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Abstract—In the fast dynamic environment of Vehicle Ad Hoc
Networks (VANETs), proactive security measures are necessary.
Reactive security has been VAVNETs’ guardian angel for some
time, but now it is insufficient against current security attacks.
Attack prediction is a promising solution capable of keeping
up with the recent cyber security challenges. First, we need
to understand where prediction fits in the attack process. To
accomplish this, we introduce an attack life cycle in a VANET
and exploit the proactive and retroactive phases. One of the
proactive phases is the after-effect of the attack or what we
call attack endgame. We use the Framework for Misbehavior
Detection (F2MD) to simulate an attack effect with adverse side
effects on road traffic. We implement traffic warning messages
in F2MD. Then, we create attacks on these messages, namely
“fake accident”, and simulate the effect of these attacks on the
vehicles while capturing the results using F2MD. We simulate
the impact of acting on these messages or the attack endgame,
which manifested in creating hazards. We use Recurrent Neural
Network (RNN) models to predict the endgame of the fake
accident attack on the road. We experiment with vanilla artificial
neural network solutions to create a baseline. Afterward, we
use Long Short-Term Memory (LSTM) and Gated Recurrent
Units (GRU) to build a stacked RNN model to predict the attack
endgame at different time windows. They effectively predict the
occurrence of a hazard up to 3.5 minutes ahead with over 80%
accuracy.

Index Terms—Proactive security, Vehicular Ad hoc Network
(VANET), Framework for Misbehavior Detection (F2MD), Ma-
chine learning, Neural network, LSTM, GRU.

I. INTRODUCTION

Cyber attacks are evolving in terms of intensity and com-
plexity. Moreover, we are moving into an era where more
complex attack strategies are adopted, which makes attack
detection an arduous task [1]. Most security approaches deal
with the aftermath of the attacks [2]. That being the case, this
limits the number of actions that can be taken to overcome the
attack, let alone prevent it. As a consequence, attack prediction
has become a must [3].

Prediction is an estimation of the outcome of unforeseen
data. Attack prediction can aid the network security state with
different comprehensive approaches [4]. First, it can alleviate
the risk to network security by predicting an attack based on
the initial signs or the attack’s ultimate goal. Second, it can
increase the network’s ability to sense and identify tampered
messages before the intended damage occurs. Finally, it can
help preemptively infer the attack or the attack’s next steps.
Above all, dynamic and high mobility networks such as Ve-

hicular Ad Hoc Networks (VANETs) suit a proactive approach
to securing exchanged messages [5].

In general, vehicles exchange different types of messages
in VANET around the clock. Basic safety messages (BSMs)
are sent periodically with vehicle-related information such as
send time, speed, and position. Vehicles also exchange event-
driven safety messages, which are sent when specific safety
conditions are met, such as heavy traffic, road construction,
or accidents. The work in this paper is based on the security
threats to event-driven safety messages [6].

In order to understand where security prediction can be
applied during VANET communications, we introduce an
attack life cycle for VANET. Researchers from Lockheed
Martin were the first to articulate the cyber attack life cycle
as a Cyber Kill Chain (CKC) to better understand the overall
adversary behavior in cyber attacks. CKC was also created to
assist defenders in the decision-making process for averting
attacks. We adjust the CKC model to one that can help us
understand the attack life cycle in VANET. A specific phase
has been introduced in the VANET attack life cycle called
”Achieving attack goals.” This phase describes the effect of
the attack, not the attack itself. We focus on predicting the
impact of the attack, which we call the attack endgame.

Attack endgame prediction focuses on the impact of the at-
tack. There is a difference between attack endgame prediction
and attack intention recognition. Endgame prediction concen-
trates on the outcome of the attack, with limited attention to
the attack itself. In contrast, intention recognition typically
identifies the attack first and then attempts to determine its
ultimate purpose. Therefore, intention recognition is more
related to multi-step attacks.

