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Abstract—The computer-aided interpretation of ECG signals
has become a pivotal tool for physicians in the clinical as-
sessment of cardiovascular diseases during the last decade.
Therefore, computerized diagnosis systems depend heavily on
machine learning and deep learning models to guarantee high
classification accuracy. However, a large amount of power is
consumed due to the need for heavy computations to handle
the classification tasks which act as a barrier to maintain
continuous ECG monitoring. Hence, this work targets energy
saving in the constrained embedded environment on a Texas
Instruments CC2650 Micro-controller Unit (MCU). We provide
a new approach to support energy-efficient ECG monitoring
in real-time through the adaptive selection of ECG leads after
applying multi-class classification on the raw ECG signals.
We deploy two different CNN model scenarios on MIT-BIH
and CODE-test datasets, and adjust the number of ECG
streamed channels to 1,4, and 8, based on the detected cardiac
abnormalities, such as arrhythmias and heart blocks. The
adaptive selection of ECG channels achieves 77.7% power
saving in the normal cardiac condition and up to 55.5% for
the heart blocks, sinus bradycardia, and sinus tachycardia.

1. Introduction

During the last 30 years, cardiovascular diseases are the
dominant cause of mortality in more than 195 countries
worldwide [1]. Thus, the ECG diagnosis tools are vital
for clinical assessment and early medical intervention. The
recent Internet of Things (IoT) technologies have a signif-
icant impact on the rapid evolution of commercial ECG
monitoring systems [2] [3]. Accordingly, a wide range of
cardiac solutions is released to facilitate different diagnosis
applications, like arrhythmias and heart blocks detection
or heart attack early prediction. Therefore, ECG signals
classification with high accuracy are highly demanded in the
ECG monitoring platforms, especially after the new era of
deep learning (DL) techniques. The deep learning models
have a big advantage of recognizing the various patterns
by extracting meaningful features from input data without
extensive feature engineering. Moreover, the performance of
neural networks increases if we use huge training data which
is essential for real-time ECG streaming that generates a

large volume of ECG raw data. Although there are multiple
existed efforts in the literature concerning the deep learning
effect on the accurate diagnosis of ECG abnormalities, the
power consumption evaluation in the low-power ECG moni-
toring systems that utilize DL models is still underexplored.

In this paper, we aim to fill the research gaps by an-
swering the following questions: How to control the power
consumption of ECG patch using multi-class classification
with DL models? How could we facilitate the adaptive
selection of ECG leads? What is the effect of adaptive leads
selection on the ECG patch battery within our real-time
constrained embedded platform?

Based on the medical literature, the cardiovascular risks
could be categorized into: Arrhythmias [4], Myocardial In-
farction [5], Heart Blocks [6]. The ECG abnormalities could
be diagnosed using a varied number of ECG leads based on
the cardiac risk category. Energy saving on the low-power
ECC systems could be achieved by adjusting the number of
streamed ECG channels according to the detected cardiac
class by the multi-class classifier. By deploying a smart
decision maker to select the corresponding number of ECG
leads, we will control the ECG patch mode of operation
efficiently without the need for full mode (i.e., 12 leads
streaming).

Through this study, we are targeting 3 main objectives
to expand the battery life of ECG patch in the constrained
real-time ECG platform. First, To evaluate the performance
of the commonly used neural models in literature within the
real-time environment. Second, to adjust the number of ECG
leads and manipulate the mode of operation on the ECG
patch based on the identified cardiac abnormality from the
classifier. Third, to minimize the total power consumption
of the ECG patch using the adaptive leads selection.

Towards satisfying system objectives, we propose two
multi-classification scenarios using a single lead and 12
leads and compare two existing neural network models in
the literature in terms of the output classes, the required
number of channels for each class, and accuracy. After-
wards, we will measure the impact of multi-class classifica-
tion and the flexible choice of leads selection on the energy
saving of the ECG patch.

