAN slicing. We propose a novelpredictive approach that
selects the best-saved policy out of several stored policies
for more ef�cient TL-based acceleration. We also consider
a vital deployment scenario of the O-RAN paradigm where
MNOs can change the priorities of ful�lling the available
slices’ SLAs. These priorities are mostly assumed as con-
stants when considered in other studies[27]. To the best of
our knowledge, this is the �rst research study to address the
abovementioned aspects in the context of RAN slicing in next-
generation wireless networks. The authors of the reviewed
studies can, for instance, revisit their work using our proposed
modules to account for ef�cient TL-based acceleration and to
enable reward function weight change by MNOs.

IV. POLICY TRANSFER FORACCELERATING RL-BASED

6G RAN SLICING

A. System Model

As mentioned in SectionII-A , resource management for
network slicing can be considered from several perspec-
tives [11]. In this paper, we focus on the downlink case of
the radio access part, and more speci�cally the RAN slicing

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

1174 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

TABLE II
SIMULATION PARAMETERS AND RL AGENT DESIGN DETAILS

resource allocation problem. The main goal is to allocate the
limited PRBs to the available slices, maintaining an acceptable
spectral ef�ciency (SE) while keeping an acceptable delay, and
generally, quality of experience (QoE) satisfaction. Given the
list of symbols in TableI, the slice resource allocation problem
can be mathematically formulated as follows[10], [28].

There exists a set ofS slices that share the available band-
width B. A parameter that controls the number of PRBs
allocated to each slice needs to be optimized for each slice.
This can be described by the vectorx � RS. At a given
instance, a RAN slicing controller decides to choose a spe-
ci�c slicing PRB allocation con�guration, i.e.,x(a), out of
theX possible con�gurations, wherea = 1 , 2, 3, . . . , X . Based
on such a decision, the system performance is affected. For
the purpose of this paper, the system performance is repre-
sented in terms of the latency of the admitted slices and can
be represented by a single value as follows:

f (x(a), � (t)) = � L � R, (2)

whereL is a function that represents an inverse form of the
latency of the available slices, while� represents the impor-
tance of the latency for each slice. Moreover,� (t) is the
system state at timet. This function is unknown to the con-
troller, therefore it can not explicitly relate input to output
and can only observe the function’s outcome. The system
state can be represented by the traf�c load, the channel
quality, or other external factors that might affect the RAN
system performance. The majority of these variables evolve
in a way that is hard to infer theoretically, especially in
time scales of seconds or shorter. The RAN slicing controller
explores different slice allocation con�gurations and observes
the corresponding system performance in search of the optimal
con�guration that maximizes the performance, i.e.,

�x = argmax
x

f (x) (3)

B. Mapping to Reinforcement Learning

Based on the model de�ned in SectionIV-A , an RL agent
would take an action at the beginning of each slicing window
to decide the PRB allocation for each slice;b = (b1, . . . , bS),
subject tob1 + · · · + bS = B . Such action is taken based on
the observed system state, de�ned in this paper as the contri-
bution to traf�c load within a speci�c time window for each
slice, d = (d1, . . . , dS). We de�ne the reward function as
the weighted sum of an inverse form of latency as detailed in
SectionIV-E1b. The goal is to maximize the long-term reward
expectation,

E{ f (x(a), � (t)) } , (4)

where the notationE(·) is the expectation of the argument,
that is,

argmax
x

E{ f (x(a), � (t)) } = argmax
x

E{ � L(x(a), � (t)) }

= argmax
b

E{ R(b, d)} (5)

This allows the agent to learn a policy,� , that takes a
stated as input and outputs an action,b = � (d) � A, to
maximize reward,R. The key challenge to solve(5) lies in
the time-varying demand in terms of traf�c models and the
number of users for each service type. The optimal solution
for the problem can be precisely calculated by carrying out
an exhaustive search. In such a case, all the possible alloca-
tions should be considered at the beginning of every slicing
window and the corresponding system performance should be
noted. This approach, however, is computationally expensive
and practically infeasible. Hence, RL is a good alternative to
solve the problem. The RAN slicing RL design parameters are
highlighted in TableII -(b).

