
Effective Web Service Discovery in Mobile
Environments

Khalid Elgazzar, Hossam Hassanein, Patrick Martin
School of Computing, Queen’s University, Canada

{elgazzar, hossam, martin}@cs.queensu.ca

Abstract—Recent advancements in the design of mobile devices
and wireless technologies have produced a successful coupling of
mobile devices and Web services, where mobile devices can be a
service provider or a consumer. However, finding relevant Web
services that match requests remain a major hindrance to its
booming. The challenges facing Web service discovery are further
magnified by the stringent constraints of mobile devices, and the
inherit complexity of wireless heterogeneous networks. While
significant research has focused on service discovery protocols
in isolation, they mostly lack a holistic capacity to address the
different limitations collectively. We introduce a novel discovery
framework that addresses all aspects of mobile Web service
discovery, yet does not jeopardize the efficiency requirement
for this discovery; especially as an application run in resource-
constrained environments.

Index Terms—mobile Web services, Web service discovery,
service discovery framework, mobile devices

I. INTRODUCTION

Service Oriented Architecture (SOA) [1] is a vision of

developing software applications that can be composed of

networked functionalities that are capable of interacting with

each other automatically. SOA offers the promise of robustness

and agility by supporting software reuse, loose coupling,

flexible design, and interoperability between heterogeneous

applications. With the emergence of the Mobile Internet (MI)

and the constantly expanding mobile user base, the notion

of networked functionalities helps end-users with limited re-

sources to perform complicated tasks on high-end machines

over the network. Web services implement the concepts of

SOA to enable “software as a service”, which delivers software

services over the network using technologies such as XML.

Web services, however, have neither achieved the antic-

ipated wide spread use, nor dominated Web applications

development. Web services have, so far, failed to match the

burst expansion of the Web. A main reason is the inefficiency

of Web service discovery. That is, the ability for the user to find

Web services that meet his/her needs and are appropriate for

the current context [2]. The standard Web service development

cycle includes description, discovery, and invocation (remote

execution) [3]. Web service discovery in particular, is a key

enabler to the adoption of Web services technology as a

computing paradigm.

With the emergence of new generations of smartphones and

high-end mobile devices, both equipped with extraordinary

features, users became capable of running sophisticated Web

applications. Furthermore, the unprecedented advancements

of wireless technologies influence mobile users to become

highly interested in the Mobile Internet. With the limitations

existing in wireless networks and the limited resources of

mobile devices, Web service discovery becomes even more

difficult, and hence, challenging.
Broadly speaking, current service discovery techniques are

fundamentally designed for static and wired environments.

Most of the existing discovery approaches lack the compre-

hensive understanding of both mobile devices and wireless

networks limitations, which makes these approaches incapable

of efficient and reliable discovery in a mobile scenarios.
In this paper, we introduce a novel discovery framework

that addresses all aspects of mobile Web service discovery in

resource-constrained environments. For the various aspects of

the framework, we identify approaches that could potentially

be applied from current research.
The contributions of this paper can be summarized as

follows:

• We provide an overview of existing Web service dis-

covery approaches and point out their limitations in

mobile environments. As well, we identify the essential

requirements for a successful Web service discovery in

resource-constrained environments.

• We propose a generic Web service discovery framework

that can be used in a general Web service environment,

but more specifically for mobile domains and resource-

constrained environments. The framework can be imple-

mented in client/server or P2P networks with sufficient

robustness to implement components where they would

perform most efficiently.

• We propose a novel request submission protocol that

identifies the available service providers as well as the

language used to describe the services they offer before

submitting the service request.

The remainder of this paper is organized as follows. Section

II outlines related research. Section III gives a brief back-

ground on Web service descriptions. Section IV discusses

the current discovery approaches, points out the limitations,

and identifies the essential requirements for efficient discovery

in mobile environments. Section V describes the proposed

framework and relevant research efforts that are applicable

for each component. In Section VI we present a use-case

scenario to illustrate how the proposed framework can be

applied. Finally, Section VII concludes the paper and outlines

future research avenues.

7th IEEE International Workshop on Performance and Management of Wireless and Mobile Networks P2MNET 2011, Bonn, Germany

978-1-61284-928-7/11/$26.00 ©2011 IEEE 697

II. RELATED WORK

Over the past few years, researchers have focused on

optimizing specific parts of current Web service discovery

approaches to enable them to fit within mobile domains.

These aspects include: semantic reasoning strategies for per-

vasive discovery [4], [5], [6], [7], [8]; location-based mobile

services [9]; context-aware discovery [10], [2]; incorporating

user preferences with the discovery process [11]; device-aware

discovery [12]; capacity-driven service discovery [13], [14];

service composition in a mobile environment [15]; dynamic

discovery for P2P networks [16], [17]; future vision for discov-

ery schemes in open mobile environments [18], and adaptive

interfaces and web content presentations for mobile devices

[19]. Although there have been many research efforts related

to particular aspects of discovery, within heterogeneous mobile

environments, there is no single publication that provides a

complete picture of the discovery process.

III. WEB SERVICE DESCRIPTION STANDARDS

A Web service is a computational software entity which is

able to achieve a user’s objective by a remote invocation. Web

services allow applications written in different programming

languages to interact seamlessly through standard protocols

[20]. Web service standards such as description, discovery,

publication, and invocation offer mechanisms for both service

providers and consumers to carry out their tasks in a universal

and standard way. Once the service is developed, the provider

describes the service functionalities, operations it performs,

functional and non-functional parameters , and how potential

customers can communicate with the service. Description

languages include semantic and non-semantic approaches.

