
Dynamic Worker Availability Prediction at the
Extreme Edge

Maria Kantardjian, Sara A. Elsayed, Hossam S. Hassanein
School of Computing, Queen’s University, Kingston, ON, Canada

m.kantardjian@queensu.ca, selsayed@cs.queensu.ca, hossam@cs.queensu.ca

Abstract—Leveraging the copious yet underutilized computa-
tional resources of end devices, also known as Extreme Edge
Devices (EEDs), can significantly enhance the performance of
various Internet of Things (IoT) applications. However, EEDs
are heterogeneous and user-owned devices, which causes their
availability to be highly unreliable. In this paper, we propose the
Dynamic Worker Availability Prediction (DWAP) scheme. DWAP
is the first scheme that predicts the availability of EEDs (i.e.,
workers) and adapts to the highly dynamic computing environ-
ment at the extreme edge. DWAP employs the Continuous-Time
Markov Model (CTMC) to forecast the availability of workers
in the upcoming time step. It does so while continuously fine-
tuning the model parameters to incorporate newly available
data. We use a dataset that consists of real-world Google cluster
workload data traces. Extensive evaluations show that DWAP
significantly outperforms a representative of state-of-the-art pre-
diction schemes by up to 74% and 59% in terms of the Mean
Absolute Error (MAE) and Root Mean Squared Error (RMSE),
respectively. In addition, DWAP yields 97% and 48% reduction
in task drop rate compared to prominent availability-unaware
and availability-based resource allocation schemes, respectively.

Index Terms—Edge Computing, Extreme Edge, EEDs, Relia-
bility, Availability

I. INTRODUCTION

The widespread adoption of the Internet of Things (IoT)
is expected to lead to a surge in connected devices, with
an estimated 20 billion IoT devices by 2025 [1], which are
expected to be a primary source of the estimated 175 ZB of
global data generated [2]. This growth will trigger intensive
demands on computational resources for applications such as
smart cities, Tactile Internet, autonomous vehicles, and virtual
and augmented reality, in order to meet the rigorous Quality
of Service (QoS) requirements [3]. Cloud Computing (CC)
is insufficient for these demands due to increased latency and
congestion at back-haul links [4]. To address these challenges,
Edge Computing (EC) has emerged as an auspicious paradigm.
In EC, data processing is done at the network edge, signifi-
cantly reducing communication latency. However, current EC
platforms rely on dedicated edge servers that are controlled
by cloud service providers and/or network operators [3]. Such
monopoly can be evaded by leveraging the underutilized
computational resources of Extreme Edge Devices (EED),
such as smartphones, connected vehicles, and PCs. This equips
more players to develop and manage their own edge cloud,
creating a new tech market that is democratically governed,
accessible, and remunerative to all [3]–[6].

The positive impact of EED-enabled computing may be
hindered due to the unreliable and intermittently available
nature of user-owned and heterogeneous EEDs, resulting from
factors such as battery exhaustion, network disruption, and
dynamic user access behavior. The latter pertains to the notion
that at any given time, users may run computationally intensive
applications on their devices, such as streaming videos or
playing video-games, causing the EED to become unavailable
and refrain from performing an offloaded task to preserve its
resources for its own convenience. This negatively impacts re-
liability and increases task drop rate. Thus, availability-aware
resource allocation schemes that account for the dynamicity of
EEDs are crucial in EED-enabled computing environments.

Existing resource allocation schemes tend to overlook the
dynamic availability of EED (i.e., workers). Some schemes
allocate high-priority tasks to reliable workers, determined
based on the ratio of successful task executions [7], [8].
Other schemes use static probabilistic techniques to predict
resource availability by fitting traces of workers to a statistical
distribution and calculating parameters for estimating future
availability [9], [10]. However, these approaches fail to capture
the worker dynamics, leading to suboptimal task offloading
decisions. In this paper, we propose the Dynamic Worker
Availability Prediction (DWAP) scheme. In contrast to existing
schemes, DWAP accounts for the dynamic availability of
EEDs. It incorporates the Continuous-Time Markov Chains
(CTMC) to predict the availability of workers and adapt to
the highly dynamic changes in the environment.