In this paper, we propose a novel approach that predicts
further impacts of the attacks on VANET. This approach helps
the security authorities in VANET to build proactive strategies
to alleviate the impact of attacks. To do so, we re-identify the
life cycle of attacks on VANET by including the consequences
of those attacks. We revisit the underlying implementation
of F2MD [7] to accommodate the new specifications of the
attacks life cycle in VANET. In particular, we enable F2MD
to simulate a vehicle’s behavior after receiving malicious
messages. The generated scenario represented a misbehaving
attack, namely fake accident attack. We also evaluated attack
endgame prediction using time series RNN models, and the
obtained results showed the possibility of predicting the effect
of the attack several minutes before it happens.
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The rest of the paper is organized as follows. Section II,
introduces the attack prediction challenges and discusses the
work related to attack prediction in VANET. It also describes
the attack life cycle in VANET. Section III introduces the
attack endgame and provides a detailed description of the
simulation setup, the F2MD framework, and the process of
simulating the attack endgame. Section IV highlights the
simulation results of the proposed model. Finally, Section V
draws the concluding remarks of the paper.

II. PROACTIVE SECURITY IN VANET

In this section, we identify the challenges that face attack
prediction in VANET, along with related work. Next, we
identify where and how proactive security can exist in VANET.
We argue that determining where security prediction can be
applied depends on our understanding of the attack life cycle.
Accordingly, we present our VANET attack life cycle to
identify where and how proactive security can take place.

A. Attack Prediction

Proactive security approaches are not widely used due to
several challenges [8]. In this section, we will examine three
challenges, why these challenges exist, and how to overcome
them.

1) Prediction vs. detection: The first challenge is palpable
when an introduced solution declares attack prediction while,
in fact, the attack-identifying process happens after the attack
has taken place. This should not be considered attack predic-
tion since the damage is already done.

2) Dataset for prediction: The second challenge is the ab-
sence of a standard dataset for attack prediction. The available
datasets are not designed for evaluating security prediction,
especially in VANET.

3) Prediction metrics: The third challenge is the lack of
clear metrics for evaluating attack prediction. Aside from
assessing the accuracy of the prediction, we also require
metrics concerning the timing criteria. By timing criteria, we
mean the time until the successfully predicted attack will take
place [9]. Hence, in our experiments, we introduce time as an
essential matrix in the evaluation process since it is a deciding
factor between prediction and detection.

Despite the discussed challenges regarding attack predic-
tion in VANET, many researchers still managed to introduce
promising proactive solutions [10]. Although different tech-
niques have been proposed, our interest is in RNN-based
solutions as these are more related to our work. Dasgupta
et al. [10] build a prediction-based spoofing attack detection
strategy. They used the LSTM model on a real-world driving
dataset, comma2k19 [11]. The dataset consists of various
autonomous vehicle (AV) sensor data (e.g., Control Area
Network (CAN), Global Navigation Satellite System (GNSS),
and Inertial Measurement Unit (IMU) data). Examples of
these collected sensor data are time, latitude, longitude, car
speed, steering angle, and acceleration. They used these data
to predict each time stamp’s traveled distance between the
current and the immediate future locations. They considered

one type of spoofing attack in their study where the spoofer
sends manipulated GNSS signals to show that the AV is taking
an exit while still steering forward. The tested LSTM model
exhibited a high detection rate, with an average absolute error
of 0.000046 meters and a computational latency of 5 mil-
liseconds, which is in line with the VANET latency constraint
of 100 milliseconds. Fang et al. [12] used the LSTM net-
work to create a cyberattack rate prediction framework called
BRNN-LSTM. Most often, statistical approaches are used
for predicting attacks rate. Still, BRNN-LSTM showed that
deep learning or neural networks can outperform the legacy
statistical modules like Autoregressive Integrated Moving Av-
erage (ARIMA) and Generalized AutoRegressive Conditional
Heteroskedasticity (GARCH). BRNN-LSTM was tested on
five real-world datasets, and except for only one, the model
can be used without retraining. LSTM was also used to predict
spoofing attacks [10]. Tested on a public real-world data set
called comma2k19, LSTM was used to predict the distance
between two consecutive vehicles. The spoofing attack was
detected in real-time using an error threshold, which was
determined by calculating the vehicle’s immediate and future
location and the GNSS device’s positioning error.