WSDL 2.0 [21] is the latest standard specification for

non-semantic services. It describes the service in two levels;

”abstract” and ”concrete”. The abstract level describes the

operations that can be performed by the service and the

message structures used to communicate to these operations, as

well as an interface which combines messages and operations.

The concrete level specifies the service bindings associated

with the network endpoints.

Semantic descriptions of Web services rely on domain

ontologies [22] which aim to provide unambiguous definitions

of the description terms and to address the lack of semantic

understanding of messages and data, which consequently

makes the interactions between services more logical, and

facilitates service composition and integration. Web services

may use various semantic description languages such as

Web ontology languages (OWL-S) [23], Web Service Mod-

eling Ontology (WSMO) [24], WSMO-Lite [25] for resource-

constrained environments, Web Services Semantics (WSDL-

S) [26], and Semantic Web Services Ontology (SWSO) [27].

Unfortunately, each description language has its own notations

and no standard, universally accepted formal notations exist for

sematic descriptions. Services that are described in a particular

formalism are only discovered by requests constructed by

the same formalism. Using the same formalism to describe

both the service and the request may result in a mismatch

between the request description and user intuition [28]. With

the emergence of mobile Web services provisioning, which are

services provided by mobile devices over wireless networks,

most of these description languages must be revisited to

accommodate device and network constraints.

IV. SERVICE DISCOVERY

Service discovery is the act of finding a relevant service for

a particular request. Most of the existing techniques belong to

one of three main discovery approaches [29]: UDDI Business

Registry (UBR), specialized search engines, and generic search

engines. Each one of these approaches has its strengths and

weaknesses.

-UDDI Business Registry: UDDI is the discovery approach

used by the standard Web service architecture. It relies on

centralized repositories that providers use to publish their

services and customers use to discover services that satisfy

their requirements. Usually, UBR provides information about

the service description, publisher, endpoint, technical interface

(tModel), implementation, etc. This approach has not been

widely adopted by the Web services community which ex-

plains why major UBR (such as IBM and Microsoft) shut

down their services in 2006 [30]. However, there are still few

public registries offering their services with different capabil-

ities such as RemoteMethods, StrikIron, and X-Methods.

Problems with UBRs include the centralized architecture,

limited scalability, single point of failure, consistency main-

tenance, searches that rely on keywords or category browsing

only, and outdated service records. Customers also need to

be aware of the UBR addresses to locate and query them.

However, UBRs enable service subscription for interested

users to keep them updated. UBRs add extra features such as

service trail, transaction facilitation, WSDL parser, different

pricing schemes, performance monitoring, programmatic in-

terface, ratings, categorization, documentation, etc. UBRs also

allow searching for providers and tModels [30], [29].

-Specialized search engines: This approach aims to distin-

guish a Web service search from a Web content search. The

basic idea is to make use of Web services functionalities,

operations, and other information provided in the description

files in order to perform a meaningful search for services that

best match a particular request. These search engines collect

Web services description files from public UBRs and Web

contents, extract the semantic meaning of these Web services

from their description files, and perform semantic matching

between requests and Web services capabilities. Woogle [31]

and WSCE [32] are examples of these search engines.

Web services search engines are able to find services that

are more relevant to users’ requests as the search does not only

rely on keywords but also on functionalities and other running

parameters such as QoS. Additionally, the retrieved services

should be valid and running as these engines are able to catch

any updates or status changes while crawling the descriptions

of Web services from the source.However, so far this approach

supports only searching for non-semantic Web services.

698

-Generic Web search engines: Web content search engines

are another alternative to find Web services using keyword

search. Major providers of Web services, such as Google,

Amazon and Yahoo, have decided to publish their Web ser-

vices through their own websites instead of using UBRs. This

trend is forcing users to discover Web services through Web

content search engines. Users can use search engines. to locate

Web services by customizing the search query to look for

specific files types (ex. wsdl and owl files).

The major drawback of generic search engines is that they

cannot understand Web service functionalities outlined in the

description files and only rely on keywords to find services.

The advantages of them include robustness, scalability, and no

extra infrastructure is required.

A. Limitations of Current Discovery Mechanisms: A Mobile
Perspective

Notwithstanding the research efforts that have focused on

Web service discovery, many limitations with respect to mobile

environments remain, including the following:

• Current approaches do not take into consideration the

support that peers can provide in mobile domains.

• Current approaches lack open architectures which can

guarantee robustness and scalability.

• User experience and satisfaction, user preferences, and

device features and capabilities are important factors

that must be incorporated into Web service discovery in

mobile environments. A few proposals provide limited

consideration to these factors. They tend to focus on

either user preferences or mobile capabilities and ignore

user channel or the network status.

• Current approaches do not take into account resource-

constrained providers that may exist in mobile domains.

These providers have limited resources to, for example,

perform semantic matchmaking quickly and efficiently.

• In wireless networks, providers and customers commu-

nicate over wireless channels where signal quality is

variable. Existing discovery mechanisms are unable to

identify Web services that are able to promptly respond

and adapt appropriately to such context change.

• In a mobile environment, selecting services that are

located in physical proximity, perhaps belonging to the

same home network, for instance, can reduce network

traffic and, as a result, reduce costs. Identifying services

that provide this selection priority is currently not avail-

able in existing approaches.