CTMC is a mathematical model that describes stochastic
processes, where the system transitions between states over
time, based on transition rates [11]. In DWAP, we calculate the
transition rates using the Mean Time Between Failure (MTBF)
and the Mean Time to Repair (MTTR), which represent a
worker’s expected lifespan before experiencing a failure and
the repair time after failure, respectively. To accurately capture
the dynamic changes in the environment, we re-calculate
MTBF and MTTR as new data becomes available using a
dataset from Google’s real-world application usage traces [12].
To the best of our knowledge, DWAP is the first scheme that
accounts for the dynamic availability of workers by fostering
dynamic availability prediction to allow for better resource
allocation decisions that reduce the task drop rate.

The simulation results demonstrate that DWAP outperforms
a representative of state-of-the-art prediction schemes, achiev-
ing up to 74% and 59% improvement in Mean Absolute

2023 IEEE Global Communications Conference: IoT and Sensor Networks

3603

GL
O

BE
CO

M
 2

02
3

- 2
02

3
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

9-
8-

35
03

-1
09

0-
0/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
54

14
0.

20
23

.1
04

37
96

6

Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:19:19 UTC from IEEE Xplore. Restrictions apply.

Error (MAE) and Root Mean Squared Error (RMSE), respec-
tively. Furthermore, when compared to prominent availability-
unaware and availability-based resource allocation schemes,
DWAP achieves a considerable reduction in task drop rate,
with up to 97% and 48% fewer task drops, respectively.

The remainder of the paper is structured as follows. Section
II provides an overview of some related work. Section III
presents a detailed description of DWAP. Section IV discusses
the performance evaluation and simulation results. Finally,
Section V concludes our findings and discusses future work.

II. RELATED WORK

Several methods have been proposed to mitigate the adverse
impacts of intermittent availability and unreliability of workers
in EED-enhanced EC. These methods can be broadly clas-
sified into two categories: Reactive and Proactive. Reactive
approaches refer to measures taken after a failure occurs in
order to minimize the negative impact on offloaded tasks.
Proactive approaches, on the other hand, refer to measures
taken to reduce the likelihood of failure before its occurrence.

A. Reactive Approaches

Common reactive methods for recovering from failures
include task checkpointing [13], task replication [5], and task
migration [14]. In [13], checkpointing is used to regularly
save the task’s state. In the event of failure, the task resumes
from the last saved state. However, determining the optimal
frequency of checkpointing is a challenging issue in such
schemes. Creating checkpoints too frequently can lead to
a waste of time and resources, whereas creating infrequent
checkpoints can lead to significant data loss [13]. In [5],
Amer et al. allocate multiple replicas of the task to multiple
workers in order to increase the chance of continuing the task
without interruption in the event of failure at one worker.
However, task replication can lead to poor resource utilization
and increased waste of resources [13]. In [14], Saleh et al.
use service migration in peer-to-peer networks to transfer the
remaining portion of the task from an unreliable worker to a
different worker within the network. They propose two task
migration approaches. The first approach migrates tasks to the
first available worker, while the second approach waits for
all sub-peers to finish their tasks before initiating migrations.
The second approach is shown to be more reliable than
the first approach. However, task migration can introduce
additional overhead, latency, and energy consumption due to
the transmission of the task from one worker to another.

In general, reactive approaches can often result in wasted
resources, lost time, and decreased satisfaction for end-users
due to increased delays [6]. Proactive approaches tend to
render better performance results than reactive approaches [3].

B. Proactive Approaches

Several proactive techniques have been proposed to enable
better decision-making concerning task allocation. In [15],
McGough et al. utilize machine learning algorithms to forecast
the idle periods of workers and allocate the tasks accordingly.

They train the algorithms using several months’ worth of
traces and predict the idle times for the following month.
In [11], Umer et al. develop a Markov chain-based model
to predict worker states up to 15 days ahead. However, such
schemes fail to account for the dynamicity of EED-enabled
environments. This is since they rely on a static training
process, which involves training the model on a fixed dataset
and making predictions for days in advance. Additionally, the
set of workers considered are fairly reliable, without much
dynamic activity. As a result, it remains unclear how well these
models would perform in environments with more frequent
and significant changes in worker behavior. Some schemes
explore statistics-based methods, such as modeling worker
availability using probability distributions [10]. Incorporating
reputation models to evaluate the reliability of workers is also
used in other schemes [9], [16], whereby tasks are assigned to
workers based on their reputation, determined by factors such
as task failure rates and resource usage patterns. However,
the approaches used in [9], [10], [16] are also static and fail
to capture the factors that can influence worker availability
in a volatile environment. Furthermore, in [17], Deng et al.
propose a predictive task allocation mechanism by using the
Exponential Moving Average (EMA) technique to forecast
edge node capacities. However, the EMA may fail to capture
sudden shifts due to its limitations.

