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Abstract—The success of immersive applications such as virtual
reality (VR) gaming and metaverse services depends on low latency
and reliable connectivity. To provide seamless user experiences,
the open radio access network (O-RAN) architecture and 6G
networks are expected to play a crucial role. RAN slicing, a critical
component of the O-RAN paradigm, enables network resources
to be allocated based on the needs of immersive services, creating
multiple virtual networks on a single physical infrastructure.
In the O-RAN literature, deep reinforcement learning (DRL)
algorithms are commonly used to optimize resource allocation.
However, the practical adoption of DRL in live deployments has
been sluggish. This is primarily due to the slow convergence
and performance instabilities suffered by the DRL agents both
upon initial deployment and when there are significant changes
in network conditions. In this paper, we investigate the impact
of time series forecasting of traffic demands on the convergence
of the DRL-based slicing agents. For that, we conduct an ex-
haustive experiment that supports multiple services including real
VR gaming traffic. We then propose a novel forecasting-aided
DRL approach and its respective O-RAN practical deployment
workflow to enhance DRL convergence. Our approach shows
up to 22.8%, 86.3%, and 300% improvements in the average
initial reward value, convergence rate, and number of converged
scenarios respectively, enhancing the generalizability of the DRL
agents compared with the implemented baselines. The results also
indicate that our approach is robust against forecasting errors
and that forecasting models do not have to be ideal.

Index Terms—Deep Reinforcement Learning, Forecasting-aided
DRL, Generalizable DRL, Accelerated DRL, O-RAN, RAN Slicing

I. INTRODUCTION

The open radio access network (O-RAN) paradigm and 6G

networks are expected to play a crucial role in making immer-

sive applications a reality [1]. Services such as virtual reality

(VR) gaming and metaverse applications require low latency

and reliable connectivity to provide a seamless and immersive

user experience. Radio access network (RAN) slicing, a critical

component of the O-RAN architecture, enables the creation of

multiple virtual RANs on a single physical infrastructure. This

allows for improved user experiences ensuring that users have

the necessary resources to engage in immersive activities [2].

O-RAN enables mobile network operators (MNOs) to de-

ploy their own applications (xApps) to intelligently control

the various network functionalities in near-real-time (near-RT)

This research was supported by the Natural Sciences and Engineering
Research Council of Canada (NSERC) under Grant RGPIN-2019-05667 and
Grant RGPIN-2021-04050.

via standard open interfaces [3]. Deep reinforcement learning

(DRL) algorithms are among the promising tools used to

design O-RAN-compliant data-driven xApps [4]. Although O-

RAN intelligent controllers offer promising advantages [3],

the practical adoption of DRL algorithms in live deployments

has been sluggish [4]. This is primarily because of the slow

convergence and performance instability suffered by DRL

agents [5]. This becomes apparent when agents are newly

deployed in a live network or experience substantial changes

in network conditions [6]. DRL convergence to the optimal

RAN configuration needs to be quick and stable so that the

users’ quality of experience (QoE) is not affected. Nonetheless,

due to the stochastic nature of 6G systems and the exploratory

behavior of DRL agents, it may require thousands of time steps

to regain stability. This holds significant importance in O-RAN

deployments, as 6G networks can only afford a few exploration

iterations while optimizing near-RT O-RAN functionalities [5].

Traffic demand forecasting [7], [8] is a powerful tool that

can be utilized to enhance the performance of O-RAN slicing

intelligent controllers. Since 6G networks are expected to sup-

port a wide range of immersive services, accurate forecasting

can help MNOs proactively optimize the allocation of network

resources to the admitted slices. This ensures that each slice

has sufficient capacity to meet its service level agreements

(SLAs). Combining traffic demand forecasting with a flexible

tool such as DRL can enhance the convergence of DRL-based

slicing and its generalizability. This enables the DRL agent to

make informed slicing decisions based on the current network

conditions while also considering the forecasted conditions.