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

NAGIB et al.: ACCELERATING RL VIA PREDICTIVE POLICY TRANSFER IN 6G RAN SLICING 1175

TABLE III
REWARD FUNCTION WEIGHT COMBINATIONS OF EXPERT AND LEARNER AGENTS

C. Simulation Environment

Reproducing an existing RL-based RAN slicing solution is
not straightforward due to the lack of RL-based RRM bench-
mark environments that can be easily integrated and reused out
of the box. Hence, the algorithms and environment implemen-
tations will vary. We improved the OpenAI GYM-compatible
RL environment that was initially implemented in our previous
research study,[10]. The improved implementation of the envi-
ronment is available on GitHub.1 This allows further analysis
and comparison of the various RL convergence acceleration
approaches in RAN slicing.

The simulation environment was changed to support
interfaces that enable the MNOs to change the SLA ful�llment
priorities of the available slices. This was done by allowing
the change of reward function weights. Such interfaces also
enable the consultation of supervised models to select the best
policy to load given a certain reward function weight vector.
With the rise of the O-RAN paradigm, this is a vital scenario
that will be more feasible in 6G networks. We also made
the following changes:

€ We changed the environment state representation to re�ect
the slices’ contribution to the overall traf�c load within a
previous time window instead of the number of packets.

€ We updated the scheduling algorithm to support schedul-
ing multiple transmissions per transmission time interval
(TTI) if resources were available (i.e., PRBs).

€ A user priority mode was added as a scheduling setting so
that if on, the transmissions belonging to one user are given
priority within the same TTI if resources were available.

€ We updated the environment so that the unsatis�ed users
who have multiple unful�lled transmission requests leave
the system.

€ The reward function was updated to re�ect more con-
trol over the effect of getting closer to the minimum
acceptable threshold of each slice’s SLAs.

D. Transfer Learning Evaluation Setup

We conducted an exhaustive experiment to investigate the
transferability of various expert policies when accelerating

1Available at http://www.github.com/ahmadnagib/TL4RL.

RL-based RAN slicing via policy reuse. We mainly focused on
the scenario when an MNO needs to change the priorities of
the various slices, and hence, the weights of the reward func-
tion. To do so, we followed a similar acceleration approach
to the one mentioned in SectionII-C but to extensively study
the reward convergence behaviour of the accelerated learner
agents. This constitutes a step towards a more ef�cient way for
acceleration when the context changes. It provides insights into
how to choose an expert policy to use for acceleration when
an MNO decides to change the slices’ priorities. We started
with training and saving 16 basic models, namely the expert
models, using a limited number of reward function weight-
combinations as seen in TableIII . The policies of each of
these trained models are then reused to initialize the policies
of 106 learner agents re�ecting 106 different reward function
weight combinations as de�ned in the table. The evaluation
process includes accelerating 3392 RL learner agents in total
via policy reuse. We used two RL algorithms, and hence, we
employed policy transfer to accelerate 1696 agents per RL
algorithm.

We use settings that are known to be used in slicing-related
studies for better interpretability of TL ef�ciency results.
Moreover, we run a large number of simulations to be con-
�dent about the generality of our analysis and approach as
described in the next sections. The round-robin algorithm is
one of the common scheduling algorithms that ensure fair-
ness[16]. We used it as the scheduling algorithm per slice
similar to the case in[29]. We simulated a scenario with three
types of services; voice over LTE (VoLTE), video, and ultra-
reliable low-latency communications (URLLC). The prevalent
4G networks mainly classify services into voice and best
effort, hence it is hard to have access to live network traces
of the services addressed in this paper. Therefore, we decided
to use traf�c that follows known mathematical models similar
to those in[29].

