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Abstract�Emerging mobility-aware content delivery ap-
proaches are being proposed to cope with the increasing usage
of data from vehicular users. The main idea is to forecast the
user locations and associated link capacity, and then proactively
counter service �uctuations in advance. For instance, a user
that is heading towards low coverage can be prioritized and
have video content prebuffered. While the reported gains are
encouraging, the results are primarily based on assumptions of
perfect prediction. Investigating the predictability of mobility and
future signal variations is therefore imperative to evaluate the
practical viability of such predictive content delivery paradigms.
To this end, this paper presents a large-scale measurement
study of 33 repeated trips along a 23:4 km bus route covering
urban and sub-urban areas in Kingston, Canada. We provide a
thorough analysis of the collected traces to investigate the effects
of geographical area, time, forecasting window, and contextual
factors such as signal lights and bus stops. The collected dataset
can also be used in several other ways to further investigate and
drive research in predictive vehicular content delivery.

I. INTRODUCTION

The dramatic increases in mobile network traf�c are a con-
stant burden on cellular operators. Striking a balance between
coverage, consistent data rates, and infrastructure costs is a
signi�cant challenge. Meanwhile, the widespread adoption of
Smartphones is increasing the traf�c from vehicular users,
particularly buses and trains. An alternative to expansion is
therefore needed to provide mobile services at sustainable
costs. As such, novel content delivery approaches are re-
ceiving increasing interest. In particular, predictive resource
allocation techniques that exploit user mobility have been
recently proposed to improve throughput and fairness [1],
[2], video streaming delivery [3]�[5], and transmission energy
[6]. This is accomplished by leveraging the knowledge of
the future link capacity users are expected to experience, and
then performing long-term Resource Allocation (RA) plans
over several seconds. By doing so, Base Stations (BSs) can
prioritize users headed to poor channel conditions and for
example, proactively prebuffer additional future video content.

The underlying assumption of such anticipatory schemes
is the predictability of the users’ future channel states as
they traverse a road network. While the gains reported in
[1]�[6] are encouraging, the results are primarily based on
assumptions of perfect prediction. However, there are two

This work was made possible by NPRP grant no NPRP4-553-2-210 from
the Qatar National Research Fund (a member of The Qatar Foundation). The
statements made herein are solely the responsibility of the authors.

primary sources of uncertainty that can affect the reported
gains signi�cantly: 1) location prediction errors and 2) signal
strength prediction errors. Investigating the predictability of
mobility and future signal variations is therefore imperative
to evaluating the practical viability of the emerging predictive
content delivery paradigms. To this end, this paper presents
a large-scale measurement study of bus trips covering urban
and sub-urban neighborhoods in Kingston, Canada during July
2014. In this paper, we focus on public transportation vehicles,
as they are attractive candidates for predictive content delivery.
This is because: 1) their routes and stops are known, and 2)
they generate large amounts of mobile traf�c which can bene�t
signi�cantly from long-term optimization. We have measured
the signal strength variations and geographical coordinates
along a popular bus route. The trips are also made at three
different times of the day to investigate the temporal variations
in both location and signal strength predictability.

We summarize the key contributions of this paper in the
following:

• To the best of our knowledge, this is the �rst large-
scale mobile signal and location study along a public
transportation route. The dataset includes approximately
475; 200 logs collected over 33 hours covering a total
of 759 km. This dataset can be used to 1) analyze pre-
dictability and propose predictive models that capture the
measured dynamics, and 2) practically evaluate the recent
predictive delivery schemes [2]�[6] with real data.

• We provide an analysis of the collected measurements
and investigate the effects of 1) the forecasting window
duration, 2) the geographical context (urban vs. sub-
rural), and 3) time of day, on the predictability of the
location and signal strength. We also show that modeling
prediction uncertainty is paramount due to the high
variability observed in the measurements.

• We investigate the joint effects of location and signal
strength errors on the signal strength predictability. Our
�ndings indicate that errors in the predicted locations can
undergo sudden increases due to the uncertainties around
stopping at bus stops and traf�c lights. These imperfec-
tions signi�cantly impact signal strength predictability.

