
DRUDGE: Dynamic Resource Usage Data
Generation for Extreme Edge Devices

Ruslan Kain, Sara A. Elsayed, Yuanzhu Chen, and Hossam S. Hassanein
School of Computing, Queen’s University, Kingston, ON, Canada

{r.kain, yuanzhu.chen}@queensu.ca
{selsayed, hossam}@cs.queensu.ca

Abstract—Extreme Edge Computing (EEC) can drastically
curtail the delay, reduce network bandwidth consumption, and
enhance system performance by providing computing resources
closer to the data-generating Internet of Things (IoT) devices.
However, the use of Extreme Edge Devices (EEDs) in EEC
presents unique challenges imposed by the inherent dynamic
user-access behavior, which introduces highly dynamic resource
usage. To tackle such challenges, it is crucial to enable accurate
resource usage predictions, which in turn requires having reliable
datasets. In this paper, we cultivate the Dynamic Resource Usage
Data Generation for EEDs (DRUDGE) methodology. DRUDGE
generates datasets that capture the resource usage dynamics
of EEDs running diverse user-end applications in fine-grained
intervals over extended periods. We present an in-depth charac-
terization of resource utilization in EEDs and make the datasets
publicly available to the research community. We examine the
temporal variation of critical system metrics, such as CPU usage,
memory usage, temperature, and network traffic. Furthermore,
we apply various statistical tests to gain valuable insights into the
data characteristics, including skewness, kurtosis, stationarity,
volatility, cointegration, multi-collinearity, Granger causality, and
Pearson correlation analysis. These insights inform model selec-
tion, feature engineering, and preprocessing techniques, leading
to more accurate and reliable forecasts and analyses for EEC
systems.

Index Terms—Edge Computing, Internet of Things, Extreme
Edge Devices, Dynamic Resource Usage, Data Generation

I. INTRODUCTION

The rapid growth of Internet of Things (IoT) devices and
their increasing integration into various aspects of our daily
lives have resulted in an enormous amount of data being
generated at the network’s edge [1]. To effectively manage and
process this data, there is a need to develop advanced comput-
ing solutions that can handle the unique challenges associated
with IoT applications [2]. Centralized cloud computing, while
offering significant advantages in terms of scalability and
cost-effectiveness, are subject to limitations such as high
latency, bandwidth constraints, and lack of location aware-
ness. These limitations can be detrimental to the performance
of latency-sensitive, data-intense, and location-dependent IoT
applications, such as autonomous vehicles, remote surgery, and
industrial automation [2].

To address these challenges, the computing landscape is
evolving from centralized cloud computing toward a more
decentralized model, known as edge computing [3]. Edge
computing brings computation and data storage closer to the
data source, i.e., the IoT devices, thereby reducing latency

and improving data processing efficiency. Extreme Edge Com-
puting (EEC) [4]–[7] is an extension of edge computing that
pushes the boundaries of distributed computing even further,
by enabling real-time processing and analysis of data directly
on end devices, also referred to as Extreme Edge Devices
(EEDs). This computing paradigm offers the potential for
significant performance improvements in terms of low latency
and location awareness [8]. In addition, it paves the way for a
new tech market where industries, businesses, and individuals
can capitalize their underused computational resources and
maintain their own edge cloud [9].

Despite its promising prospects, the positive impact of EEC
can be obstructed by the underlying dynamic user access
behavior of EEDs. This dynamicity is triggered by the fact
that EEDs are user-owned devices, which means that users can
grab their devices at any time during the execution of offloaded
tasks and run any intensive application, leading to a highly
dynamic resource usage of EEDs and profoundly altering their
available computational resources [10]. Thus, it is imperative
to develop accurate resource usage prediction schemes to
help make more informed resource allocation decisions. The
accuracy of such predictions relies heavily on having reliable
datasets. In [11], Deep Learning models are used to predict
the resource usage of EEDs. However, the existing works fail
to foster the provision of datasets that captures the resource
usage dynamics of EEDs.