User requests are generated based on the distributions shown
in Table II -(a). In such cases, URLLC users generate the
largest, but the least frequent packets compared with users of
the other services. VoLTE users generate the smallest packets,
while video packets are the most frequently generated ones.
Users belonging to the same slice share bandwidth equally.

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

1176 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

More speci�cally, the round-robin scheduler is used within
each slice at the granularity of 0.5 ms. Moreover, the slicing
window size is 40 scheduling time slots. In other words, the
RL agent takes an action to adjust the PRB allocation to each
slice every 20 ms. We summarize the parameters used to create
the environment and train various RL agents in TableII -(b).

We used two RL algorithms to train and accelerate the
RL-based RAN slicing agents, namely Q-Learning and state-
action-reward-state-action (SARSA). The implementation of
both is available on GitHub.2 The implementation was adopted
and modi�ed to accommodate the acceleration process using
the policy reuse approach of TL. The trained expert policy
is loaded to initialize the learner agent’s policy. Moreover, a
decaying epsilon greedy is incorporated to better control the
exploration-exploitation behaviour of the RL agent. Finally,
the code was modi�ed to log the various learning steps’ rele-
vant information for better tracing and debugging. The two
aforementioned RL algorithms are used to decide the per-
centage of PRBs to be allocated to each slice. Afterward,
round-robin scheduling is followed within each slice. The non-
accelerated agents were compared against their accelerated
counterparts having the same reward function weights. The
accelerated agents were guided by policies from the 16 saved
basic models. Each one of these basic expert models has a
different reward function weight vector.

E. Reinforcement Learning for Network Slicing

We use the RL mapping de�ned in SectionIV-B for both
the expert and learner agents. The objectives of both the expert
and the learner agents are the same. As seen in TableII -(b),
we use 106 reward function weight combinations to simulate a
wide range of possible MNO con�gurations of the slices’ pri-
orities. This enables us to observe the reward function weight
vectors of the saved expert policies and study their effect on
the learner agents’ reward convergence, and hence, accelera-
tion. The 3392 simulation runs executed allowed us to assess
our proposed approach’s capacity for generalization.

It is expected that the reward distribution of the learner
agents will vary from the expert agents as the reward func-
tion weights are changed intentionally by the MNO. This can
happen when a new RL agent is deployed from scratch at a
BS. This can also happen when the MNO decides to change
the slices’ priorities by changing the reward function weights
after following another set of weights for a given time. In this
paper, we present a RAN slicing scenario in which the MNO
recon�gures the weights of the RL reward function. This sce-
nario happens after deploying the RL agent in a live network.
After recon�guring the reward function weights, the policy
that has been followed by the RL agent can lead to non-optimal
resource allocation actions. Hence, if the RL agent does not
recover quickly to an optimal or a near-optimal policy, this
will lead to taking non-optimal actions for a long duration.

In this study, we give more weight to latency in deciding the
system’s performance, and hence the reward function is purely
represented in terms of latency for better TL ef�ciency results’
interpretability. As a result, such non-optimal actions taken

2Available at https://github.com/dennybritz/reinforcement-learning.

by the agent will lead to non-optimal latency performance.
Therefore, the RL agent’s recovery to an optimal policy after
the changes made by an MNO needs to be as fast as pos-
sible. It is worth noting that the issue of slow convergence
of RL agents is not directly related to the latency de�ned in
the reward function. However, the agent’s convergence to the
optimal solution will lead to the best performance in terms of
slices’ latency. Accordingly, the faster the agent’s convergence,
the better the slices’ latency performance. We also assume that
the policies learned by the expert agents are saved and can be
loaded by a learner agent before the latter starts the exploration
process.