A. Related Work
There have been a number of recent works investigating

the signal strength and bandwidth predictability of mobile
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networks along roads. A measurement campaign was recently
made in [2] for different car trips. Yao et al. [7] also analyze
bandwidth traces collected from two independent cellular
providers for routes running through different radio conditions
including terrestrial and underwater tunnels. Their �ndings
con�rm the correlation between user rates and location. Han
et al. [8] also conduct an interesting measurement study, and
addresses other contextual factors such as user speed, time
of day, and humidity to predict the available bandwidth more
accurately. Riiser et al. [9] also conduct a small measurement
campaign of throughput along a metro, tram, bus, and ferry to
illustrate how bandwidth varies. However, the traces are not
intended to assess predictability, and signal strength values
were not recorded.

While these works reveal the correlation between location
and network capacity, they do not address joint location
and signal strength predictability along public transportation
routes. Further, the scope of the collected data does not facili-
tate developing models that can capture the time dependencies
and geographical dynamics in public transportation routes.

B. Paper Organization
In the following section, we present an overview of the col-

lected data set. Section III discusses the location predictability
of the bus trips. Therein we investigate the effects of time and
the forecasting window on the prediction. In Section IV, we
present the signal strength measurements, and investigate the
effects of geographical context, time, and location awareness
on the predictability of signal strength. Finally, in Section V
we summarize our �ndings and future directions.

II. THE DATASET

The measurements were conducted along a popular bus
route in Kingston, Canada shown in Fig. 1. The logs include
a timestamp, longitude and latitude coordinates, and average
signal strength in dBm, recorded every second. Each trip has
the same start point, end point and direction. As this is an
express route, there are only six stops along the route and a
major transfer point at the Cataraqui Centre (which includes
the major mall in Kingston) shown in Fig. 1. The route from
the start point to the Cataraqui Centre is primarily urban, while
after that it is primarily sub-urban and low density urban. The
bus typically stops for a few minutes at the Cataraqui Centre,
so we have measurements at a stationary point as well.

The trips were made at three different times of the day:
12 pm, 6 pm, and 7 pm. This was to account for both
road traf�c differences and varying interference and mobile
network connectivity levels. In total we have surveyed 33
hours covering a total of 759 km arriving at 475; 200 logged
data points.

Fig. 2 shows the latitude and signal strength variation with
time for a sample log. The data was �ltered to account for
any anomalies in the recorded measurements (particularly that
of the GPS coordinates). We can see that signal strength
variations are quite rapid between the starting point and the
Cataraqui Centre, where there are �uctuations even though the
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Fig. 1. The 23 km trajectory of the bus route in Kingston, Canada.
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Fig. 2. Sample latitude and signal strength measurements of a bus trip.

bus is stationary. After that, the signal strength remains at a
relative low in the sub-urban area. This is followed with clear
gradual increases and decreases in the signal strength due to
line of sight in the �elds preceding point Y and the waterfront
road shown in Fig. 1.

III. LOCATION PREDICTABILITY

In this section, we investigate the location predictability of
the bus trips at the different times of the day. Fig. 3 shows the
latitude changes for sample trips at different times of the day.
The variance between the trips is due to traf�c lights, stopping
at the bus stops, road traf�c, and driver behavior. We can see
the trips at 12 pm exhibit the highest variations as there is more
road traf�c and bus passengers, adding to the uncertainty in
the bus location. The second half of the 7 pm trips (after the
Cataraqui Centre transfer point) also show a high variation but
this is partially attributed to the different departure times from
the transfer point as highlighted in Fig. 3(c). The trips made at
6 pm are the most consistent. The longitude recordings show
a similar behavior but are omitted due to limited space.
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Fig. 3. Latitude variation per second for sample bus trips at (a) 12 pm, (b) 6 pm, and (c) 7 pm.
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Fig. 4. Location standard deviation for different times of the day.

A. Location Variability
In order to quantify the bus location predictability we

compute the location standard deviation at each second from
the start of the trip. We need to calculate the distances
between the average latitude and longitude measurements,
and the individual trip measurements. This is accomplished
using the Haversine formula [10] which is known to provide
computationally precise results, as follows:

a = sin2(�Lat=2) + cos(Lat1) cos(Lat2) sin2(�Lon=2); (1)

c = 2 tan−1

r
a

1 � a
; (2)

d = R � c; (3)

where �Lat and �Lon are the latitude and longitude dif-
ferences respectively, Lat1 and Lat2 are the trip latitude and
average trip latitude respectively, and R = 6378:137 m, is the
radius of the Earth.