B. VANET Attack Life Cycle

We introduce our proposed version of the attack life cycle
in VANET to present where proactive security can be applied
through the cycle. Figure 1 displays a comparison between the
cyber attack life cycle phases against the VANET attack life
cycle. The figure also specifies what phases belong to proactive
security and what should belong to reactive security.

As shown in Figure 1, reconnaissance is the first phase in
the cyber attack life cycle, and it is the same in VANET. In
the reconnaissance step, the attacker develops a target for their
attack. The second step, weaponizing, is when the attacker
creates the payload of the attack. Whereas in VANET, this is
where the attacker begins to create a false message (either
BSM or traffic warning message). The third step, deliver,
is where the vulnerability in the system is weaponized. In
VANET, this is where the attacker exchanges false messages
by broadcasting them to the surrounding vehicles. The fourth
step, exploit, is where the weaponized payload is executed.
However, in VANET, this is where the vehicles start to act
upon the received message. The remaining steps, control,
execute, and maintain, are more related to a typical cyber
attack than VANET. In these steps, the attackers try to escalate
their privileges and maintain their presence in the system by
creating back doors. Whereas in VANET, we have what are
called attack goals or effects.

The attack goals are the attack’s impact on the vehicles that
acted on the received false messages. Attack goals can create
a hazard, an accident, or take over control of the vehicle [13].
To achieve the attack goals, the vehicle has to receive the
false message and behave accordingly. In VANET, receiving
the attacker payload (i.e., the false message) does not imply
that the payload fulfilled its purpose. Only when the vehicles
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Figure 1: Introducing attack life cycle in VANET

start to act upon the incorrect information, we can say that the
exploit phase is succeeded.

III. SIMULATING ATTACK ENDGAME

By mapping the attack life cycle in VANET over the
cyberattack life cycle, we segregate the boundary between
proactive and reactive attack steps in the VANET attacks.
The “Act on/upon” step in Figure 1 separates where proactive
solutions operate from reactive ones. Hence, we consider any
applied defending security techniques beyond this step will be
more for detection purposes than prediction purposes. Owing
to the fact that once the attack achieves its goal, any provided
solutions should be considered reactive.

We propose the idea of predicting the attack endgame,
which entails creating a hazard. Below, we discuss the detailed
steps for creating the simulation environment for generating
an attack endgame.

A. Simulation Setup

We implement our simulation using Instant Veins version
5.2, a preconfigured Linux instance that comes with Veins
installed [14]. A VANET simulation generally consists of
two types of simulators: a traffic simulator and a network
simulator. We use Simulation of Urban Mobility (SUMO) [15]
as the traffic simulator. We use vehicles in network simulation
(Veins) and OMNet++ [14] for the network simulator. OM-
NeT++ is responsible for laying down the infrastructure and
providing the needed tools for writing a simulation. All the
above modules and frameworks are included in the F2MD,
which we will discuss in detail.

B. Framework For Misbehavior Detection (F2MD)

Framework for Misbehavior Detection (F2MD) [7] is a
framework that provides different functionalities and capabili-
ties for researchers in the domain of VANET security. One of
these functionalities is simulating attacks in VANET. F2MD
was used before to generate the VeReMi dataset [16] and its
extension [17]. The F2MD developers made the source code
publicly available, so other researchers could add to it and

explore new research areas [18]. We use F2MD to add the
effect of the attack.

In this subsection, we present the changes that we made
on F2MD in general and the changes that were done to some
modules in specific to generate the attack endgame.

1) Used scenario: The Luxembourg traffic scenario (LuST)
[19] was used to provide a realistic and holistic scenario. We
conduct the experiment on the actual LuST scenario presented
in F2MD to provide a simulation as generic as possible since it
allows for a perfect balance in terms of size and representation.
The LuST was built according to an actual mid-size European
city (Luxembourg). The included traffic demand is also based
on realistic information.