• Keyword-based service discovery is ineffective in re-

trieving the most relevant services to a specific request,

while semantic-based discovery is resource intensive

and not affordable for resource-constrained environments.

Lightweight semantic reasoners are therefore required.

B. Service Discovery Requirements in Mobile Environments

Service discovery is a crucial component in Web services,

especially in heterogeneous mobile environments. The pro-

cess must be efficient and rapid to cope with the extremely

dynamic nature of mobile domains. To ensure these features,

service discovery in mobile domains must satisfy the following

requirements:

1) In mobile domains, mobile devices are frequently chang-

ing their point of attachment to the network or making a

vertical handoff between different access technologies.

The services they provide then become inaccessible

as their binding information become invalid. Service

discovery should be an active process even while the

service is executing to support seamless provisioning

either by providing an alternative access to the same

service or by quickly finding another equivalent service.

2) With mobile Web services provisioning services may

become invalid or stale due to the provider’s mobility.

Discovery mechanisms in mobile environments must en-

sure that the discovered services are active and running.

3) With the existing diversity of mobile device form factors

and platforms, discovery mechanisms should ensure the

compatibility of the discovered services with the device

capabilities.

4) Since mobile users are always on the move, service

providers and/or service consumers could be location-

dependent, hence request or offer services in particular

areas. So, location-based service discovery is highly

required.

5) Typically, mobile devices are associated with context

information and users who usually have preferences.

One of the chief benefits from mobile services is the

enabling of personalized services provisioning that takes

into account the user preferences and context informa-

tion. Service discovery in such cases must incorporate

the user profile and context information in ranking and

selecting Web services.

6) Semantic Web service discovery architectures present a

significant challenge in mobile domains. The discov-

ery of semantic Web services requires a heavyweight

matchmaking process at the server side which could be a

limited-resources provider. Semantic reasoning, the core

of the semantic matchmaking process, is a resource-

intensive process and only suitable for deployment on

high-end servers. Therefore, highly optimized semantic

reasoners for mobile environments is required.

7) Generally speaking, finding a single service that fulfills

a particular request is not the only way to respond to a

request. Service discovery should be smart enough and

be able to break down the request into small sub-tasks, if

possible, and find a service for each sub-task separately

before integrating them together to satisfy the original

request.

8) Discovery approaches must be able to distinguish be-

tween finding services that interact with applications

(technical services) and services that will interact with

users (user-facing). The later, which is more desirable by

mobile users, needs an easy-to-use interface that enables

users to perform efficiently the different operations that

699

the service offers. Therefore, Web services that provide

a more appealing (user-friendly) user interface would be

ranked higher.

9) Due to the limitations of mobile devices and wireless

networks, mobile clients may be able able to exe-

cute/support limited operations offered by Web services.

Discovery protocols should be able to identify what

services may not be fully executed and rank discovered

services accordingly.

10) Mobile domains are highly dynamic and experience

many environment changes. Therefore, developing ser-

vices with multiple capacities (different behavior to the

same functionality) is becoming more desirable and

an essential requirement. Discovery protocols should

be able to assign higher priority to Web services that

are capable of adapting their behavior to environment

changes (ex. Bandwidth and transmission rate).

V. SERVICE DISCOVERY FRAMEWORK FOR MOBILE

ENVIRONMENTS

Based on our analysis of the limitations of existing discov-

ery mechanisms presented above, we propose a framework

for mobile Web service discovery in resource-constrained

and mobile environments. Figure 1 illustrates the essential

components, represented in a three-layer structure, that are

required for effective Web service discovery in mobile envi-

ronments. Layer 1 represents the components that reside on

the customer side, and layer 3 contains all the components

that run on the provider side. Layer 2 depicts the components

that can be implemented either on the provider side or on the

customer side based on resource availability and battery power.

The decision whether to implement some components on the

provider’s side or the customer’s side aims to enhance the

performance. The framework is also independent of the Web

service architecture. It supports service discovery in Peer-to-

Peer (P2P) and client/server architectures. In P2P Web services

provisioning, components at this layer may be distributed

between providers and customers according to their resources,

while in client/server architecture where servers are usually

high-end machines, mobile clients can host the minimum

number of components to save their precious resources and

battery power.

A. Layer 1: Customer Layer

Service Request: The end-user constructs a request for a

Web service that fulfills a specific objective. The request can

be as simple as plain text that describes the user objective.

Mobile users usually have limited input capabilities, which are

unsuitable for a formatted service request or a formal service

description language (i.e. in semantic services). Therefore,

simple plain text fits well for the service request within

mobile device constraints. The Request Analyzer then can

perform some extra processing on this request to extract some

meaningful information and construct a format service request.

Another alternative is to provide a user-friendly multimodal

Requester Providers/Brokers

Request Converter

“I have a service request”

Unicast

“Here is the request in (OWL-S)”

Broadcast

“My services are described using (ex. OWL-S)”

Multicast

Fig. 2. A high level illustration of the proposed request submission protocol.

interface that accepts user requirements with minimal input

parameters.

Request Submission Protocol: The Request submission pro-

tocol starts at the customer’s side. The protocol broadcasts

a brief message saying that ”I have a service request” and

can be encoded in a short format. Service providers/brokers

who receive this message respond with a unicast message to

the requester saying that ”I am a service provider and my
services are described in a service description language (X),
i.e. WSDL, WSDL-S, OWL, etc.”. The responses are unicasted

to the Service Request Converter to format the request in

the appropriate formalisms. Figure 2 depicts a high level

abstraction of the proposed request submission protocol. The

Request Submission Protocol takes advantage of P2P networks

to disseminate the service request.