The remainder of this paper is organized as follows:
In section 2, we demonstrate previous work in using deep
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learning models for ECG diagnosis. Section 3 describes the
system architecture and the scenario of deploying deep neu-
ral networks models. The experimental setup is explained in
Section 4 concerning the methodology, the neural network
architecture, and the used dataset. In section 5, we evaluate
each DL model in terms of power consumption and the
amount of energy saving. The conclusion and future direc-
tions are illustrated in Section 6.

2. Background

The ECG monitoring systems have witnessed a signifi-
cant improvement after emerging deep learning techniques.
The deep neural networks play a vital role in providing
accurate and fast diagnosis for a wide range of cardiac
diseases. Accurate ECG classification is clinically essential
to predict and control cardiac patients before suffering from
critical side effects and deterioration. Unlike the traditional
machine learning algorithms, the deep learning algorithms
could handle data pre-processing, feature extraction and
classification efficiently on large data volumes.

In the literature, many efforts are introduced to support
ECG diagnosis using deep learning [7] [8]. The existed
solutions for abnormal ECG detection differ in terms of: the
diagnosis type, DL algorithm, and the used datasets. There
are different types of diagnosis applications that rely on
DL models. As an example, myocardial infarction detection,
arrhythmias detection, irregular heart rhythm classification,
and coronary artery classification are different ECG diag-
nosis types. The convolutional neural network (CNN) and
recurrent neural networks (RNN) are the commonly used DL
algorithms in diagnosis applications. The used datasets vary
between the MIT-BIH dataset, PTB-XL dataset, PhysioNet
Cardiology Challenge 2017 dataset, European ST-T dataset,
INCART dataset, and Self-constructed datasets.

Some of the existed solutions focus on the type of
hardware used in training the neural networks. For instance,
Wu et al. [9] introduce a lightweight neural network-based
ECG classification algorithm with high recognition accu-
racy by combining both the Bi-directional Long Short-
Term Memory (BLSTM) and convolutional neural networks
(CNN). The authors utilize a high degree of similarity
between successive heartbeats to achieve computation reuse
on hardware architecture which speeds up the network in-
ference and improves the energy efficiency. However, the
proposed processor is not for continuous ECG monitoring.
Although they reuse the repeated cardiac cycles to minimize
the computational power and save energy, this technique
could lead to additional delay which contradicts real-time
ECG streaming. Correspondingly, Janveja et al. [10] propose
an initial prototype for wearable ECG monitoring. They
fabricate an additional processor unit to handle multi-class
classification using DNN and MIT-BIH dataset. The Co-
Processor consists of 2 main blocks: Pre-processing with
beat extraction block and classification block. They min-

imize the computational complexity by reducing the total
number of input and hidden layers which leads to minimiz-
ing the power consumption. Despite the main goal of using
the energy-efficient processor, the energy-saving analysis
for the different classified classes using the customized co-
processor is missing. Corradi et al. [11] introduce a method
for encoding and compressing ECG signals into a stream of
asynchronous digital events. The compressed ECG signals
can be correctly classified into one of 18 classes after a
dimensionality expansion performed by RNN. The authors
use a software simulation that is compatible with a digital
embedded implementation. After the simulation results, they
fabricate a custom mixed-signal analog/digital neuromorphic
processor to implement the recurrent SNN. The authors aim
to reduce the power consumption during training the RNN
using the VLSI neuromorphic processor, but there is no
explanation of the way they used to evaluate or reduce the
power consumption. According to the work proposed by
Monedero [12], a functional ECG diagnosis system could
perform an accurate medical assessment by following the
approach of a specialist. The author uses a set of rules in
the system to differentiate 13 diseases with a high-reliability
rate. Five leads (I, II, V1, V5, and V6) are used instead
of a standard 12-lead ECG to perform the diagnosis. A
novel noise indicator is deployed to measure the quality of
the acquired ECG signals which allows repeating the ECG
recording if the noise level is high and cannot be filtered.
Furthermore, signal processing techniques are applied to
captured signals for wave identification and CHAID (Chi-
squares Automatic Interaction Detection) model detects 13
cardiac risks. As the proposed system depends on signal
processing techniques, it will need large memory to store
records besides the high computational delays which act as
a barrier to supporting real-time ECG monitoring. Hybrid
architectures, such as Long Short Term Memory (LSTM)
cells and Multi-Layer Perceptrons (MLP) are merged in [13]
for ECG anomaly detection on the MIT-BIH dataset. Siva-
palan et al. recommend data augmentation using Synthetic
Minority Oversampling TEchnique (SMOTE) to solve the
unbalanced classes in the dataset. Energy saving is achieved
according to the following scenario: Once an ECG beat is
identified to be anomalous, the wireless transmission will be
enabled and thus sensor power consumption can be reduced.
One of the ANN technique drawbacks is the large amount
of power consumption during execution. In addition, the
continuous real-time ECG transmission is not supported as
ECG readings are only transmitted if an anomalous beat is
detected.