1) Expert and Learner Agents Settings:
a) Reinforcement learning agents:We decided to employ

the policy learned by the expert agents to be later transferred
to initialize all the learner agents’ policies. In the case of
Q-Learning and SARSA, this means initializing the Q-tables
of the learner agents. Q-learning and its variants are among
the most popular RL algorithms that have shown impressive
results in RL-based RRM-related studies[4]. It gained popu-
larity as it allowed the development of an off-policy temporal
difference (TD) algorithm. It is sample ef�cient, and any pol-
icy can be used to generate experience. However, Q-learning
variants still lack convergence guarantees for non-linear func-
tion approximators. Hence there is still room for improving
the convergence performance using approaches such as policy
transfer. Our framework supports any other RL algorithms via
OpenAI Gym standardized interfaces[30]. For instance, we
also used SARSA as it has a different value function update
procedure. This allowed us to examine the effect of using a
different algorithm on the acceleration process.

We mainly focus on analyzing and enhancing the acceler-
ation process when using different reward function weights.
Hence, when we con�gured the RL settings, we intended to
have a con�guration that converges to the optimal solution for
all the non-accelerated agents. The expert and learner agents
hyperparameters are shown in TableII . We used smaller val-
ues for the exploration rate (epsilon), and larger values for the
learning rate when accelerating the learner agents. This setting
is used to accelerate the deployed learner agents’ adaptation to
the new context taking advantage of the knowledge captured
by the expert policies.

b) Reward function:We used the reward function stated
in Table II . Based on the system performance function de�ned
in SectionIV-A , the reward function was improved to re�ect
more control over the effect of getting closer to the minimum
acceptable threshold of each slice’s SLAs as follows:

R =
� S��

s=1

ws �
1

1 + ec1s � (lsŠ c2s)
, that is ,

R = wVoLTE �
1

1 + ec1VoLTE � (l Š c2VoLTE)

+ wURLLC �
1

1 + ec1URLLC � (l Š c2URLLC)

+ wVideo �
1

1 + ec1Video � (l Š c2Video)
(6)

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

NAGIB et al.: ACCELERATING RL VIA PREDICTIVE POLICY TRANSFER IN 6G RAN SLICING 1177

We designed sigmoid function-based[31] rewards to ful�ll
that purpose. In this study, we focus on the delay require-
ments, so we used latency as a variable. Such a reward function
penalizes actions that come close to violating slices’ latency
requirements. Two parameters,c1 and c2, are con�gured to
tune the shape of the function.c1 re�ects the point from where
the slope of the sigmoid function begins to change for the
�rst time. This de�nes when to start penalizing the agent’s
actions. Whilec2 represents the in�ection point, i.e., the low-
est acceptable delay performance for each slice based on the
slice’s SLAs. We use different, but constant,c1 andc2 values
for each slice type.

The weights of the reward function are adjustable to allow
the MNOs to prioritize some slices over others. This will lead
to a change in context and the actions taken based on the
policy at hand may lead to extreme performance drops. We
explore the effect of accelerating the agent with knowledge
from already trained agents, namely expert agents, having dif-
ferent slice delay weight combinations in their reward function
when trained. TableIII lists the base weights used in the expert
agents’ reward functions and those of the learner agents to be
accelerated by the expert policies.

c) TrafÞc load model:We generated one traf�c model per
service for the expert and the learner agents as seen in TableII -
(a). It is represented in terms of inter-arrival times, and packet
sizes.

V. PREDICTIVE POLICY TRANSFER FORACCELERATING

RL-BASED RAN SLICING

A. Network Slicing SLAs and Weights of RL Reward
Function

It is practically vital for an MNO to have the ability to tune
the weights of an RL agent’s reward function. This enables the
MNO to change the priority of ful�lling the SLAs of the admit-
ted network slices. This is important as different services might
have similar traf�c patterns but signi�cantly different network
requirements. For instance, two massive machine-type com-
munications (mMTC) deployments may have the same traf�c
pattern. However, each of them can have a signi�cantly dif-
ferent latency tolerance depending on the exact application.
If both slices are treated equally as generic mMTC slices in
the RL reward function, this will lead to unnecessary over-
provisioning of resources to the more delay-tolerant slice. This
would also lead to SLA violations in the less delay-tolerant
slice when resources are scarce. Enabling MNOs to modify
the slices’ weights in the reward function allows for more
ef�cient use of the available spectrum and results in fewer
SLA violations and consequently fewer monetary penalties.
However, changing such weights can drastically change the
system’s performance. Hence, MNOs need an ef�cient way to
accelerate the RL agent so that it quickly recovers to a good
policy.