2) Attack module: We generate a new attack called the
fake accident attack. We have two types of cars in our
simulation: benign and malicious. The malicious car sends
a traffic warning message about a fake accident with the
road number. Furthermore, to make the attack as authentic as
possible, we ensured that the attacker’s car did not always send
an attack message. Accordingly, we add a random number
generator where the attack car sends an attack message only
if the generated number is bigger than a certain threshold.
The random number is between 0 and 100, and we choose
70 as the threshold based on the different experiments to
ensure that the attack is represented just well enough. Another
reason for choosing 70 as a threshold is that the percentage
of traffic warning messages added to the F2MD is lower than
all exchanged messages. In our simulation, the cars exchange
Basic Safety Messages (BSMs) more frequently than traffic
warning messages. Given that not all traffic warning messages
we implement are attack messages, we need to increase the
chance of the random occurrence of the attack. Therefore, to
achieve this attack’s goal in the first place, we have to keep
searching for the suitable probability of the attack occurring
and choose this threshold. Otherwise, we will end up with
very few attack messages to generate a hazard or too much
hazard, making hazard a normal behavior in our network.

3) General simulation parameters: We kept the simulation
parameters the same except for the attack probability. This
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one is different from the attack threshold introduced in the
attack module. The attack probability parameter is related
to the overall attack probability in the network. In contrast,
the previously introduced attack threshold was related to the
malicious vehicles themselves (i.e., whether the vehicle sends
an attack message or not). That being the case, we had to
increase the attack probability from 0.05 to 0.3 for the same
reasons discussed previously in the attack module.

C. Fake Accident Attack

Originally, F2MD was built with the aim of encouraging
other researchers to contribute to the framework with new
types of VANET attacks [16]. The previously introduced set
of attacks were all basic safety message (BSM) type-related
attacks. In our work, we introduce a new type of attack related
to event-driven safety messages called the fake accident attack.

There are different types of exchanged messages in VANET.
BSMs are sent periodically, and event-driven messages are sent
in case an event triggers them. Attack endgame prediction
simulation files contain records of both BSM and traffic
warning messages. We simulate one type of event: reporting
an accident on a specific road number. In particular, vehicles
send event-driven messages to report an accident. In our
simulations, we capture the effect of receiving event-driven
messages on vehicle behavior. We simulate the impact of
receiving an accident message, whether benign or malicious,
according to the description in the “F2MDVeinsApp” module.

In a fake accident attack, some malicious vehicles send an
event-driven message to report a fake accident. This would
lead to consequences such as vehicles slowing down and
may even cause a hazard if the number of affected vehicles
exceeded a specific limit. A hazard, in our case, takes effect
when three conditions are satisfied: (1) The vehicle is on the
reported road; (2) The speed of the vehicle goes below 20% of
the maximum speed of the road; (3) The number of affected
vehicles become more than a certain threshold (five vehicles
in our simulations).

Figure 2 shows a zoomed-in figure for the occurrence of
a hazard over a period of time. The figure shows spikes
in the frequency of hazards at specific points in time, with
each spike representing a hazard occurrence. Additionally, the
figure shows how we can create a hazard and then allow
the simulation to get back to its normal state multiple times
without crashing. Our simulation also provides an indicator
of the hazard occurrence time. It’s important to note that the
time at which the attack message was sent will be ahead of the
actual occurrence of the hazard. This is because it takes time
for the hazard to materialize once the malicious message has
been received. Figure 3 provides an overview of the events that
transpired during the simulation period. The binary notation
used in the three graphs assigns a value of 1, representing
the occurrence of a hazard at a specific time, a value of 0,
indicating that no hazard was detected at that time, and a
value of -1, indicating the presence of an unidentified event. A
thorough analysis and discussion of the contents of Figure 3
will be presented in section IV-B

Figure 2: Occurrence of hazards over time: a zoomed-in view

(a) (b)

(c)

Figure 3: Assessment of the impact of data scope on hazard
prediction, with each subfigure displaying a different scenario
in which a different amount of data is included

IV. EXPERIMENTS AND RESULTS

In our experiments, we use recurrent neural network (RNN).
RNN is incorporated with memory for storing information
from prior inputs and using it to influence both input and
output. In our case, we believe that input and output are
not independent of each other, which means memory-based
models such as RNN are more suitable in our situation.