3. System Design

3.1. System Architecture

Figure 1 shows the system architecture of our real-time
platform with the adaptive leads selection scenario based
on the multi-class classification output. The captured raw
signals are transmitted to the gateway device that contains
the pre-trained CNN model. According to the detected ECG
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class from the multi-class classification, the ECG patch
operation mode will be changed.

Figure 1. System architecture of real-time ECG monitoring platform

3.2. System Objectives

Our proposed system has 2 main goals to optimize the
power consumption as follows:
(1) To control the number of streamed ECG channels based
on the recent cardiac status instead of sending the 8 channels
continuously.
(2) To maximize ECG patch battery life time and total
number of operational hours.

4. Experimental Setup

In light of the promising results of energy saving using
the binary classification approach [14], we investigate the
possibility of changing the number of required ECG leads
used to diagnose specific cardiac abnormalities by using
multi-class classification. The alteration of the ECG patch
mode of operation (i.e., changing the number of ECG chan-
nels) will affect the total power needed to transmit the ECG
data over BLE to the internet gateway device. In this section,
we will compare the popular existing deep learning models
that work on single lead or 12 leads datasets to classify
irregular cardiovascular rhythms, and discuss the impact of
applying these models on the total energy saving of our
real-time ECG platform.

4.1. Multi-class classification using single ECG
lead

Hannun et al. [15] introduce a cardiologist-level ar-
rhythmia detection to classify 12 rhythm classes using a
single lead ambulatory ECG. The authors aim to classify
a wide range of distinct arrhythmias with high diagnostic
performance similar to the level of ECG evaluation from
expert cardiologists. Our proposed scenario is to operate the

ECG patch on the single lead as a default operation mode.
The streamed data from the single lead will be classified
using a multi-class classification model. Based on the de-
tected ECG class, we will change the number of streamed
ECG channels to assure effective medical evaluation for
the cardiologist at the healthcare centers. The ECG patch
operation mode would reset to single lead mode after 30
minutes of streaming the required channels.

4.1.1. Dataset. The authors in the original work [15] collect
a large, novel ECG dataset [16]which is annotated by a
group of cardiologists using Zio monitor. We target deploy-
ing the DNN introduced by Hannun et al. using the MIT-
BIH dataset to assure the diversity of cardiac risks between
arrhythmias and heart blocks.

4.1.2. Deep Neural Network Architecture. Hannun et al.
propose a Deep Neural Network (DNN) which accepts ECG
raw signal sampled at 200 Hz as an input for the 1st
convolutional layer. The DNN contains 33 convolutional
layers total followed by a linear output layer to one of
12 rhythm classes. Additionally, 16 residual blocks act as
short connections for fast back-propagation. The output of
the dense layer will be the input of the softmax activation
function that produces a vector to represent the probability
distributions of the 12 rhythm classes.