Existing proactive approaches are not entirely applicable to
dynamic environments due to their reliance on static models
that analyze historical data and provide estimations over
days or even months. In contrast, we propose a proactive
approach that is specifically tailored to dynamic EED-enabled
environments and enables efficient resource allocation in real
time. We foster dynamic prediction of worker availability for
optimized resource allocation. We also use a large Google-
generated dataset of real-world applications and preprocess it
to capture the volatile nature of EEDs [12].

III. DYNAMIC WORKER AVAILABILITY PREDICTION
(DWAP)

In DWAP, the system consists of three major components;
workers, requesters, and an orchestrator. User-owned devices,
known as workers, contribute their resources to the system in
exchange for some incentives provided by the orchestrator.
Requesters send the tasks that need to be offloaded for
execution to the orchestrator. The latter plays a central role in
the system by allocating the incoming tasks to participating
workers based on their capabilities and availability within
certain constraints and limitations. The orchestrator predicts
the availability of workers using the Continuous-time Markov
Chain (CTMC) model. Based on the estimated availability,
the orchestrator makes the resource allocation decision by
applying a refined optimization-based approach that is adopted
in various schemes [4], [6].

A. System Model

Consider a set of m workers W = {w1, w2, . . . , wm} and
a set of n tasks T = {t1, t2, . . . , tn}. Each task ti ∈ T is

2023 IEEE Global Communications Conference: IoT and Sensor Networks

3604
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:19:19 UTC from IEEE Xplore. Restrictions apply.

associated with a workload qi (in CPU cycles). Each worker
wj ∈ W has a maximum CPU cycle frequency cmax

j (in
CPU cycles/sec). The maximum number of tasks that can be
executed in parallel on each worker wj , is denoted β. One of
the key responsibilities of the orchestrator is to assign workers
with tasks that they can complete successfully. Note that the
successful completion of tasks is highly dependent on the
availability of workers, which is predicted by the orchestrator
to be subsequently used in the resource allocation process. In
the latter, the orchestrator strives to minimize the execution
time of tasks. For each task ti allocated to worker wj , the
execution time depends on both the workload qi and the CPU
cycle frequency, denoted cij (in CPU cycles/sec), dedicated
by wj to execute ti. The CPU cycle frequency cij is given by
Eq. 1.

cij =
cmax
j

β
(1)

The execution time of executing task ti on worker wj is
thus denoted by γij and is given by Eq. 2.

γij =
qi

cij ∗ Sj
(2)

Each worker wj is estimated to be available for a certain
duration αj . Consequently, the orchestrator only assigns tasks
to workers whose estimated availability can accommodate the
task duration. To estimate the availability of any given worker,
historical data on the worker’s availability behavior is used and
fitted into a Continuous-time Markov Chain (CTMC) model.
More details on how this estimation is performed is discussed
in the following section.

B. Prediction Methodology

This section provides information about the dataset utilized,
as well as the steps taken in preprocessing it. In addition,
we present the prediction process by providing a detailed
description of the CTMC model used.

1) Dataset and Preprocessing

We utilize a large usage trace of real-world applications
made available by Google [12]. The dataset encompasses 8
Google computing clusters, also referred to as cells, collected
in May 2019. Each cell comprises roughly 12k machines
(i.e., workers) and provides detailed information on various
aspects, including the characteristics of individual machines,
events occurring on those machines, the tasks they perform,
and the utilization of resources. Each task can be in one
of six possible states at any given time, namely Submitted,
Queued, Scheduled, Evicted, Failed, or Finished. Machines
can also be in one of three possible states indicating their
operational status, namely Add (the machine is added to the
cluster), Remove (the machine is removed from the cluster),
or Update (the machine’s available resources is updated).
Additionally, the machines in the cells exhibit a significant
level of heterogeneity. Notably, among all the cells, cell g is
the most heterogeneous [18], comprising 13 different types of

Fig. 1: State diagram of worker transitions

machines with varying CPU and memory capabilities. Thus,
we use data obtained solely from cell g.