In this paper, we introduce the Dynamic Resource Us-
age Data Generation for EEDs (DRUDGE) methodology.
DRUDGE presents a method for generating a dynamic re-
source usage dataset for EEDs. Note that in previous works
[5] [7], we have evaluated the performance of resource usage
prediction models on the generated datasets and the results
validate the data’s reliability. Our contributions can be sum-
marized as follows:

• We introduce DRUDGE, a novel methodology that en-
ables the generation of a comprehensive dataset that
captures the dynamic resource usage of various user-end
applications in extreme edge scenarios. To the best of our
knowledge, DRUDGE is the first work in the literature
that offers such a methodology. The code for DRUDGE
is made available on GitHub1.

1https://github.com/RuslanKain/rump-ec

2023 IEEE Global Communications Conference: IoT and Sensor Networks

5342

GL
O

BE
CO

M
 2

02
3

- 2
02

3
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

9-
8-

35
03

-1
09

0-
0/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
54

14
0.

20
23

.1
04

37
76

0

Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:18:16 UTC from IEEE Xplore. Restrictions apply.

• We present a detailed and annotated dataset that includes
labels for running applications, such as video streaming,
gaming, cryptocurrency mining, and augmented reality.
Such various usage scenarios encompass the dataset al-
lowing for a granular analysis of how each application
impacts the system’s resources to aid the development of
efficient resource management strategies for IoT applica-
tions. The dataset also contains information about various
system metrics, such as CPU usage, memory usage, tem-
perature, network traffic, and Wi-Fi link quality, among
others. The dataset is made up of more than 550,000
unique data points representing 768 hours of running
applications on EEDs. It is made publicly available to
the research community on Borealis [12] to provide a
valuable resource for studying resource usage dynamics
in EEDs and facilitate further research in this area.

• We conduct extensive data analysis using various sta-
tistical tests, including skewness, kurtosis, stationarity,
volatility, cointegration, multicollinearity, Granger causal-
ity, and Pearson correlation analysis. These tests allow
researchers to better understand the characteristics of the
data, enabling informed decisions on model selection,
feature engineering, and preprocessing techniques, lead-
ing to more accurate and reliable forecasts and analyses,
and the development of more efficient and effective
resource management strategies for IoT applications.

The remainder of the paper is organized as follows: Section
II presents the related work. Section III presents the dataset
generation method DRUDGE. Section IV describes the re-
source usage data. Section V presents the analysis conducted
on the data. Finally, Section VI presents the conclusion and
future research directions.

II. RELATED WORK

Resource usage datasets for multi-tenant systems, such as
CloudSuite [13], Google Cluster Data [14], and GWA-T-12
dataset [15], provide valuable insights into the behavior and
performance of applications in cloud environments. These
datasets include information on CPU, memory, and network
utilization, enabling researchers and practitioners to study and
optimize system performance. While CloudSuite [13] focuses
on benchmarking cloud services and infrastructure, Google
Cluster Data [14] provides large-scale datasets on resource
usage patterns within data centers, and GWA-T-12 dataset
[15] is comprised of resource usage traces for distributed
computing systems. Additionally, a dataset generated by Kim
et al. [16] provides experimental results on geographically
distributed blockchain-based services in a cloud computing
environment. The dataset contains timestamp logs, block and
transaction information from the blockchain network, and
resource usage data from AWS EC2 instances.

As opposed to existing datasets that fail to consider the
highly dynamic nature of EEDs in EEC environments, we pro-
vide a dataset that is tailored for EEC applications, capturing
resource usage dynamics of various applications under extreme
edge scenarios. This dataset is unique in providing insights into

TABLE I: Workers’ Specifications and Labels

Worker Raspberry Pi 4B Specifications

RAM (GB) CPU Freq. (GHz)

A 8 1.8
B 4 1.5
C 2 1.5
D 2 1.2

the behavior and performance of EEDs in real-world scenarios
and can be used to optimize system operation performance in
EED-based environments. Although the work in [11] makes
use of datasets in a similar environment, the authors have not
made the data publicly available nor provided a reproducible
data generation process. In contrast, we introduce a novel data
generation method and make both the dataset and the code
publicly available on the research data repository Borealis [12]
and GitHub1.