4.1.3. Methodology. The training was applied offline be-
fore model deployment on the gateway device. We select 80:
20 as a ratio between the training set and testing set. The
multi-class classification with MIT-BIH dataset produces
7 cardiac classes, such as Normal Beat (N), Premature
Ventricular Contraction (V), Left Bundle Branch Block Beat
(L), Right Bundle Branch Block Beat (R), Paced Beat (/),
Supraventricular premature (S), Atrial premature beat (A).

We utilize the DNN architecture and initialize the Adam
optimizer with the following parameters: β1 = 0.9, β2 =
0.999, LearningRate = 0.001, BatchSize = 128.

4.2. Multi-class classification using 12 ECG leads

In the previous section, we evaluated the power con-
sumption using the open source single lead DNN model
provided by Hannun et al., and we will discuss it’s effect on
the total power consumption in the results section. However,
we found the power consumption evaluation is still largely
unexplored for the constrained environments using 12 Leads
datasets with DNN models. We will deploy the open-source
DNN model proposed by Ribeiro et al. [17] to measure the
impact of their 12-leads classifier on the ECG patch power
consumption.

4.2.1. Dataset. The authors in [17] create a large annotated
ECG dataset called CODE-test [18]that contains 2,322,513
ECG records from 1,676,384 different patients of 811 coun-
ties in the state of Minas Gerais/Brazil. Ribeiro et al. release
827 ECG tracings from the total dataset records for public
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usage. All the records are annotated by cardiologists, resi-
dents and medical students. The CODE-test dataset includes
6 different rhythmic and morphologic ECG abnormalities.

4.2.2. Deep Neural Network Architecture. Ribeiro et al.
propose a Deep Neural Network (DNN) based on the previ-
ous work of Hannun et al. with less number of convolutional
layers. The modified DNN accepts ECG raw signal sampled
at 400 Hz as an input for the 1st convolutional layer followed
by 4 residual blocks. The convolutional layers have 64 filters
with a length of 16 for the first convolutional layer and
residual block and increasing the number of filters by 64
every second residual block. The output of the last residual
block is an input for the Dense layer with a Sigmoid
activation function as some records have intersected classes.

4.2.3. Methodology. We target deploying the DNN intro-
duced by Ribeiro et al. using the CODE-test dataset to
evaluate the power consumption with a different set of
cardiac irregularities. As we have done before, the training
was applied offline before model deployment on the gateway
device. We select 80: 20 as a ratio between the train-
ing set and testing set. The multi-class classification with
CODE-test dataset produces 6 cardiac classes as follows:
1st Degree AV Block (1dAVb), Sinus Bradycardia (SB),
Left Bundle Branch Block Beat (LBBB), Right Bundle
Branch Block Beat (RBBB), Atrial Fibrillation (AF), Si-
nus Tachycardia (ST). We reproduce the implementation
of the DNN architecture [17], and initialize the Adam
optimizer with the following parameters: β1 = 0.9, β2 =
0.999, LearningRate = 0.001, BatchSize = 64.

5. Results and Discussion

The single lead and 12 leads neural models are evaluated
in terms of: the output classes, the classification accuracy,
the performance metrics, the total power consumption for
each cardiac class, and the amount of saved energy after
applying the adaptive leads selection.

5.1. Evaluation of multi-class classification with
single-lead DNN

After training and testing the single lead DNN model
on the MIT-BIH dataset, we found that the DNN model
achieves 99% accuracy to classify the raw ECG signals into
7 different classes. To obtain valuable insights about the
DNN predictions, we visualize the true positives, true nega-
tives, false positives, and false negatives using the confusion
matrix as shown in Figure 2.

Figure 2. Confusion matrix of the single-lead DNN model

In Table 1, We evaluate the single lead DNN model
in terms of precision, recall, and F1-score for each ECG
class. The both types of heart blocks and paced beat have
the maximum precision, recall, and F1-scores. On the other
hand, the Supraventricular premature class has the minimum
recall, and F1-scores values.