Although the machines exhibit heterogeneity in terms of
their CPU and memory capabilities, it is worth noting that
they are dedicated machines and not user-owned machines,
which makes them less volatile and more reliable. Thus, for
our purposes, we sample the 100 most volatile and unreliable
machines, while ensuring representation of all 13 CPU and
memory capability combinations and proportionality to the
initial population. After extracting the availability traces of the
sampled machines, we preprocess the events by categorizing
the Add and Update events as “Available” and the Remove
events as “Unavailable”, since our system is only concerned
with the two states of availability and unavailability. Moreover,
we preprocess the time stamps into 15-minute intervals.

2) CTMC Model

Markov processes, specifically CTMC, enable modeling the
system as a set of states and transitions between states that
occur probabilistically over continuous time intervals, making
it possible to analyze the probabilities of different system
states at various points in time. The transitions between states
are specified through rates at which workers transfer from one
state to another, either due to failure (i.e. leaving the system)
or due to repair (i.e. rejoining the system). The state diagram
of worker transitions is illustrated in Fig. 1.

Let λ denote the worker failure rate. We express the failure
rate in terms of the Mean Time Between Failure (MTBF), as
shown in Eq 3. MTBF is a metric that measures the expected
time between component failures. In our setting, it refers to
the expected duration between workers leaving.

λ =
1

MTBF
(3)

Similarly, let µ denote the worker repair rate. We express the
repair rate in terms of the Mean Time to Repair (MTTR), as
shown in Eq 4. MTTR is a metric that measures the expected
time to repair a component after it fails. In our setting, it
reflects the expected time for a worker to rejoin the system.

µ =
1

MTTR
(4)

The state-transition matrix for the described Markov chain
is given by Q, as follows:

2023 IEEE Global Communications Conference: IoT and Sensor Networks

3605
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:19:19 UTC from IEEE Xplore. Restrictions apply.

Q =

[
−λ λ
µ −µ

]
, where λ, µ > 0

Let P(t) denote the transition probability matrix, where
Pi,j(t) is the transition probability from state i to state j within
time t. The state transition equations are calculated by Eq. 5.

d

dt
P (t) = P (t).Q (5)

By considering “Available” as state 1 and “Unavailable” as
state 2, and assuming that P1,1(0) = 1, solving the differential
equations yields the following:

P1,1(t) =
λ

λ+ µ
e−(λ+µ)t +

µ

λ+ µ
(6)

P1,2(t) = − λ

λ+ µ
e−(λ+µ)t +

λ

λ+ µ
(7)

P2,2(t) =
µ

λ+ µ
e−(λ+µ)t +

λ

λ+ µ
(8)

P2,1(t) = − µ

λ+ µ
e−(λ+µ)t +

µ

λ+ µ
(9)

Using Eq. 6, 7, 8, and 9, a worker’s state is predicted for a
specified number of time steps ahead. A worker’s availability
duration, αj , is calculated by aggregating the duration of
consecutive time intervals when it is predicted to be available
within these time steps.

C. Problem Formulation

Upon estimating the availability duration of workers, the
orchestrator uses such estimations to make the resource allo-
cation decision. During resource allocation, the objective is to
minimize the total execution time of all tasks. We formulate
the resource allocation problem as an Integer Linear Program
(ILP) problem, where the binary decision variable xij is set
to 1 if task ti is allocated to worker wj , and 0 otherwise, as
given by Eq. 10.

xij =

{
1 if task ti is allocated to worker wj

0 otherwise
(10)

The problem formulation is given by Eq. 11.

min
xij

∑
j∈W

∑
i∈T

xijγij (11)

subject to:

C1:
∑
j∈W

xij = 1 ∀ i ∈ T

C2:
∑
i∈T

xijcij ≤ cmax
j ∀ j ∈ W

C3: xijγij ≤ αj ∀ i ∈ T, ∀ j ∈ W

The objective given by Eq. 11 is subject to the constraints
C1-C3. Constraint C1 ensures that each task is assigned to
one worker. This guarantees that each task is assigned only