III. DYNAMIC RESOURCE USAGE DATA GENERATION FOR
EEDS (DRUDGE)

DRUDGE is developed using Python; it can mimic the
dynamic usage behavior of EEDs, also called workers, in
a controlled and repeatable manner. This data generation
methodology incorporates a diverse range of applications and
it offers the flexibility to adjust the running duration of each
application, CPU frequency, and network condition, providing
a rich dataset that encompasses various usage scenarios.

The data generation process utilizes a selection of Raspberry
Pi (RPi) 4B model devices with varying RAM sizes and CPU
cycle frequencies, detailed in Table I. To further enhance
the heterogeneity of the workers, the standard 1.5 GHz CPU
frequency of the RPi 4B model is manually configured through
overclocking and throttling. These devices are exposed to a
sequence of applications running automatically designed to
emulate dynamic resource usage scenarios, such as playing a
video game (Doom), video streaming (YouTube), augmented
reality emulation, and Duino-coin mining. The Doom game
is run by simulating player movements through predefined
actions. For the video streaming, a browser is launched to
stream a YouTube video by navigating to its URL and ini-
tiating playback. Navigation and interaction with the Doom
game and browser are achieved using the pynput library.
Augmented Reality emulation is achieved using the imutils
and cv2 libraries, where source and input images with
ArUco markers are processed, detected, and merged based on
a computed homography matrix. Lastly, Duino-coin mining
involves solving cryptographic problems making use of the
SHA-1 cryptographic function for encryption on a hash-chain,
a variant of a block-chain [17], to earn rewards. In addition,
idle periods where no application is running are also included.

The data is collected from the aforementioned resource
usage scenarios over multiple 48-hour periods, with monitor-
ing intervals set at 5 seconds. Note that DRUDGE prompts
user inputs for various parameters, including the monitoring
interval size, CPU frequency, dataset name, and application

2023 IEEE Global Communications Conference: IoT and Sensor Networks

5343
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:18:16 UTC from IEEE Xplore. Restrictions apply.

(a) Percent Memory Usage (b) Bit Rate (c) Network Bytes Received (d) Network Bytes Sent

(e) Percent CPU Usage (f) CPU User Time (g) CPU Idle Time (h) Temperature

Fig. 1: Distribution of Resource Usage for different states in random sequence for Worker A. The bottom and top dashed lines
in the violin plots indicate the 25th and 75th quantiles, respectively, the middle dashed line represents the median, and the
black dot indicates the mean.

sequence type (random or pattern). DRUDGE generates a list
of state time lengths depending on the chosen dataset type.
For the patterned sequence, the lengths are determined based
on the total run time, multiple application run-time lengths,
and the maximum application run-time length.

DRUDGE executes a series of applications with the running
duration of each application determined by the previously
generated state time lengths. The resource usage is monitored
and recorded continuously in a separate thread at the specified
interval using the psutil library [18], ensuring that data col-
lection does not interfere with other processes. The recorded
data is then saved in CSV format. If needed, DRUDGE can
also switch between different network connections, mimicking
the varying network conditions in real-world IoT scenarios.

IV. DATA DESCRIPTION

The generated dataset in DRUDGE provides a comprehen-
sive picture of system resource utilization over an extended
period, enabling researchers to analyze temporal trends and
variations in resource usage. The high granularity of the
dataset makes it suitable for studying fine-grained system
behavior and building system performance models. It consists
of dynamic resource usage information related to various
applications running on the set of workers detailed in Table I.

Each row in the dataset corresponds to a specific timestamp
and captures the state of the system, including the CPU
frequency (Hz), CPU utilization (%), CPU user, system, and

idle time (seconds), memory utilization (%), network data
sent and received (bytes), network upload and download rates
(bytes/second), temperature (degree Celsius), WiFi frequency
(MHz), bit rate (Mbps), link quality and maximum link quality
(unitless), signal level (dBm), and the resource usage state
associated with the running application (categorical). The
resource usage states are represented by the labels Game,
Stream, Mining, Augmented Reality, and Idle. We provide the
details of each of these measurements in the Appendix.

In addition to the rich set of measurements, system metrics
and resource usage states, the dataset also contains pre-
processed versions of the data divided into training (70%)
and testing (30%). The dataset is made up of more than
550,000 unique data points representing 768 hours of running
applications on EEDs. The size of the dataset is approximately
444 MB, and it is divided into 74 CSV files, which are publicly
available on Borealis [12].