In P2P networks, peers typically cooperate to disseminate

the service request. Peers receive the request, process it, and

originate the request to their neighbors after reducing the Time

To Live (TTL), that is associated with the request, by 1.

Peers stop forwarding the request if (TTL = 0). The Request
Submission Protocol aims to reduce the network traffic pro-

duced by request flooding and avoid message processing by

non-corresponding nodes to save their valuable resources (i.e.

battery power and CPU).

B. Layer 2: Provider/broker or customer side

This layer contains the components that can be implemented

at either the provider/broker side or at the customer side

according to resources availability.

Service Request Converter: Upon receiving the service

request and the responses from different available providers,

the request converter re-constructs the service request in the

provider’s specific language. If the Request Converter is imple-

mented at the customer side, it then re-constructs (depending

on previous responses) the request in multiple description

languages and multicasts each formalism to the corresponding

providers. However, if the Request Converter is implemented

at the provider/broker side, the conversion is done locally. In

such case, the benefits that the Request Submission Protocol
brings would be limited.

Request Analyzer: The service discovery process in this

framework is comprised of two levels. Level 1: The Request
Submission Protocol searches first for atomic services that

totally satisfy the user’s request. Level 2: If no relevant

services are found, the service Request Converter is notified to

700

Layer 1: Customer

Service Request

Layer 2: Midlle

Layer 3: Provider/

broker

Request Analyzer

Service Composer

Local services
directory

Remote services
directory

Ranked services
cache

S
e
r
v
i
c
e

Request Subm
ission Protocol

Relevant Services List

Search/M
atchm

aking M
odule

Service

Services
Description

Request Converter

R
a
n
k
i
n
g

.usr : User preferences

.mbl: Device profile

.env: Environment context
ratings: User ratings

Ranked Services List

.env

ratings

.usr

.mbl

.usr

.mbl

Fig. 1. An overview of the discovery framework in a three-layer structure.

forward a copy of the service request to the Request Analyzer
which, in turn, will break down the request into sub-tasks, if

possible, and try to satisfy each sub-task separately. Breaking

down the request (in collaboration with the Service Composer)

may follow one of two approaches: 1) Start with the request

inputs to get the request outputs with exact or partial matches

using, for example, the matchmaking algorithm mentioned

in [15], 2) Find services that have exact matches with sub-

tasks, i.e. the matchmaking algorithm yields an EXACT or

SUBSUMES match between the sub-task inputs/outputs and

the relevant service inputs/outputs. EXACT match means that

all the sub-task inputs and outputs match exactly with the

service input and output parameters respectively. SUBSUMES
match means that all the sub-task inputs and outputs are

subsets of the service input and output parameters respectively.

Service Composer: The service composer in our framework

is responsible for the orchestration process and generating

composition plans for atomic Web services that satisfy the

individual sub-tasks, together to fulfill the original service re-

quest. Resolving users’ requests via composite services (when

it is applicable) meets requirement #7. Bhuvaneswari et al. [15]

propose a framework for semantic Web service composition in

mobile environments. Their framework converts WSDL files

into OWL-S specification and generates a service profile for

the request. Then, it performs a sematic reasoning between the

advertised service profile and the request service profile. The

composer then generates composition plans and stores them

in a plan repository in a cloud.

Relevant Services List: This is the list of services that match

the user request. The list contains atomic Web services that

satisfy the user objective, and/or composite services along with

composition plans and the plan evaluation to be used by the

execution environment.

Service Ranking: The service ranking component receives

the list of relevant Web services and works to rank them based

on the user preferences, device profile, running environment

conditions, and user ratings. Al-Masri [12] have developed

a device-aware mobile service discovery solution called Mo-

biEureka. The system is capable of ranking discovered services

according to their best fit with the requester’s mobile device.

Garcı́a et al. [11] proposed a user preferences model to be

integrated with service description languages so that discovery

mechanisms can rank relevant services accordingly. However,

in our framework, we suggest ranking the relevant services

based on the user preferences, device profile, environment

context, and user ratings collectively.

Context Information: The framework uses the aforemen-

tioned four types of context information to rank the list of

relevant Web services (if found). Incorporating these context

information in mobile service discovery fulfils requirement

#3,4,5,9 and 10.

User preferences: User preferences are not part of

the semantic Web service descriptions, which implies that

retrieved services may satisfy a user’s request, but may not

701

be quite relevant to the user preferences (requirement #5).

Garcı́a et al. [11] propose a detailed user preferences model

that can be applied as an extension to the existing seman-

tic description languages. The model distinguishes between

mandatory requirements and preferred requirements. However,

we recommend expressing user preferences following the same

model, but in separate files to ensure modularity, portability,

and preserve the backward compatibility.

Device profile: The objective of incorporating the

device profile information with the Web service discovery pro-

cess is to ensure the compatibility of the discovered/selected

service with the device constraints. In this regard, Al-Masri

et al. [12], have developed a device-aware service discovery

mechanism that is capable of selecting Web services that

function properly within mobile device constraints. The mech-

anism takes advantage of HTTP sessions to collect device

information and store it at the server side. This information

is used later to ensure that the discovered services will

function properly within the device constraints and to rank

them accordingly (requirement #3). The mechanism supports

caching the information of disconnected devices to be used if

they successfully re-establish the connection within a specific

period of time. The solution is limited to WSDL files and

an extension to WSDL-M is proposed in order to include

“required” features/ parameters on the client’s device. Again,

we recommend that service providers describe the “required”

and recommended “to-have” features in mobile devices in a

separate file for the same reasons mentioned above.