B. Proposed Approach

Based on the analysis results, we propose a data-driven
novel approach to select the expert policy with the least
expected reward convergence error to be used to accelerate a

learner agent. We speci�cally build ML models based on the
expert and learner agents’ weight vectors and compare their
performance to that of a distance metric. These trained models
predict the expected convergence error of accelerating a given
learner agent using a certain expert policy when the context
changes. Having such a model will allow the MNOs to esti-
mate the expected convergence error when reusing each of the
saved expert policies. Hence, they can choose the one with the
minimum expected error to load for guiding the learner agent
of interest, allowing more ef�cient policy reuse acceleration.
We speci�cally propose the following procedure:

1) First, an MNO chooses a group of expert policies that
have the minimum relative convergence error and store
them.

2) Before the MNO decides to change the slices’ weights,
in other words, slices’ delay SLAs ful�llment priorities,
the switch to the new reward function weights should
be scheduled.

3) Scheduling such a change should trigger an automated
process. Such a process should employ an ML-based
model previously trained using data collected via O-
RAN interfaces. The model predicts the expected con-
vergence error of using all the stored expert models
to accelerate a learner agent that includes the provided
scheduled weights in its reward function.

4) Based on the predicted errors, the stored expert policy
with the least error will be chosen.

5) At the scheduled weight change time, the chosen expert
policy should be loaded to initialize the policy of the
learner agent and guide the exploration phase as soon
as the context changes.

6) Concept drift[32] can happen if the network conditions
are signi�cantly different from those experienced when
training the prediction model. Hence, it is important to
update the model whenever any drifts are detected. The
performance of the various expert policies concerning
guiding the learner agents should be regularly logged.
This info should serve as feedback to be used to update
the ML-based models for up-to-date reward convergence
error predictions.

C. Models and Evaluation Metrics

As part of this paper, we propose an approach to choose
the policy to load when an MNO changes the reward function
weight vector. To do so, we explore three different types of
models. The �rst uses a simple metric, the second is based on
a traditional ML approach, and the third is based on a deep
learning approach. This allows us to analyze how a representa-
tive sample from each of these three categories performs. This
also enables us to observe whether a simple metric can get a
performance that is comparable to the more sophisticated ML
approaches.

In the �rst model, we use a simple Euclidean distance mea-
sure as a baseline. In such a case, the distances between the
weight vectors of the learner agent of interest and all the stored
expert policies are calculated, and hence, the one with the least
distance is chosen. We then investigate whether we can get a

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

1178 IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, VOL. 20, NO. 2, JUNE 2023

relatively higher accuracy for choosing the best-saved policy.
Thus, we proposed to leverage the embedded intelligence of
the O-RAN and make use of ML approaches to predict the
expert policies’ convergence errors and choose the best policy.

For that purpose, we propose the extremely randomized
trees (extra-trees) regressor as the traditional ML method.
Extra-trees regressor is based on the commonly used, and
�exible, decision trees. It is an ensemble learning method
that is faster to train than methods such as random for-
est while maintaining comparable accuracy[33]. We also
employ automated machine learning (AutoML)[34] to search
for a good-performing traditional ML approach. We used an
AutoML tool called H2O[35]. Such a tool trains several model
types, and several hyperparameter settings for each model
type. Extra-trees regressor was among the well-performing
models trained by H2O. Thus, H2O allowed us to further
optimize the extra-trees regressor model with the goal of
minimizing the regression error.