V. DATA ANALYSIS

In this section, we present a thorough analysis of worker
A’s resource usage data for a random application sequence.
Our analysis includes Resource Usage by State, Cointegration
(Johansen’s), Multicollinearity (VIF), Skewness, Kurtosis, Sta-
tionarity, Volatility (EWMA), Causality (Granger), and Corre-
lation (Pearson) [19]. Due to space constraints, we present
only worker A’s results from our comprehensive investigation
of all workers’ resource usage during random and patterned

2023 IEEE Global Communications Conference: IoT and Sensor Networks

5344
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:18:16 UTC from IEEE Xplore. Restrictions apply.

sequences, and omit additional analyses such as periodogram
(power spectral density vs. frequency), distribution, autocorre-
lation, seasonal decomposition, autocorrelation/partial autocor-
relation functions, and Hurst parameter estimation; however,
they can be found in our GitHub repository1.

A. Resource Usage by State

This section analyzes the impact of the different applications
(states) on various resource usage values. Fig. 1 presents the
distribution of resource usage values for each state using
violin plots. We examine memory usage, bit rate, network
bytes sent/received, CPU usage, CPU user/idle time, and
temperature for each state. This information can be useful for
optimizing system performance and balancing the resources
allocated to various applications in different states. It can be
observed that the impact of the different states on resource
usage, in ascending order, is as follows:

• The Augmented Reality (AR) state is exeeded only by
the Stream state in mean memory usage (9.6). The mean
bit rate (55.97) is similar to that of the Idle state. Its
mean network bytes sent (6.28×108) ranks below that of
the Stream and Game states, and its mean network bytes
received (4.32×109) is similar to the Game state. The AR
state’s mean CPU usage (30.74) and mean temperature
(50.22) fall below that of the Mining and Stream states.
The mean CPU user time (456259) exceeds only that of
the Idle state, and its CPU idle time (4.58 × 106) also
exceeds that of the Stream state.

• The Idle state naturally shows the lowest mean values:
memory usage (8.6), bit rate (55), network bytes sent
(5.99×108) and received (3.89×109), CPU usage (0.24),
CPU user time (397308) and idle time (4.22× 106), and
temperature (39.23).

• The Mining state leads in mean bit rate (318.34), network
bytes received (4.39 × 109), CPU usage (90.68), and
temperature (64.96), compared to all other states. Its
mean memory usage (9.24) is less than that of the Stream
and AR states. The mean CPU user time (463005) and
idle time (4.64×106) exceeds all states except the Game
state. Lastly, the Mining state only exceeds the Idle state
in mean network bytes sent (6.19× 108).

• The Stream state leads in mean memory usage (14.86). Its
mean bit rate (218.75), network bytes received (4.34 ×
109), CPU usage (35.41), and temperature (50.32) are
only lower than that of the Mining state. The mean
network bytes sent (6.38 × 108) is only lower than the
Game state, while its CPU user time (460640) falls
between those of the Game and Mining states. The CPU
idle time (4.53× 106) only exceeds that of the Idle state.

• The Game state has the highest mean network bytes sent
(6.39× 108), and CPU user time (469068) and idle time
(4.68 × 106). Its mean bit rate (58.26) is less than that
of the Mining and Stream states. Its mean memory usage
(9.12), network bytes received (4.32× 109), CPU usage
(9.25), and temperature (42.39) exceed only that of the
Idle state.

In summary, resource usage is highest in the Mining and
Stream states, moderately high in the AR and Game states,
with the Idle state showing the least resource consumption.

B. Cointegration and Multicollinearity

Table II shows the results of the Johanson’s Cointegration
Test and Variance Inflation Factor (VIF) for the resource usage
data. Johanson’s Cointegration is useful for forecasting by
identify if two or more time series share a common long-
term trend. Most features exhibit a significant relationship at
a 95% confidence level - indicating a long-term equilibrium
relationship - except for network download rate, temperature,
and bit rate, suggesting they might not have a long-term
relationship with other features.