Environment Context: In wireless networks, the en-

vironment context may change frequently during the execution

of the Web service as mobile consumers and/or providers

may be on the move. Services behavior may be considerably

affected by these changes. This impact is not of concern

for traditional Web services provisioning. The objective of

integrating the environment context into service discovery is

to ensure that services run properly given these environment

conditions/parameters. We prefer that providers identify the

minimum and preferred required parameters for reliable ex-

ecution in a standalone file that can be associated with the

other service description files. By consulting this file while

ranking the discovered Web services, the discovery process

may realize that the requester could be able to execute limited

functionalities of particular services and then rank services

accordingly (requirement #9). Another opportunity that can be

envisioned here is the support of multiple capacity services,

where services can adapt to the current environment status by

changing their behavior. Therefore, a discovery protocol would

assign higher priority to services with multiple capacities

(requirement #10). Consequently, the service execution plat-

form/architecture should support the appropriate mechanisms

for assessing the environment status at runtime so that services

with multiple capacities would be able the respond promptly to

the environment changes. Environment context also includes

location information, which can be used to enhance the service

provisioning according to the user’s location (requirement #4).

For example, providing a list of restaurants that are located

nearby the requester.

Maamar et al. [13] discuss the development of capacity-

driven Web services starting from the description, discovery,

composition, to the invocation of proper desired functions.

Similar research on services with different qualities to cope

with environment context is presented in [14]. The authors

named their approach “Service Differentiation” which aims

to develop/provide a single service with multiple variations

instead of several independent services.

User ratings: In Web 2.0 and open environments

users are encouraged to provide feedback and rate different

services they have used based on their experience. These

ratings are important as they reflect the user satisfaction and

QoS perceived by the user. The service rating could also be

used as an effective tool to show the real user satisfaction

for the user interface of user-facing services, which fulfils

requirement #8 of our defined effective service discovery

reuirements. Our framework takes advantage user ratings to

rank Web services, given that the proper handling mechanisms

for ratings, complaints, and comments are provided.

Ranked Services List: The ranked services list is the services

list from which the user/application would choose the proper

Web service to invoke.

Relevant Services Cache: Mobile environments are charac-

terized by intermittent connections, unreliable channels, and

high transmission error rates. Services may become easily

unavailable or function improperly due to the lack of resources

(ex. bandwidth). In such cases, service discovery mechanisms

need to support alternatives either by providing different

access to the same service or finding functionally similar

services (which satisfies requirement #1). In this perspective,

our framework proposes caching the retrieved relevant services

list for a user specific request to choose the next best candidate

service in case of the principle service fail to respond or

not performing well. This caching is cleared once the desired

service is successfully executed.

C. Layer 3: Provider/broker Layer

This layer contains the framework components that should

be implemented at the provider/broker side.

Search/Matchmaking Module: The Search/Matchmaking
module is where the functionalities described in the request

and the capabilities offered by Web services are matched.

Service providers decide on the appropriate matching approach

that is used to match users’ requests based on how they

describe their services. For non-semantic Web services, i.e.

described by WSDL files, the matching between the request

and Web services is keyword-based and uses information

retrieval techniques [33]. In this case, the Web services can

be characterized by sets of keywords extracted from the

description files. These keywords can be used to index Web

services and later matched with keywords extracted from

the user request [17]. Clustering techniques can be used to

categorize WSDL files based on functional similarities to

bootstrap the discovery process of non-semantic Web services

[34]. Semantically described Web services are discovered

702

using high level match-making approaches. The most popular

sematic discovery methods are OWL-S based and WSMO

based approaches which, fundamentally use the information

provided in the service profile and domain ontogies to match

the user’s requested functionalities [35].

In mobile domains, where mobile devices perhaps could be

service providers, the matchmaking process is performed on

mobile devices. Therefore, conducting the reasoning process

on a resource-constrained device might possibly fail or pro-

duce out-of-memory/stack overflow errors due to insufficient

resources. Highly optimized semantic reasoning in such cases

is required. Steller el al. [6], [7], [8] propose the mTableaux

algorithm to optimize the reasoning process and facilitate

Web services selection for resource-constrained devices. Gu

et al. [4] discuss in their framework, the design principles

and implementations of supporting ontology and reasoning for

mobile context-aware applications on handheld devices. Using

such lightweight semantic reasoners for resource-constrained

providers meets requirement #6 of our effective discovery

requirement mentioned before.

Local Services Directory: Service providers maintain a local

directory that contains all Web services offered by them.

Remote Services Directory: Remote services are services

hosted and provided by other peers/providers, but could be

proxied by other peers. Each Service provider may cache

access to these services for future references. A coordination

protocol is required to manage link updates, advertisement

notifications, invalid service/link removal, and duplicate ref-

erence avoidance. JXTA protocols [16] are commonly used

in this regard in P2P networks. JXTA periodically advertises

services as JXTA modules. Advertisements are associated

with a lifetime that determines how long peers would cache

these services and mark them as valid. This feature satisfies

requirement #2, where services are removed/marked invalid

when their lifetime expires. However, maintaining such a

directory for remote services has advantages and disadvan-

tages. The advantages include, back up for temporary dis-

connected peers that may provide relevant services, enable

services provisioning via a proxy, and reduce network traffic

by communicating less providers. The disadvantages include

more resource consumption on particular peers and duplication

management overhead (in case of a reference to the same

service reported from different sources). A good tradeoff ap-

proach must be made to ensure efficient and reliable discovery

while performing better optimization for heterogeneous mobile

environments.