In this paper, we investigate ways to leverage the power

of time series forecasting for more robust and generalizable

DRL-based O-RAN slicing. Moreover, we propose an O-RAN

intelligent deployment workflow that incorporates a forecast-

ing module to enhance convergence. The contribution of this

research study can be summarized as follows:

• We propose a novel forecasting-aided algorithm to en-

hance the convergence and generalizability of O-RAN

slicing DRL agents. A forecasting model is employed

to predict the future contribution of slices to the overall

traffic demand and a resource allocation configuration is

suggested accordingly. This acts as a guide for the DRL

agent when allocating resources to slices. Hence, the agent

considers both its policy and the forecasted demand levels

when taking allocation action given a certain situation.979-8-3503-1090-0/23/$31.00 ©2023 IEEE
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• We propose an O-RAN deployment workflow that incor-

porates our forecasting-aided approach in the O-RAN ar-

chitecture to guide the convergence of DRL-based xApps.

• We conduct an exhaustive performance study that supports

multiple services including live VR gaming data to exam-

ine the impact of forecasting and its errors on the conver-

gence of DRL-based O-RAN slicing. We then compare

our approach against three implemented baselines. Our

approach shows up to 22.8%, 86.3%, and 300% improve-

ments in the average initial reward value, convergence

rate, and number of converged scenarios respectively. The

results also demonstrate our approach’s robustness against

forecast errors that follow a Gaussian distribution with

a standard deviation up to 0.25, given that the range of

the forecasted values is 1. The implementations of the

proposed approach and baselines are publicly available1

to facilitate research on trustworthy DRL in O-RAN.

To the best of our knowledge, this is the first study to

1) identify the need, and investigate the effect of time series

forecasting on the convergence of DRL-based O-RAN slicing,

especially for immersive 6G applications, and 2) propose an

algorithm to improve DRL convergence by using a novel form

of forecasting-aided DRL.

The paper’s remaining sections are structured as follows:

Section II presents a discussion on related work. Section III

details the forecasting-aided DRL approach, O-RAN workflow,

and the baselines proposed in this study. In Section IV, a

description of the experimental setup, and an analysis of the

results are provided. Finally, Section V concludes our work

and presents potential future directions.

II. RELATED WORK

The challenge of slow DRL convergence has been recently

addressed using approaches such as transfer learning, meta-

learning, structure awareness, and heuristics [5]. However, the

focus of this paper is exploring the effect of time series

forecasting on the convergence of DRL-based O-RAN slicing.

Several research studies have explored the use of forecasting

in resource allocation and network slicing. Nonetheless, most

of these studies use statistical and machine learning (ML)-

based forecasting approaches to optimize slicing directly [9].

For instance, the work in [7] extends long short-term memory

(LSTM) neural networks to forecast the physical resource block

(PRB) utilization. Consequently, the PRB allocation to slices is

made based on such a forecast.

Only a few studies make use of forecasting models to

enhance DRL. The authors of [10] propose a traffic offloading

scheme that combines deep Q-network and traffic demand

forecasting. A forecasting model uses the raw data collected

from the DRL environment to predict traffic load statistics as

a representation of the DRL state. Then, the DRL agent makes

offloading decisions according to such a state. The results show

that this approach outperforms tabular Q-learning. Similarly, the

authors of [11] use a forecasting model to predict the mobile

1Available at http://www.github.com/ahmadnagib/forecasting-aided-DRL

traffic volume. Hence, such a forecasted value is used as part

of the state of a base station (BS) sleep control DRL agent.

Both studies, however, do not investigate the impact of

forecasting on the convergence performance of the used DRL

algorithms. Furthermore, the surveyed studies only utilize the

forecasting model as part of a pre-processing step for state

representation. Finally, the live network deployment, especially

in the context of O-RAN, has not been addressed.