The Variance Inflation Factor (VIF) assesses multicollinear-
ity among predictors in a regression model. Multicollinear-
ity occurs when predictor variables in a statistical model
are highly correlated, leading to unreliable estimates and
reduced model interpretability. A VIF value greater than 10
indicates significant multicollinearity. Table II reveals high
multicollinearity for CPU user time, CPU system time, CPU
idle time, network bytes received, and temperature suggesting
that their combined effect on the dependent variable may be
overestimated. Addressing this issue may involve removing or
combining highly correlated features or using techniques like
Principal Component Analysis (PCA) [20].

Resource parameters such as CPU frequency, percent CPU
and memory usage, network bytes sent, network upload and
download rates, and bit rate have VIF values below 10,
indicating a lower degree of multicollinearity. Thus, these
parameters are more reliable predictors in a regression model,
since they provide independent information.

C. Skewness, Kurtosis, Stationarity, and Volatility

Skewness and kurtosis, the third and fourth moments, help
understand data distributions. Skewness reflects data asymme-
try, with positive skewness indicating a long right tail and
negative skewness a long left tail. Kurtosis reveals the “tailed-
ness” of the distribution, with high kurtosis signifying heavy
tails and more outliers, while low kurtosis suggests lighter tails
and fewer outliers. The insights into data distribution can guide
model choice and preprocessing to improve performance.
The network upload and download rates have high skewness,
indicating that their distributions are not symmetrical, and high
kurtosis, indicating heavy tails and more outliers.

Volatility analysis measures data variation over time. Data
with high volatility requires models that effectively capture
fluctuations, such as GARCH or ARIMA models. In terms of
the Exponential Weighted Moving Average (EWMA) Volatil-
ity, CPU frequency and network bytes sent show higher
mean values, indicating higher average metric levels. Net-
work upload and download rates demonstrate close to zero
averages. Standard deviation values offer insights into each
feature’s fluctuation. High values, such as those for CPU user
time and network bytes received, imply substantial variability,
making forecasting and risk management more challenging.

2023 IEEE Global Communications Conference: IoT and Sensor Networks

5345
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:18:16 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Combined Results: Cointegration, Multicollinearity (VIF), Skewness (3rd Moment), Kurtosis (4th Moment), EWMA
Volatility (Mean & Std), ADF p-value, and Stationarity

Feature Cointegration VIF Skewness Kurtosis EWMA Mean EWMA Std ADF p-value Stationary

CPU Frequency True 1.57 -1.43 0.15 232.28 258.52 6.83e-27 True
Percent CPU Usage True 5.27 0.8 -0.78 4.14 6.06 1.05e-26 True
CPU User Time True 470.01 0.04 -1.68 53.38 1006.87 0.9345 False
CPU System Time True 4350.06 0.01 -1.76 5.92 159.28 0.8930 False
CPU Idle Time True 178.35 0 -1.96 332.19 14193.39 0.8037 False
Percent Memory Usage True 1.28 1.5 0.56 0.16 0.39 4.79e-28 True
Network Bytes Sent True 5.1 1.59 2.88 51048.23 821249.30 0.9771 False
Network Bytes Received True 13784.72 0.01 -1.70 454703.1 10346860 0.9026 False
Network Upload Rate True 1.02 23.07 553.07 0 0 2.22e-30 True
Network Download Rate False 1.17 7.98 75.43 0 0 2.12e-30 True
Temperature False 173.97 0.6 -0.8 0.86 0.8 4.10e-26 True
Bit Rate False 1.54 0.83 -1.3 122.33 73.42 2.54e-29 True

(a) Granger causality Matrix (b) Pearson Correlation Coefficients Matrix

Fig. 2: Heatmap of a) Granger Causality Matrix and b) Pearson Correlation Coefficients Matrix for the resource usage states
in random sequence for Worker A.

Conversely, low values, like those for temperature, percent
memory usage, and network upload and download rates,
suggest more predictable behavior.

The Augmented Dickey-Fuller (ADF) test checks whether a
time series is stationary. A stationary time series has a constant
mean, variance, and autocorrelation, which is important for
many time series prediction models. The ADF test results
shown in Table II reveal that several features are stationary,
exhibiting p-values much lower than the 0.05 significance
level. However, some features are non-stationary, such as
CPU user, system, and idle times and network bytes sent
and received, with p-values greater than 0.05. Features with
high volatility and non-stationarity may require additional
preprocessing. For instance, when addressing non-stationarity,
the first-order difference can be used to stabilize the mean.
When addressing high volatility, logarithmic transformation
can be employed to make the data more amenable to time
series modeling. While other features with lower volatility and

stationarity can be directly used without adjustments.