TABLE 1. EVALUATION REPORT FOR MULTI-CLASS CLASSIFICATION
WITH MIT-BIH DATASET

Precision Recall F1-Score
N 0.99 0.98 0.98
V 1.00 0.99 0.99
L 1.00 1.00 1.00
R 1.00 1.00 1.00
/ 1.00 1.00 1.00
S 1.00 0.5 0.67
A 0.83 0.99 0.90

5.2. Power consumption analysis using single-lead
DNN

In this scenario, the number of required ECG leads varies
between 1, 4, and 12 leads based on the detected ECG class.
For instance, The normal and paced classes will only need
1 lead. Both right and left bundle heart blocks need 4 leads
(V1, V2, V5, V6) to be diagnosed [19] while the premature
ventricular contraction, the Supraventricular premature, and
the atrial premature beat will need 12 leads for efficient med-
ical evaluation. The commercial ECG monitoring devices
are released with a different number of channels between 1
and 8 channels where 1 channel could be represented by a
single lead, 3 channels are represented with 3 or 4 leads, and
8 ECG channels mean 12 leads...etc. Given 24 bits of data
for each channel, and 24 bits for channel status, the data size
produced by 1 ECG channel at 500 sampling rate for 2 Sec
is 6 KB compared to 15 KB and 27 KB for the 4 channels
and 8 channels respectively. Table 2 shows the number of
ECG channels needed for each cardiac class resulting from
the single lead DNN besides the total data size streamed
from these channels at a 500 sampling rate.
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TABLE 2. ECG CHANNELS FOR EACH CARDIAC CLASS OF THE
SINGLE-LEAD DNN

ECG Class # of Required Leads # of Required Channels Data Size for (N) Channels
(Bits)

Data Size at 500 Sampling Rate
(kB)

N 1 1 48 3
V 12 8 216 13.5
L 4 3 96 6
R 4 3 96 6
/ 1 1 48 3
S 12 8 216 13.5
A 12 8 216 13.5

Power consumption measurements for TI CC2650 MCU
are calculated using equations (1) and (2) given the base
current values in [20], 500 samples/sec as a sampling rate
and a minimum 2-sec duration to capture the full cardiac
cycle.

Airtime to transmit ECG data =
Size of transmitted ECG data

251
∗ 1.4

(1)
Total Energy = Airtime (TAir) * (ITx + ICore + IPeri-RF Core

+ IPeri-Power Domain + IPeri-DMA) + Processing time (TProc) *
(ICore + IPeri-RF Core + IPeri-Power Domain + IPeri-DMA + IPeri-SPI)

(2)
The energy saving is achieved by changing the mode

of operation for the ECG patch based on the detected ECG
class and eliminating the need of streaming the 12 ECG
leads all the time which drains the patch battery. In Table 3,
we demonstrate the power consumption before (i.e., 12 leads
streaming) and after (i.e., streaming with a varied number of
leads) the multi-class classification. We reach the maximum
energy saving in single lead and 4 leads scenarios with
77.7% and 55.5% respectively.

TABLE 3. POWER CONSUMPTION AND ENERGY SAVING AFTER USING
SINGLE LEAD DNN

ECG Class Power Consumption
Using 12 Leads (mJ)

Power Consumption
Using Adaptive Leads Selection

(mJ)

Power Saving
(%)

N 1706 379.1 77.7
V 1706 1706 -
L 1706 758.2 55.5
R 1706 758.2 55.5
/ 1706 397.1 77.7
S 1706 1706 -
A 1706 1706 -

5.3. Evaluation of mutli-class classification using
12-lead DNN

After training and testing the 12-lead DNN model on the
CODE-test dataset, we found that the DNN model achieves
99.5% accuracy to classify the raw ECG signals into 5
different classes We visualize the true positives, true nega-
tives, false positives, and false negatives using the confusion
matrix as shown in Figure 3 to obtain valuable insights about
the DNN predictions.