once. Constraint C2 specifies that the CPU cycle frequency
used to execute all the tasks assigned to a worker should not
exceed its maximum capacity. Constraint C3 indicates that the
execution time of each task assigned to each worker does not
exceed the estimated availability duration αj of the worker.
This is critical to ensure that a worker is not assigned a task
that takes longer to complete than the time it is available to
work on.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of DWAP
compared to a representative of state-of-the-art availability-
naive resource allocation schemes [4], [6], referred to as the
Availability-unaware Resource Allocation (AURA) scheme.
Note that AURA adopts the same optimization problem used in
DWAP but without Constraint C3. In order to assess the impact
of the prediction model used in DWAP, we compare it to
the prominent Exponential Moving Average (EMA) prediction
model [17]. Note that EMA calculates the weighted average
of past availability observations, with more weight given to
recent observations. We apply EMA to estimate the availability
duration of workers and then apply the same availability-aware
resource allocation approach used in DWAP. We refer to such
a combination as the Exponential Moving Average Resource
Allocation (EMARA) scheme.

We use the following performance metrics: 1) the average
execution time, which is the average time taken to execute
tasks successfully, 2) the task drop rate, which is the ratio
of the total number of tasks that get dropped (i.e., fail to
be executed) to the total number of allocated tasks, 3) the
Mean Absolute Error (MAE), which measures the average
absolute difference between predicted and actual values, and
4) the Root Mean Square Error (RMSE), which measures the
square root of the average of the squared differences between
predicted and actual values.

A. Simulation Setup

For the prediction system, we first split the data into training
and testing sets, with the training set initially comprising
the first 80% of the data and the testing set comprising the
remaining 20%. We use this initial split to compute the failure
and repair rates of each worker up until the current time step.

To train the CTMC-based model and make predictions on
worker availability, we use the Expanding Window Cross-
Validation technique [19]. This involves gradually increasing
the size of the training data by incorporating more historical
data through an expanding window and making predictions
on a fixed window of test data. We set the window size to
30 minutes, meaning that predictions are made for 30 minutes
into the future. Afterward, the model parameters (failure and
repair rates) are updated using the latest training set, which
now includes the data from the most recent 30-minute window.
This process of retraining the model and making predictions is
repeated for each subsequent 30-minute window of test data.

DWAP, EMARA, and AURA are all implemented using
using Python, which is integrated with Gurobi [20] to generate

2023 IEEE Global Communications Conference: IoT and Sensor Networks

3606
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:19:19 UTC from IEEE Xplore. Restrictions apply.

Fig. 2: Actual and predicted number of available workers in
DWAP and EMARA at each time interval

the optimal solution. The total number of tasks at every time
step is set to 200. The computation intensity of tasks is
uniformly distributed in the range of [50,000, 70,000]. Unless
otherwise specified, the maximum number of tasks that work-
ers can execute in parallel is set to 4. The maximum CPU cycle
frequency for each worker is extracted from the dataset. Note
that in the dataset, the values provided are normalized relative
to the most powerful worker. Thus, we set the maximum
possible value to 600 CPU cycles/sec and scale the values
accordingly. Finally, the smoothing factor in EMARA, which
determines the weight given to past observations relative to
new observations, is set to 0.1.

B. Results and Analysis

In our experiments, we evaluate the performance of DWAP,
EMARA, and AURA over varying β (i.e., maximum number
of parallel tasks) and average task intensity q. In addition,
we evaluate the performance of the prediction models used
in DWAP and EMARA over varying time intervals. All
experiments are repeated 150 times and the final results from
each scheme are averaged across all time steps and workers.

1) Prediction Results

Fig. 2 depicts the actual and the predicted number of
available workers in DWAP and EMARA at each time interval.
It can be observed that the predicted values in DWAP closely
follow the actual data, which shows the ability of DWAP to
effectively capture the overall trend of worker availability. In
contrast, predictions made using EMARA substantially deviate
from the actual values, indicating that it is significantly less
accurate than DWAP in predicting worker availability.

Notably, DWAP is also able to capture short-term fluc-
tuations in the data, which EMARA is unable to do. This
demonstrates that DWAP is not only more accurate, but
also more adaptable to changes. In order to provide a more
comprehensive evaluation of the models’ performance, we

assess their MAE and RMSE. As depicted in Table I, DWAP
outperforms EMARA in terms of both metrics, achieving
an improvement of more than 74% in MAE and 59% in
RMSE. This can be attributed to DWAP’s utilization of state
transitions, consideration of time intervals between events, and
dynamic parameter adjustments, which effectively capture data
dynamics and temporal dependencies. EMARA, on the other
hand, employs a weighted average of previous data points,
which may fall short in capturing complex patterns or sudden
shifts.