D. Causality and Correlation
In the analysis of Worker A’s resource usage states, we

computed and visualized two distinct matrices as heatmaps in
Fig.2. Fig.2a showcases the Granger causality matrix, signify-
ing feature predictability, while Fig. 2b displays the Pearson
correlation coefficients matrix, denoting linear relationships
between feature pairs.

The Granger causality matrix (Fig. 2a) offers insights into
predictive relationships between features. Notably, significant
causality relationships exist, such as CPU user and system
Time predicting network upload and download rates, percent
memory usage, and network bytes sent. Conversely, weak
Granger causality relationships are observed for some features,
such as CPU frequency, memory percent usage, and tempera-
ture, meaning they are not predictive of the other features.

The Pearson correlation analysis (Fig. 2b) uncovers strong
positive correlations between several feature pairs, including

2023 IEEE Global Communications Conference: IoT and Sensor Networks

5346
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:18:16 UTC from IEEE Xplore. Restrictions apply.

Temperature and percent CPU usage, CPU user time and CPU
idle time, and CPU system time and network bytes received.
On the other hand, weak correlations are observed between
other feature pairs, such as network upload and download
rates, bit rate and CPU user time, and percent CPU and
memory usage.

VI. CONCLUSION

In this paper, we have proposed the Dynamic Resource
Usage Data Generation for Extreme Edge Devices (DRUDGE)
methodology. DRUDGE provides an effective way to generate
resource usage datasets to study the impact of the dynamic
access behavior of EEDs on the available resources. We have
made the generated dataset publicly available on Borealis for
researchers and practitioners and conducted extensive analysis
to gain insights into the resource usage patterns of EED appli-
cations, and to develop and validate methods for system op-
timization, energy efficiency improvement, and other research
areas in Extreme Edge Computing (EEC). In the future, we
plan on extending the dataset to include multiple applications
running concurrently on diverse EEDs, such as the NVIDIA
Jetson Nano. In addition, we will investigate techniques to
reduce the impact of dynamic usage on the performance of
the EEC system to better support IoT applications.

ACKNOWLEDGMENT

This research is supported by a grant from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
under grant number ALLRP 549919-20, and a grant from
Distributive, Ltd.

REFERENCES

[1] J. Steward, “21 Internet of Things Statistics, Facts & Trends for 2021,”
Oct 2021. [Online]. Available: https://findstack.com/internet-of-things-
statistics/

[2] A. Al-Fuqaha, M. Guizani, M. Mohammadi, M. Aledhari, and
M. Ayyash, “Internet of Things: A Survey on Enabling Technologies,
Protocols, and Applications,” IEEE Communications Surveys & Tutori-
als, vol. 17, no. 4, pp. 2347–2376, 2015.

[3] M. Satyanarayanan, “The Emergence of Edge Computing,” Computer,
vol. 50, no. 1, pp. 30–39, 2017.

[4] R. Kain and S. Sorour, “Worker Resource Characterization Under
Dynamic Usage in Multi-access Edge Computing,” in International
Wireless Communications and Mobile Computing (IWCMC), 2022, pp.
1070–1075.

[5] R. Kain, S. A. Elsayed, Y. Chen, and H. S. Hassanein, “Multi-Step Pre-
diction of Worker Resource Usage at the Extreme Edge,” in Proceedings
of the 25th International ACM Conference on Modeling Analysis and
Simulation of Wireless and Mobile Systems, ser. MSWiM ’22. New
York, NY, USA: Association for Computing Machinery, 2022, p. 25–32.

[6] R. F. El Khatib, S. A. Elsayed, N. Zorba, and H. S. Hassanein,
“Optimal Proactive Resource Allocation at the Extreme Edge,” 2022
IEEE International Conference on Communications (ICC): IoT and
Sensor Networks Symposium, IEEE ICC’22 - IoTSN Symposium, 2022.