In the following experiments, we try to predict the effect
of a false traffic warning message on the network. At a
designated time, malicious cars will transmit a falsified traffic
alert. However, the full ramifications of this false information
may take some time to become apparent. The effect we look
at here is the resulting hazard from acting upon the wrong
information received from the malicious car.

We conduct three experiments to evaluate attack endgame
prediction modules. We consider the results obtained by the
LSTM and GRU models as a baseline. The first two experi-
ments create a baseline for NN models. The first experiment
is for testing how far we can predict the future. The second
experiment is conducted to test the correlation between the
type of carried-on information from past interactions and
prediction results. Finally, the third experiment is conducted
to evaluate our proposed model against the baseline.
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We implement a cross-validation approach in all our models
using the Train-Valid-Test split technique. Moreover, since we
are dealing with a time series problem, we have to use the
temporal component splitting technique since a random split
could mess up the chronological order of the events. We use
80% of the data for training, 10% for validation, and 10%
for testing. Our regression models have either LSTM or GRU
layer followed by one “relu” dense layer.

To evaluate the models’ effectiveness, we use an R-squared
score. Higher R-squared values indicate that the difference
between the observed data and the fitted values is small.
In other words, a high R-squared suggests that the model’s
variance is similar to actual values and how strongly related
they are.

A. Experimenting with How Far Can We Predict?

The first experiment is about the relation between prediction
time and obtained accuracy. The obtained records from the
simulation are indexed by the received message time. The
difference between each message is one second, which reflects
the difference between every record. Every message acts as an
indicator of the network state at the time when the message
is sent. The network has three states: hazard, no hazard,
or unknown. The goal of the experiment is to predict the
occurrence of a hazard.

In our experiments, we have to decide on two numbers, n,
which is the window size, and r, which is the step size. In order
to test the model’s ability to predict an event after n seconds,
we take a window of n messages, and then we predict the
message n+ 1. After that, the window moves with the given
step. For window sizes between 30 - 90, we use one step (i.e.,
shifting by one message), and for window sizes bigger the 90,
we use ten steps. We have to use bigger steps with bigger
window sizes since the experiments crashed with a such small
steps in big windows. We also find this compatible with the
nature of the problem. The farther the prediction goes, the less
distant data from the actual event we will need. In other words,
the older the data, the less relevant it becomes to predictions.

We use vanilla LSTM and GRU to create a baseline and
to see how far we can predict in the future and with what
accuracy. As shown in Figures 4, 5, and 6, the obtained
results show that we could maintain performance over 80%
in predicting the occurrence of a hazard up to 3.5 minutes
ahead. We consider these auspicious results since 3.5 minutes
can give enough time for counterargument solutions to act. The
model’s performance could be improved, but the algorithms
used are primitives, which offers much room for improvement,
as demonstrated by the third experiment.

B. Testing the Effect of Data Quality on the Prediction Process

The objective of the second experiment is to examine the
impact of varying time frames on the predictive accuracy
of the model. To achieve this, we divide the overall time
frame into three segments, as depicted in Figure 3. The
subfigures showcase each time segment, with each subfigure
including a different amount of data. The difference between

Figure 4: Prediction results using LSTM and GRU from 30
secs up to 3.5 mins on all available data

Figure 5: Prediction results using LSTM and GRU from 30
secs up to 3.5 mins on smaller time window

Figure 6: Prediction results using LSTM and GRU from 30
secs up to 3.5 mins on only hazard data

the subfigures lies in the inclusion of messages that are further
from the hazard occurrence time. Figure 3(a) represents the
scenario in which all available data is included, Figure 3(b)
includes less data while still capturing information beyond the
hazard occurrence duration, and Figure 3(c) encompasses data
only around the hazard occurrence time. The green highlighted
areas in every subfigure represent the three different included
time segments in each case, while the red highlighted areas
signify hazards. Testing the model’s accuracy on each time
segment improves our understanding of the time-performance
relationship.