VI. USE-CASE SCENARIO

Suppose that Adam is interested in attending an interna-

tional multicultural event held in his hometown. Adam planned

to take the bus to reach the event location before the opening

ceremony, which will start with a speech by the mayor. Adam

is excited and keen to catch the mayor’s speech. While waiting

at the bus stop the info panel showed that there is a delay in

the arrival of the bus Adam planned to take, which means

Adam would miss part of the opening ceremony.

Language interpretation service (no 3G)

Video streaming service

Adam

Schedule update
service

3G Connection

3G Connection

Bluetooth

Multicultural Event

Tweets service
&

A proxy

Se
rv

ice
 re

qu
es

t
Re

le
va

nt
 se

rv
ice

s

Context change
(WiFi available)

Ch
oo

se
 an

ot
he

r

se
rv

ice

1

2

5

6

Subscribe to (later)

Rank services
Cache services

7

3
4

Fig. 3. A graphical illustration of the use-case scenario.

At the event location, some attendees (peers) are offering

coverage to the event in various forms and with different

capabilities (multiple-capacities). Some high-end smart phones

are offering Web services that provide multiple-capacities, i.e.

video streaming, audio, and photos to cope with the user

available bandwidth. Other mobile providers are offering real-

time interpretations to different international languages includ-

ing, Spanish, German, French, and Arabic using their short-

range wireless connectivity for the event attendees (peers).

However, a few capable providers are offering a proxy service

for other peers that are not connected to the Internet, so that

their services could be reached by Internet users. Besides,

different sections are offering a mobile Web service, hosted on

their representatives’ mobile device, to send schedule updates

to subscribers. Other Web services are also available for

audio, translations, photos, text tweets, and event schedule live

updates as shown in Figure 3. It is worth mentioning that some

providers are using OWL-S to describe their Web services

while some others are using WSDL files. These Web services

are published either locally on the provider’s mobile device

(local services directory) or using the available brokerage

service offered by capable peers (remote services directory).

In this scenario, we will illustrate how Adam can use the

framework to be connected to the event activities until he

arrives on site. We assume that Adam has a powerful 3G-

enabled smartphone with a multimodal wireless connectivity

the can switch to Wi-Fi whenever it is available and as per the

user settings. According to these assumptions, we recommend

implementing the Service Request, Request Submission Proto-
col, Request Converter, and Service Ranking at the customer

side, whereas the rest of the framework components are imple-

mented at the provider/broker side. Figure 4 depicts our choice

of where to deploy different component for this use-case

and, in general, how different framework components interact

together to discover the required Web services efficiently.

Adam, using his smartphone, uses the Service Request to

construct a Web service discovery request. The service request

703

Service Request Request Submission
Protocol Service converter Service

Analyzer Service Composer Providers/brokers
& Search/Matchmaking Service ranking

Service request
request announcement

Description Languages

Service request
Converted request

Converted request
If there is no direct match

Analyzed request

Composition plans

Customer side Provider/Broker side Customer side

.env ratings

.usr

.mbl

Retrieved Services

Ranked Services List

Fig. 4. The interactions between various framework components for the use-case scenario.

content is ”multicultural event coverage at my hometown”,

with ”Spanish interpretations and/or text translation” as the

user preferences. The Request Submission Protocol receives

the request and broadcasts a request existence message ”I

have a Web service request”. Upon receiving the request by

the available service providers, each provider/broker replies

back with a message to identify their description languages.

The Request Converter then receives a copy from the service

request and converts it to the appropriate formalisms. The

Request Submission Protocol sends multicast messages with

the converted request to the corresponding providers. The

aim of the multicast is to avoid message processing by non-

corresponding nodes and reduce the message flooding. Each

provider matches the request with the available local and

remote Web services. If no atomic Web services are found

satisfying the customer’s request, then the provider uses the

Request Analyzer and the Request Composer to fulfill the

request with composite services. The discovery framework

then receives relevant services from different providers who

found matches, along with the required/recommended environ-

ment conditions for each relevant service. Adam’s discovery

application ranking module integrates the received information

and retrieved services list with the local context information

(i.e. environment actual status and Adam’s preferences) to rank

the retrieved Web services according to the user preferences,

device profile, environment conditions, and ratings.

To that end, suppose that the 3G signal strength and

Adam’s current location at the bus stop is relatively weak,

which implies a low transmission rate and limited bandwidth.

According to that status, our discovery mechanism framework

ranks the service with multiple capacities first (i.e. the service

provides photos for limited bandwidth, audio for moderate,

and video streaming for high bandwidth availability). The

ranking module in such a case would also rank audio services

next, photos, Web services, text tweets, and then schedule

updates. Adam’s application provides the ranked list to Adam

to choose from and invoke the selected Web service or the

application takes the appropriate decision automatically by

running the service that is ranked first and caches the rest in

the relevant services cache. Upon the arrival of the required

bus, Adam gets on the bus and immediately his smart phone

changes automatically the Web connectivity to the bus Wi-

Fi hot spot available onboard to match Adam’s settings. The

execution environment detects this change in the environment

status and adapts the service behavior to provide real-time

video streaming. The application may also re-evaluate the

situation based on the new context change and choose from

the relevant services cache the composite service plan that

provides video streaming composed with a real time Spanish

interpretation and onscreen translation provided by multiple

providers.