[7] R. Kain, S. A. Elsayed, Y. Chen, and H. S. Hassanein, “RUMP: Resource
Usage Multi-Step Prediction in Extreme Edge Computing,” vol. 210,
2023, pp. 45–57.

[8] H. Gedawy, K. A. Harras, K. Habak, and M. Hamdi, “Femtoclouds
Beyond the Edge: The Overlooked Data Centers,” IEEE Internet of
Things Magazine, vol. 3, no. 1, pp. 44–49, 2020.

[9] Distributive, 2023. [Online]. Available: https://distributive.network/
[10] S. Dey, A. Mukherjee, H. S. Paul, and A. Pal, “Challenges of Using Edge

Devices in IoT Computation Grids,” in 2013 International Conference
on Parallel and Distributed Systems, 2013, pp. 564–569.

[11] J. Violos, T. Pagoulatou, S. Tsanakas, K. Tserpes, and T. Varvarigou,
“Predicting Resource Usage in Edge Computing Infrastructures with
CNN and a Hybrid Bayesian Particle Swarm Hyper-parameter Optimiza-
tion Model,” in Intelligent Computing. Springer, 2021, pp. 562–580.

[12] R. Kain, S. A. Elsayed, Y. Chen, and H. S. Hassanein, “Resource
Usage of Applications Running on Raspberry Pi Devices,” August
2022. [Online]. Available: http://dx.doi.org/10.5683/SP3/GOZAJE

[13] “CloudSuite - Benchmarking the Cloud,” http://cloudsuite.ch, accessed:
2023-05-04.

[14] “Google Cluster Data,” https://github.com/google/cluster-data, accessed:
2023-05-04.

[15] “GWA-T-12,” http://gwa.ewi.tudelft.nl/datasets/gwa-t-12-bitbrains, ac-
cessed: 2023-05-04.

[16] T. Kim and H.-J. Kim, “Experimental dataset for the Performance
Evaluation for Geographically Distributed Blockchain-based Services
in a Cloud Computing Environment,” 2022. [Online]. Available:
https://dx.doi.org/10.21227/b7mg-yb75

[17] R. Piotrowski, “Duino-Coin White Paper,” Tech. Rep., 2021.
[18] G. Sforna, “Psutil: A Cross-platform Process and System Utilities

Module for Python,” GitHub repository, 2009. [Online]. Available:
https://github.com/giampaolo/psutil

[19] J. D. Hamilton, Time series analysis. Princeton university press, 2020.
[20] G. James, D. Witten, T. Hastie, and R. Tibshirani, An introduction to

statistical learning. Springer, 2013, vol. 112.

APPENDIX

• time stamp: precise time when the measurement is taken
• time: time as a floating-point number expressed in sec-

onds since the epoch (UTC)
• cpu freq: system-wide CPU cycle frequency (MHz)
• cpu: system-wide CPU utilization as a percentage (%)
• cpu user time: time spent by normal processes executing

in user mode, including guest time (seconds)
• cpu idle time: time spent doing nothing (seconds)
• cpu system time: time spent by processes executing in

kernel mode (seconds)
• memory: memory currently in use or very recently used,

and so it is in RAM (%)
• net sent: number of overall bytes sent
• net recv: number of overall bytes received
• net upload rate: number of bytes sent in last time interval

/ time interval (MBytes/s)
• net download rate: number of bytes received in last time

interval / time interval (MBytes/s)
• temp: current temperature of the CPU (Degree Celsius)
• wifi freq: operating frequency of WiFi (GHz)
• bit rate: speed at which bits are transmitted over the

medium (Mbps)
• link quality: overall quality of the link. May be based on

the level of contention or interference, the bit or frame
error rate, how good the received signal is, some timing
synchronization, or other hardware metric.

• link quality max: maximum quality of the link (unitless)
• signal level: strength of the Wi-Fi signal received by the

network interface (dBm)
• (resource) diff: resource (CPU times, memory usage,

etc.) usage in the last interval (difference between current
aggregate and previously measured aggregate values)

• net: label feature for type of network access technology
used

• state: label feature for resource usage state of the device
associated with running application

2023 IEEE Global Communications Conference: IoT and Sensor Networks

5347
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:18:16 UTC from IEEE Xplore. Restrictions apply.