Fig. 4 shows the resulting location standard deviation for
the different trip times. Referring to Fig. 3, we can see that
the plots match the overall behavior of the trips. There are two
major peaks of deviation, one before the Cataraqui Centre and
one after. Between 1100 s and 1275 s the bus is waiting at the

Cataraqui Centre transfer point, so the location is known at
6 and 7 pm. However, this is not the case at 12 pm, as the
bus may or may not arrive on time due to congestion and
traf�c. Note that the large uncertainty at approximately 2500
seconds is due to signi�cant longitude variations as the bus
moves along the waterfront (Front street). Our speculation for
the low deviation at 6 pm is that traf�c is more consistent as
it is at the end of rush hour, and before the more random bus
stops and traf�c in the evening.

B. Effect of the Forecasting Window
The results in Fig. 4 show a very high uncertainty for

the bus location after the Cataraqui Centre. However, these
results are assuming that no feedback is provided throughout
the trip on the bus location. As the bus traverses the sub-
urban area, it covers large distances in small time durations.
Therefore, even slightly different departure times from centre
will signi�cantly impact the location predictability. To study
the effect of periodic location updating, we include three
points denoted by X, Y, and Z, in Fig. 1 where the bus
makes a location update. The corresponding results of the
location uncertainty after the location update are illustrated in
Fig. 5. Point X corresponds to the departure from the Cataraqui
Centre and we now see a large reduction in the uncertainty
between 1500 � 2300 s compared to that measured in Fig. 4. A
similar reduction in the location standard deviation is observed
with the location updates at Y and Z in Fig. 5(b) and Fig. 5(c)
respectively. However, there are still sudden increases in the
location uncertainty, which are likely to arise due to bus stops
and traf�c lights. The results also indicate that it is possible to
determine the bus location with considerably high accuracy
for approximately 100 s, after which location updates are
needed. Note that the location standard deviation is expected to
decrease with more sophisticated predictors that examine the
actual speed of the bus and can infer acceleration/deceleration
as well as bus stop locations.

IV. SIGNAL STRENGTH PREDICTABILITY

A. Results at a Glance
Fig. 6 shows the signal strength variations over time made

at different times of the day. The different shades of red
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Fig. 5. Location standard deviation after location updates at points (a) X, (b) Y, and (c) Z (denoted in Fig. 1).

indicate different sample trips taken from our database. We
can clearly see the high variability of signal strength at 12 pm,
both within a single trip and between different trips. The
variability is considerably less at 6 pm and even less at 7 pm.
We also plot the signal strength distributions at each time in
Fig. 7. From these plots we can infer that at 12 pm the signal
strength exhibits lower signal strength values with higher
probabilities. This is possibly due to more interference, bus
passengers, network load, and road traf�c. On the other hand,
the distribution for 7 pm has both a lower variance and higher
signal strength values. This is con�rmed in the cumulative
signal strength density function in Fig. 8.

B. Constructing Geographical Signal Strength Maps
Although the results in Fig. 6 appear to vary signi�cantly

between different trips, a closer look reveals that in many parts
a time translation would reduce the variability signi�cantly.
This is due to the location variations observed in Fig. 3.
Therefore, in order to evaluate the geographic signal strength
variability, we construct signal strength maps along the bus
route. To do so, the map is divided into small rectangular zones
measuring 80 m longitude and 110 m in latitude (correspond-
ing to 0:001 degrees). The signal strength measurements are
then mapped to the nearest rectangular zone and the average
and variance of the measurements at each zone are computed.

Fig. 9 illustrates the resulting average signal strength map
at 7 pm. The periodicity of signal strength variations with
time are apparent with major peaks and dips along the route.
Additionally, the sub-urban area suffers from a relatively long
period of low signal. In addition to the average, we have also
generated variance maps to investigate the geographical and
temporal variance of the signal strength. The results in Fig. 10
show that at 12 pm the variance is signi�cantly higher than
at 7 pm, with particular geographical areas being affected the
most.