Later on, if Adam wants to leave the event for some time and

come back to continue enjoying the entertainment but wants

to be updated about any changes on the event schedule for

individual performances; the discovery framework may look

at the relevant services cache and locate the services that

provide schedule updates for different exhibitions. Adam then

subscribes to the ones that he is interested in to get schedule

updates.

VII. CONCLUSION AND FUTURE WORK

Web service discovery is a key enabler to the adoption

of Web services technology in mobile heterogeneous en-

vironments. In mobile environments, the limited resource

availability and the unreliable communications in wireless

networks presents unique challenges for service discovery. In

this paper, we identified the limitations of current discovery

approaches and the requirements of sound and reliable dis-

covery mechanisms that can be used to efficiently discover

Web services within resource-constrained environments. We

proposed a generic framework for Web service discovery in

mobile heterogeneous environments that can be implemented

in client/server or P2P networks. The framework is presented

in a three-layer structure and takes into account network

characteristics, user preferences, device profile, and available

resources at each participant. A comprehensive description

is provided for each component along with the possible

approaches that can be implemented as well as some of

the research efforts in that respect. Some of the framework

components can be implemented at either the customer or the

704

provider/broker side according to the available resources to

achieve acceptable performance.

We claim that handling context information helps in provid-

ing personalized services in the best interest of the requester

and most appropriate for the current situation. We believe that

the proposed framework paves the road for a better under-

standing for development of robust discovery mechanisms that

cope with the highly dynamic nature of a mobile environment.

Mobile users would be more interested if services are tailored

to their preferences and devices, and ones that are capable of

changing their behavior to react promptly to the environment

changes.

We plan to use the framework to develop a robust Web ser-

vice discovery mechanism in mobile heterogeneous networks.

We will take advantage of our research in mobile Web services

provisioning to implement the framework component on a

mobile provider and a mobile client. A smart decision-making

module to choose where to implement different component at

the middle layer is under investigation. We are also looking

at evaluation schemes to evaluate the effectiveness and the

performance of our framework.

REFERENCES

[1] M. N. Huhns and M. P. Singh, “Service-oriented computing: Key
concepts and principles,” IEEE Internet Computing, vol. 9, pp. 75–81,
2005.

[2] N. Blefari-Melazzi, E. Casalicchio, and S. Salsano, “Context-aware
service discovery in mobile heterogeneous environments,” in Mobile and
Wireless Communications Summit, 2007. 16th IST, pp. 1–5, July 2007.

[3] D. Booth, H. Haas, F. McCabe, E. Newcomer, M. Champion, C. Fer-
ris, and D. Orchard, “Web services architecture,” February 11 2004.
http://www.w3.org/TR/ws-arch.

[4] T. Gu, Z. Kwok, K. K. Koh, and H. K. Pung, “A mobile framework
supporting ontology processing and reasoning,” in Proceedings of the
2nd Workshop on Requirements and Solutions for Pervasive Software
Infrastructures (RSPSI ’07)in conjunction with the 9th International
Conference on Ubiquitous Computing (Ubicomp ’07), (Austria), Septem-
ber 2007.

[5] L. Steller and S. Krishnaswamy, “Optimised semantic reasoning for
pervasive service discovery,” in Service-Oriented Computing ICSOC
2008, vol. 5364 of Lecture Notes in Computer Science, pp. 620–625,
Springer Berlin / Heidelberg, 2008.

[6] L. Steller and S. Krishnaswamy, “Efficient mobile reasoning for perva-
sive discovery,” in Proceedings of the 2009 ACM symposium on Applied
Computing, SAC ’09, pp. 1247–1251, 2009.

[7] L. Steller, S. Krishnaswamy, and M. Gaber, “Cost efficient, adaptive
reasoning strategies for pervasive service discovery,” in Proceedings
of the 2009 international conference on Pervasive services, ICPS ’09,
pp. 11–20, 2009.

[8] L. A. Steller, Light-Weight and Adaptive Reasoning for Mobile Web
Services. PhD thesis, Monash University, Australia, May 2010.

[9] E. Kaasinen, “User needs for location-aware mobile services,” Personal
and Ubiquitous Computing, vol. 7, pp. 70–79, 2003.

[10] E. Al-Masri and Q. H. Mahmoud, “A context-aware mobile service
discovery and selection mechanism using artificial neural networks,” in
Proceedings of the 8th international conference on Electronic commerce:
The new e-commerce: innovations for conquering current barriers,
obstacles and limitations to conducting successful business on the
internet, ICEC ’06, pp. 594–598, 2006.

[11] J. M. Garcı́a, D. Ruiz, and A. Ruiz-Cortés, “A model of user preferences
for semantic services discovery and ranking,” in ESWC 2010, Part II,
vol. 6089, pp. 1–14, 2010.

[12] E. Al-Masri and Q. H. Mahmoud, “Mobieureka: an approach for
enhancing the discovery of mobile web services,” Personal Ubiquitous
Computing, vol. 14, pp. 609–620, October 2010.

[13] Z. Maamar, S. Tata, D. Belaid, and K. Boukadi, “Towards an approach to
defining capacity-driven web service,” International Conference on Ad-
vanced Information Networking and Applications (AINA’09), pp. 403–
410, 2009.