Finally, we propose to train a multilayer perceptron (MLP)
model to re�ect one of the potential deep learning architec-
tures. MLP is one of the common data-driven approaches
used in supervised learning tasks given multi-attribute network
data [36]. Our implemented framework supports the adop-
tion of and comparison against other approaches. This can
be other deep learning approaches such as convolutional neu-
ral networks (CNNs), other traditional ML approaches, or
even non-ML approaches. Using other ML approaches and
other hyperparameter settings will lead to a different prediction
performance in terms of regression error for instance. Since
we propose to load the policy with the least expected error, this
will affect the accuracy of our proposed ML-basedpredictive
policy transfer approach. Hence, a model that combines a low
root mean squared error (RMSE), and a high coef�cient of
determination(r 2 score), as de�ned later in this section, is
expected to have the highest expert policy prediction accu-
racy. Such a model should always be selected to be used for
reward convergence error prediction. Exhaustively comparing
the various ML-based methods for predicting the convergence
error is an interesting area to explore. However, it is not the
focus of this paper. We speci�ed multiple values for the differ-
ent parameters of the trained MLP and applied a grid search
through them. The best hyperparameter settings among the
ones tested are shown in TableIV.

The following metrics are used to evaluate the performance
of the built ML models[37]. The test split of the dataset is used
to compare the model’s predictions against the ground truth to
calculate both ther 2 scores and theRMSE. Additionally, the
accuracy of choosing the expert policy with the least reward
convergence error is also evaluated.

1) CoefÞcient of Determination:r 2 score indicates the pro-
portion of the variance in convergence error that is explained
by the model. It is normally a number between zero and one.
The closer the value to one, the better the performance of the
regression model.r 2 score can be calculated as follows:

r 2 = 1 Š
SSresidual

SStotal
(7)

TABLE IV
MULTILAYER PERCEPTRONHYPERPARAMETERS

whereSSresidual is the residual sum of squares, andSStotal is
the total sum of squares associated with the outcome variable.

2) Root Mean Square Error (RMSE):RMSE is a measure
of accuracy used to compare prediction errors of different
regression models for a particular dataset. RMSE represents
the quadratic mean of the differences between predicted val-
ues and observed values. In general, a lower RMSE is better,
and it can be calculated as follows:

RMSE =

��
�
�

�
1
n

� n�

i =1

(ȳi Š yi)
2 (8)

whereȳi represents the predicted values, whileyi represents
the ground truth values, andn is the number of observations.

3) Expert Policy Prediction Accuracy:The built models are
then used to predict the reward convergence error for the stored
expert policies given a certain learner agent’s reward function
weight vector. Hence, the expert policy with the least predicted
convergence error is selected for acceleration via policy reuse.
The accuracy of such selection is the main concern of our
work. It constitutes a signi�cant step towards having more
ef�cient acceleration. We also compare the accuracy of the
ML-based models to that of the simpler Euclidean distance
baseline.

All the experiments carried out in this study including
the ones for building the ML models were carried out on a
Linux machine having 8 CPUs, 64 GB of RAM, and NVIDIA
GeForce RTX 2080Ti GPU. Keras, with TensorFlow as the
backend, and sklearn are the Python packages used to imple-
ment the deep learning models and the extra-tree regressors
respectively.

VI. RESULTS

A. Reward Convergence Behaviour

We �rst explored the reward convergence behaviour of the
learner agents when policy transfer is employed to initialize
the policy of a learner agent using the saved expert policies.
Fig. 4 shows such behaviour for 4 samples out of the 106
learner agent contexts when accelerated using all the expert
policies. All the sub-�gures also show convergence behaviour
when the learner agent is left to learn from scratch without any
guidance from the expert policies. It is evident from the �gures
and the statistics compiled in TableV that the non-accelerated
versions of the learner agents need more learning steps to

Authorized licensed use limited to: Queen's University. Downloaded on September 05,2023 at 14:16:15 UTC from IEEE Xplore. Restrictions apply.