In our experiments, we thoroughly evaluate each scenario
depicted in Figure 3 and obtain insightful results. The findings
are showcased in Figures 4, 5, and 6, providing a com-
prehensive overview of our results. These figures show the
predictive accuracy of the model across the different time
segments and provide insights into the impact of the time
segment on the model’s performance. By looking at Figures 4,
5, and 6, we can see a decline of the overall accuracy of the
results where a number of them fall under 80%. Hence, it
shows how the quality of the used data has a noticeable effect
on the prediction results. The difference between the first,
second, and third segments has two factors: the duration and
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the incorporated information. The first factor shows that not
having enough time before the occurrence of the event (i.e., the
hazard) can affect the prediction process severely. The second
factor demonstrates the importance of including past recorded
events responsible for creating the hazard. Consequently, the
second factor affects the attack endgame predicting process.
As shown in Figure 3, these events occurred when the actual
attack took place, and they are important to include even
though the hazard only materializes later.

C. Comparing Stacked LSTM and GRU Model Versus Gener-
ated Baseline

Time before hazard LSTM GRU Stacked LSTM & GRU
30s (0.5 min) 0.81% 0.81% 0.84%
60s (1 min) 0.81% 0.81% 0.84%

90s (1.5 min) 0.81% 0.8% 0.84%
120s (2 min) 0.78% 0.79% 0.83%

180s (2.5 min) 0.78% 0.79% 0.82%
240s (3 min) 0.76% 0.79% 0.81%

270s (3.5 min) 0.78% 0.78% 0.81%

Table I: Comparison between the obtained results from the
LSTM, GRU, and the stacked model

The purpose of this experiment is to introduce a new stack
model. In this model, we stack an LSTM and a GRU model,
and we compare the obtained results against both previously
introduced Vanilla LSTM and Vanilla GRU. LSTM is pre-
ferred in the case of large data, while GRU is recommended
in the case time constrained problems [20]. Since VANET
undergoes time constraints, and at the same time, we can
accumulate a large number of data over time, we decided to
stack both LSTM and GRU.

We conduct this experiment only on the last data frame,
where only the data around the hazard is considered. As
discussed in the second experiment, this data frame is the one
with the least accuracy values. In this experiment, we try to
demonstrate the benefit of using the introduced stacking model
in improving the obtained results. Table I shows a comparison
between the obtained results by all three models. We can see an
increase in the R-square values in all different time windows.
The figure shows how all the obtained results managed to
break the 80% limit with the new model.

V. CONCLUSION

Proactive security approaches are a natural evolution of the
current widely used reactive methods. This paper proposes one
of the first steps toward adopting proactive security techniques
in Vehicle Ad Hoc Networks (VANETs). Our work shows
how we could predict the effect of a cyber attack. We used
a framework for misbehavior detection (F2MD) to generate
attacks in VANET, and we incorporated a traffic warning
message into the F2MD. Next, a fake accident attack was
created and deployed, simulating the effect of the attack on
the network. We used the results from two RNN models
as a baseline and introduced a stacked model composed of
LSTM and GRU models. The final results show that the
attack endgame could be predicted up to 3.5 minutes prior

with 80% accuracy. While the presented work provides insight
into the potential effects of an attack, it is not sufficient on
its own to fully address the issue as it is essential to also
focus on developing countermeasure solutions to mitigate the
predicted effects of the attack. Thereby saving lives on the road
by avoiding the catastrophic effects of VANET cyber attacks
beforehand.

REFERENCES

[1] Y. Li and Q. Liu, “A comprehensive review study of cyber-attacks
and cyber security; emerging trends and recent developments,” Energy
Reports, pp. 8176–8186, 2021.

[2] S. S. Bhuyan, U. Y. Kabir et al., “Transforming healthcare cybersecurity
from reactive to proactive: current status and future recommendations,”
Journal of Medical Systems, pp. 1–9, 2020.

[3] O. Ben Fredj, A. Mihoub et al., “Cybersecurity attack prediction: a
deep learning approach,” in 13th International Conference on Security
of Information and Networks, 2020, pp. 1–6.
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