[14] A. Tao and J. Yang, “Context aware differentiated services development
with configurable business processes,” in Proceedings of the 11th IEEE
International Enterprise Distributed Object Computing Conference,
pp. 241–252, November 2007.

[15] A. Bhuvaneswari and G. Karpagam, “Reengineering semantic web
service composition in a mobile environment,” International Test Con-
ference, pp. 227–230, 2010.

[16] L. Gong, “Jxta: a network programming environment,” IEEE Internet
Computing, vol. 8, pp. 88–95, 2001.

[17] S. Sioutas, E. Sakkopoulos, C. Makris, B. Vassiliadis, A. Tsakalidis, and
P. Triantafillou, “Dynamic web service discovery architecture based on
a novel peer based overlay network,” Journal of Systems and Software,
vol. 82, pp. 809–824, May 2009.

[18] N. S. K. Bashah, I. Jørstad, and D. v. Thanh, “Service discovery in
future open mobile environments,” in Proceedings of the 2010 Fourth
International Conference on Digital Society, ICDS ’10, pp. 47–53, 2010.

[19] B. Adipat and D. Zhang, “Adaptive and personalized interfaces for
mobile web,” in 15th Annual Workshop on Information Technolgies &
Systems (WITS’05), pp. 21–26, 2005.

[20] P. Prescod, “Roots of the rest/soap debate,” August 2002.
[21] R. Chinnici, J.-J. Moreau, A. Ryman, and S. Weerawarana, “Web

services description language (wsdl) version 2.0 part 1: Core language,”
June 26 2007. http://www.w3.org/TR/wsdl20.

[22] L. Cabral, J. Domingue, S. Galizia, A. Gugliotta, V. Tanasescu, C. Pedri-
naci, and B. Norton, “Irs-iii: A broker for semantic web services based
applications,” in In proceedings of the 5 th International Semantic Web
Conference (ISWC 2006), pp. 201–214, 2006.

[23] M. Burstein, J. Hobbs, O. Lassila, D. Mcdermott, S. Mcilraith,
S. Narayanan, M. Paolucci, B. Parsia, T. Payne, E. Sirin, N. Srinivasan,
K. Sycara, and D. M. (ed.), “Owl-s: Semantic markup for web services.”
W3C Member Submission, 2004. http://www.w3.org/Submission/OWL-
S.

[24] D. Roman, U. Keller, H. Lausen, J. de Bruijn, R. Lara, M. Stollberg,
A. Polleres, C. Feier, C. Bussler, and D. Fense, “Web service modeling
ontology,” Applied Ontology, vol. 1, pp. 77–106, November 2005.

[25] D. Fensel, F. Fischer, J. Kopeck, R. Krummenacher, D. Lam-
bert, and T. Vitvar, “Wsmo-lite: Lightweight semantic descrip-
tions for services on the web.” W3C Member Submission, 2010.
http://www.w3.org/Submission/WSMO-Lite/.

[26] R. Akkiraju, J. Farrell, J. Miller, M. Nagarajan, M.-T. Schmidt, A. Sheth,
and K. Verma, “Web service semantics - wsdl-s.” W3C Member Sub-
mission, November 2005. http://www.w3.org/Submission/WSDL-S/.

[27] S. Battle, A. Bernstein, H. Boley, B. Grosof, M. Gruninger, R. Hull,
M. Kifer, D. Martin, S. McIlraith, D. McGuinness, J. Su, and S. Tabet,
“Semantic web services ontology (swso).” W3C Member Submission,
2005. http://www.daml.org/services/swsf/1.0/swso/.

[28] M. Junghans, S. Agarwal, and R. Studer, “Towards practical semantic
web service discovery.,” in ESWC (2)’10, pp. 15–29, 2010.

[29] S. Hagemann, C. Letz, and G. Vossen, “Web service discovery - reality
check 2.0,” in Proceedings of the Third International Conference on Next
Generation Web Services Practices, NWESP ’07, pp. 113–118, 2007.

[30] C. Legner, “Is there a market for web services?,” in Service-Oriented
Computing - ICSOC 2007 Workshops, pp. 29–42, 2009.

[31] X. D. Alon, X. Dong, A. Halevy, J. Madhavan, E. Nemes, and J. Zhang,
“Similarity search for web services,” in In Proceedings of VLDB’04,
pp. 372–383, 2004.

[32] E. Al-Masri and Q. H. Mahmoud, “Wsce: A crawler engine for large-
scale discovery of web services,” Web Services, IEEE International
Conference on, pp. 1104–1111, 2007.

[33] J. D. Garofalakis, Y. Panagis, E. Sakkopoulos, and A. K. Tsakalidis,
“Contemporary web service discovery mechanisms,” Journal of Web
Engineering, vol. 5, pp. 265–290, September 2006.

[34] K. Elgazzar, A. E. Hassan, and P. Martin, “Clustering wsdl documents
to bootstrap the discovery of web services,” in Proceedings of the 2010
IEEE International Conference on Web Services, ICWS ’10, pp. 147–
154, 2010.

[35] L. D. Ngan, M. Kirchberg, and R. Kanagasabai, “Review of semantic
web service discovery methods,” IEEE Congress on Services, pp. 176–
177, 2010.

705

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /SABAEN44
 /SAKURAalp
 /Shruti
 /SimSun
 /STSong
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