Figure 3. Confusion matrix of the 12-leads DNN model

In Table 4, we evaluate the 12-lead DNN model in terms
of precision, recall, and F1-score for each ECG class. The
resultant scores from the reproducible implementation and
the paper results are the same. left bundle block and atrial
fibrillation classes have the maximum precision scores. The
left and right heart blocks classes achieve the highest recall
scores while the left bundle and sinus tachycardia are the
top F1 scores.

TABLE 4. EVALUATION REPORT FOR MULTI-CLASS CLASSIFICATION
WITH CODE-TEST DATASET

Precision Recall F1-Score
1dAVb 0.86 0.92 0.89
RBB 0.89 1.00 0.94
LBB 1.00 1.00 1.00
SB 0.833 0.93 0.88
AF 1.00 0.76 0.87
ST 0.94 0.97 0.96

5.4. Power consumption analysis using 12-lead
DNN

In this scenario, the number of required ECG leads varies
between 3, 4, and 12 leads for the abnormal ECG signals
and 1 lead for the normal condition. As an example, sinus
bradycardia needs 3 leads (II, III and aVF) to be diagnosed
[19] while sinus tachycardia requires 4 leads (V1, V2, V5,
V6) for the accurate medical evaluation [21]. Furthermore,
both right and left bundle heart blocks need 4 leads (V1,
V2, V5, V6) to be diagnosed [19]. The 1dAVB and the
atrial fibrillation are under the arrhythmias category where
12 leads are crucial to maintain an effective diagnosis.

Table 5 shows the number of ECG channels needed for
each cardiac class resulted from the 12 leads DNN besides
the total data size streamed from these channels at 500
sampling rate using equations (1) and (2) on each ECG class.
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TABLE 5. ECG CHANNELS FOR EACH CARDIAC CLASS OF THE 12
LEADS DNN

ECG Class # of
Required Leads

# of
Required Channels

Data Size
for (N) Channels

(Bits)

Data Size
at 500 Sampling Rate

(kB)
1dAVB 12 8 216 13.5
RBB 4 3 96 6
LBB 4 3 96 6
SB 3 3 96 6
AF 12 8 216 13.5
ST 4 3 96 6

Similarly to the single lead DNN, the power consump-
tion measurements are calculated. In Table 6, we demon-
strate the power consumption before and after applying the
multi-class classification. As a result, we get the maximum
energy saving in 3 and 4 leads scenarios with 55.5%.

TABLE 6. POWER CONSUMPTION AND ENERGY SAVING AFTER USING
12 LEADS DNN

ECG Class
Power Consumption

Using 12 Leads
(mJ)

Power Consumption
Using Adaptive Leads Selection

(mJ)

Power Saving
(%)

1dAVB 1706 1706 -
RBB 1706 758.2 55.5
LBB 1706 758.2 55.5
SB 1706 758.2 55.5
AF 1706 1706 -
ST 1706 758.2 55.5

6. Conclusion

This study evaluates the impact of adaptive ECG leads
selection on the power consumption of real-time cardiac
event monitoring within the constrained embedded envi-
ronment of TI-CC2650 MCU. The flexible choice of ECG
channels depends on the cardiac classes output from two
varied CNN models that are deployed on single-lead and
12-leads datasets. Based on the detected cardiac class, we
change the ECG patch mode of operation which in return
expands the battery lifetime and preserve continuous ECG
evaluation. The adaptive leads selection technique saves
77.7% of the total power consumption in the normal ECG
status compared to 55.5% energy saving in the abnormal
ECG conditions. In the future, we plan to apply the adaptive
ECG channels selection as a bench-marking approach to a
wide range of cardiovascular diseases datasets to expand
the operational hours of the low-powered ECG diagnosis
platforms.
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