C. Effects of Geographical Context
We now divide the bus route into three geographical seg-

ments. The �rst is between the start point and the Cataraqui
Centre, which we refer to as the urban segment. The second is
during the wait at the Cataraqui Centre before departure, which
we refer to as the waiting segment. The third is comprised of
the remaining route after the Cataraqui Centre, and we call this
the sub-urban segment. Next, we investigate the mean square
error (MSE) of the measured signal strength for each segment,
at the three different times of the day. For now, we assume
perfect location information, i.e. the variability is only due to
the variance in the signal strength between the different trips.
In other words, we assume that the location is known, and then
reconstruct a predicted signal strength based on the average
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Fig. 6. Signal strength variation per second for sample bus trips at (a) 12 pm, (b) 6 pm, and (c) 7 pm.
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Fig. 7. Distributions of signal strength along the bus route at (a) 12 pm, (b) 6 pm, and (c) 7 pm.
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Fig. 8. Cumulative signal strength density for different times of the day.

signal strength maps shown in Fig. 9. Then, we compare the
predicted signal strength to the actual traces and compute the
MSE. The results are depicted in Fig. 11(a), from which we
can make several observations:

• The measurements at 12 pm exhibit the highest signal
strength variability, followed by 6 pm and 7 pm.

• The time waiting at the Cataraqui Centre has the highest
MSE, which we suspect is due to the high volume of
buses and people at the transfer point and in the shopping
mall. This is supported by the observation that it does not
decrease even at 7 pm.

• The sub-urban segment has the lowest MSE which was
expected due to the line-of-sight areas and road along the
waterfront.

• At 7 pm, the MSE for the urban segment decreases
considerably. Our speculation is that road traf�c and
network usage is much less at this time, leading to lower
interference levels.

D. Effects of Location Predictability

In order to investigate the joint effect of location and
signal strength variability, we compute the MSE with both
an average location estimate and average signal strength map.
The results for the sub-urban segment are shown in Fig. 11(b),
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Fig. 9. Constructed signal strength map of the bus route at 7 pm.

where we can see the dramatic effect of location errors on
the predicted signal accuracy. However, note that location
variance of the sub-urban segment corresponds to that shown
in Fig. 5(a) which has a forecast window of 1400 seconds,
with no location updates. The high location uncertainty in
Fig. 5(a) also matches the results of Fig. 11(b). Typically,
one would not make forecasts for such a long duration with-
out intermediate updates. Nevertheless, these results indicate
that location-awareness is key to facilitating accurate signal
strength predictions.

V. CONCLUSIONS

We hope that the conducted measurements and initial anal-
ysis in this paper can be used to further investigate and drive
research into predictive vehicular content delivery. We now
summarize our major �ndings and their implications.

Signal strength variability: The surveyed bus route exhib-
ited several areas of low signal strength. Some of those were
short-lived, while others were prolonged such as along the
sub-urban area. This increases the need for predictive resource
allocation schemes [2]�[6] to provide sustainable services. Our
�ndings also demonstrate the importance of modeling signal
strength variability across the routes at the different times of
the day. This can provide a guideline as to when and where
predictive transmission schemes can be applied.
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Fig. 10. Variance of the signal strength maps at (a) 12 pm, and (b) 7 pm.
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Fig. 11. MSE of the predicted signal strength (a) for the different road segments, (b) with location prediction errors along the sub-urban segment.

Developing mathematical models: Real measurements will
be typically needed before predictive transmission schemes
can be applied, due to the signi�cant temporal and geo-
graphical variability observed. Mathematical models for signal
strength will have to account for both the general statistics
observed at the different times (as in Fig. 7), and the more spe-
ci�c geographical dependencies. The results also demonstrate
that location accuracy affects the predictability signi�cantly.
Thus a primary challenge is to develop accurate location
predictors that incorporate contextual factors of signal lights,
bus stops and time of the day.

Optimizing the forecasting window: The optimal forecast-
ing window duration is needed to control the tradeoff between
prediction accuracy and the derived gains of predictive RA
For this, measure of the joint uncertainty in signal strength
and location predictability will be needed. Further, the results
in Fig. 5 also indicate that contextual factors can in�uence the
location predictability signi�cantly, and thus it may be chal-
lenging to derive general solutions without real measurements.
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