TABLE I: MAE and RMSE of DWAP and EMARA

Scheme MAE RMSE
DWAP 0.58 1.36
EMARA 2.31 3.39

2) Impact of Maximum Number of Parallel Tasks (β)

Fig. 3a depicts the performance of DWAP, AURA, and
EMARA in terms of the average execution time over varying
β. The results show that as the value of β increases, the
average execution time increases for all of the schemes. This is
because the dedicated computational capability cij is reduced
for each individual task, resulting in a more time-consuming
execution. Furthermore, the three schemes yield fairly com-
parable results. AURA marginally outperforms DWAP and
EMARA by up to 4%. This can be attributed to the fact
that AURA focuses solely on minimizing the execution time
without considering worker availability. In contrast, DWAP
and EMARA take both factors into consideration, which
results in a more constrained selection of available resources.

Fig. 3b shows the task drop rate of DWAP, AURA, and
EMARA over varying β. It can be observed that DWAP
significantly outperforms AURA, with an improvement of up
to 97%. This is because in contrast to AURA, DWAP accounts
for worker availability and only assigns tasks to workers that
are predicted to be available for the entire duration of task
execution, thus reducing the risk of tasks being dropped due to
intermittent availability of workers. In addition, DWAP signifi-
cantly outperforms EMARA, yielding an improvement of up to
48%. This is since DWAP provides more accurate estimations
of workers’ availability than EMARA, thus reducing the risk
of assigning tasks to workers that are estimated to be available
longer than they actually are.

3) Impact of Average Task Intensity (q)

We investigate how DWAP, AURA, and EMARA respond
to increasing workload intensity of tasks and whether this
affects their task allocation decisions. Fig. 3c depicts the drop
rate of DWAP, AURA, and EMARA over varying workload
intensity (q). Our findings indicate that increasing the work-
load intensity of tasks does not significantly impact the task
allocation decision process. Instead, it only makes the tasks
more computationally intensive, which affects the execution
time, but not the task allocation decision. Thus, as q increases,
the task drop rate of DWAP, AURA, and EMARA remains the
same.

2023 IEEE Global Communications Conference: IoT and Sensor Networks

3607
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:19:19 UTC from IEEE Xplore. Restrictions apply.

(a) Average execution time over varying β (b) Task drop rate over varying β (c) Task drop rate over varying q

Fig. 3: Performance results of DWAP, AURA and EMARA

V. CONCLUSIONS AND FUTURE WORK

The ownership and management of Extreme Edge Devices
(EEDs) by users introduce inherent uncertainties that demand
novel resource allocation mechanisms capable of adapting to
dynamically changing worker availability. In this paper, we
have proposed the Dynamic Worker Availability Prediction
(DWAP) scheme. DWAP incorporates the use of historical
data into the Continuous-Time Markov Chain (CTMC) model
to dynamically predict the availability of workers in the
subsequent time step. DWAP continually adjusts the model
parameters to incorporate new incoming data, enabling it to
make informed and effective resource allocation decisions
for the volatile environment of EED-enabled EC. Extensive
evaluations on real-world data have shown that DWAP yields
significant improvements of 74% and 59% in terms of MAE
and RMSE, respectively, compared to a prominent prediction
scheme. Furthermore, evaluations have shown that DWAP
significantly outperforms prominent availability-unaware and
availability-based resource allocation schemes, by up to 97%
and 48%, respectively, in terms of task drop rate. In the
future, we plan on further improving the prediction accuracy
of DWAP by applying uncertainty quantification techniques.

ACKNOWLEDGEMENT

This research is supported by a grant from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
under grant number ALLRP 549919-20, and a grant from
Distributive, ltd.

REFERENCES

[1] M. Hung, “Leading the iot, gartner insights on how to lead in a connected
world,” Gartner Research, vol. 1, pp. 1–5, 2017.

[2] D. R.-J. G.-J. Rydning, J. Reinsel, and J. Gantz, “The digitization of the
world from edge to core,” Framingham: International Data Corporation,
vol. 16, 2018.

[3] R. Kain, S. A. Elsayed, Y. Chen, and H. S. Hassanein, “Multi-step
prediction of worker resource usage at the extreme edge,” in Proceedings
of the 25th International ACM Conference on Modeling Analysis and
Simulation of Wireless and Mobile Systems, 2022, pp. 25–32.

[4] M. De’bas, S. A. Elsayed, and H. S. Hassanein, “Multitiered worker-
oriented resource allocation at the extreme edge,” in GLOBECOM 2022-
2022 IEEE Global Communications Conference, 2022, pp. 5674–5679.

[5] I. M. Amer, S. M. Oteafy, S. A. Elsayed, and H. S. Hassanein, “Qos-
based task replication for alleviating uncertainty in edge computing,”
in GLOBECOM 2022-2022 IEEE Global Communications Conference,
2022, pp. 5147–5152.

[6] R. F. El Khatib, S. A. Elsayed, N. Zorba, and H. S. Hassanein, “Optimal
proactive resource allocation at the extreme edge,” in ICC 2022-IEEE
International Conference on Communications, 2022, pp. 5657–5662.

[7] G. A. McGilvary, A. Barker, and M. Atkinson, “Ad hoc cloud comput-
ing,” in 2015 IEEE 8th international conference on cloud computing,
2015, pp. 1063–1068.

[8] A. Celestini, A. Lluch Lafuente, P. Mayer, S. Sebastio, and F. Tiezzi,
“Reputation-based cooperation in the clouds,” in Trust Management
VIII: 8th IFIP WG 11.11 International Conference, IFIPTM 2014,
Singapore, July 7-10, 2014. Proceedings 8, 2014, pp. 213–220.

[9] Y. Alsenani, G. Crosby, and T. Velasco, “Sara: A stochastic model to
estimate reliability of edge resources in volunteer cloud,” in 2018 IEEE
international conference on EDGE computing (EDGE), 2018, pp. 121–
124.

[10] B. Javadi, D. Kondo, J.-M. Vincent, and D. P. Anderson, “Discovering
statistical models of availability in large distributed systems: An empiri-
cal study of seti@ home,” IEEE Transactions on Parallel and Distributed
Systems, vol. 22, no. 11, pp. 1896–1903, 2011.

[11] A. Umer, A. N. Mian, and O. Rana, “Predicting machine behavior
from google cluster workload traces,” Concurrency and Computation:
Practice and Experience, vol. 35, no. 5, p. e7559, 2023.

[12] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G. Qin, S. Hand,
M. Harchol-Balter, and J. Wilkes, “Borg: the next generation,” in
Proceedings of the fifteenth European conference on computer systems,
2020, pp. 1–14.

[13] S. Jayasekara, S. Karunasekera, and A. Harwood, “Optimizing
checkpoint-based fault-tolerance in distributed stream processing sys-
tems: Theory to practice,” Software: Practice and Experience, vol. 52,
no. 1, pp. 296–315, 2022.

[14] E. Saleh and C. Shastry, “Task migration in volunteer computing sys-
tems,” in 2022 4th International Conference on Advances in Computing,
Communication Control and Networking (ICAC3N), 2022, pp. 2076–
2079.

[15] A. S. McGough, M. Forshaw, J. Brennan, N. Al Moubayed, and
S. Bonner, “Using machine learning to reduce the energy wasted in
volunteer computing environments,” in 2018 Ninth International Green
and Sustainable Computing Conference (IGSC), 2018, pp. 1–8.

[16] Y. Alsenani, G. V. Crosby, T. Velasco, and A. Alahmadi, “Remot
reputation and resource-based model to estimate the reliability of the
host machines in volunteer cloud environment,” in 2018 IEEE 6th in-
ternational conference on future internet of things and cloud (FiCloud),
2018, pp. 63–70.

[17] X. Deng, J. Li, E. Liu, and H. Zhang, “Task allocation algorithm
and optimization model on edge collaboration,” Journal of Systems
Architecture, vol. 110, p. 101778, 2020.

[18] Y. Lin, A. Barker, and S. Ceesay, “Exploring characteristics of inter-
cluster machines and cloud applications on google clusters,” in 2020
IEEE International Conference on Big Data (Big Data), 2020, pp. 2785–
2794.

[19] R. J. Hyndman and G. Athanasopoulos, Forecasting: principles and
practice. OTexts, 2018.

[20] Gurobi, “Gurobi optimizer reference manual,” https://www.gurobi.com/,
2022, accessed on March, 2023.

2023 IEEE Global Communications Conference: IoT and Sensor Networks

3608
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:19:19 UTC from IEEE Xplore. Restrictions apply.