III. FORECASTING-AIDED DRL-BASED O-RAN SLICING

We propose to utilize a forecasting module to guide the DRL

agent when newly deployed in a live network or when the

network conditions change significantly as described in Section

III-C. This allows the agent to consider future traffic demand

when allocating resources to the available slices with the goal of

meeting slices’ SLAs. For that, we also propose a deployment

workflow to enhance the DRL convergence and generalizability

in the context of the O-RAN architecture.

A. System Model

In this paper, we are concerned with the downlink case

of the radio access part of O-RAN slicing. Radio resource

allocation in slicing aims at assigning the limited available

PRBs to the admitted slices while satisfying the slices’ various

requirements. The problem can be formulated as follows [6]:

A BS supports a range of services realized through a set of

virtual slices, S = {1, 2, . . . , S}. Such slices share the available

bandwidth, B. Each BS has a set of user equipments (UEs),

U = {1, 2, . . . , U}, connected to it. A UE, denoted as u, is

capable of requesting a single service type for downlink trans-

mission at any given moment. Users associated with a particular

slice, s, generate a set of requests, Rs = {1, 2, . . . , Rs}. The

overall demand, Ds, of these users can be denoted as follows:

Ds =
∑

rs∈Rs

drs , (1)

where drs is the demand of a request, rs, made by a user

associated with slice s. Furthermore, the contribution of a slice,

s, to the total BS’s traffic demand at a slicing step, t, is:

κs(t) =
Ds(t)

∑∥S∥
i=1 Di(t)

(2)

PRB allocation among the available slices, S, can be repre-

sented by the vector, a ∈ IRS. At the start of a slicing window,

a RAN slicing controller selects a slicing PRB allocation

configuration, a, out of the A feasible configurations, where

A = {1, 2, . . . , A}. Consequently, the system performance,

represented in terms of the latency of the admitted slices

within the context of this paper, is impacted. This is primarily

influenced by a queue maintained at the BS.

B. Reinforcement Learning Mapping

For the traditional DRL approach, we follow the mapping in

Table I. The system state is defined as the slices’ contribution

to the total BS’s traffic within the past slicing window, that is,

κ = (κ1(t− 1), ..., κs(t− 1), ..., κS(t− 1)) (3)
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Fig. 1: Proposed forecasting-aided DRL-based O-RAN slicing system.

The DRL agent observes such a state and takes action

accordingly at the start of each slicing step to decide the PRB

allocation for each slice, that is,

a = (b1, ..., bs, ..., bS), subject to b1 + ...+ bS = B (4)

The reward function is used to optimize the allocation

process. We use sigmoid function-based rewards similar to

the one proposed in [6]. This enables controlling the effect

of approaching the performance threshold defined by each

slice’s SLAs. In this study, we prioritize immersive services,

and hence, their latency requirements. Therefore, the reward

function is a weighted sum of an inverse form of latency and

can be defined as follows:

R =

∥S∥
∑

s=1

ws ∗
1

1 + e c1s ∗ ( ls − c2s )
(5)

where ls is the average latency underwent by slice s’s UEs

during the preceding slicing window, at t− 1. The weight, ws,

defines the priority of satisfying the delay requirement of slice

s. c1 configures the slope of the sigmoid function, and hence,

controls the starting point for penalizing the agent’s actions.

Moreover, c2 defines the inflection point that reflects the latency

performance threshold for each slice based on its SLAs.

C. Proposed Forecasting-aided O-RAN Architecture

We propose a deployment workflow that incorporates a

forecasting module as part of the O-RAN architecture to guide

DRL-based xApps. This is primarily needed upon the initial

xApp deployment and when there are significant changes in

network conditions. This module includes forecasting models

that predict relevant network conditions in the future such as the

traffic demand of various slices. Consequently, the module in-

teracts with the DRL agents via O-RAN’s A1 interface to guide

and enhance their convergence performance as described in the

next subsections. Fig. 1 shows the overall system architecture

(left) and the interaction steps between the DRL agent, the

forecasting module, and the virtualized O-RAN environment

in the proposed approach (right).

As seen in the figure, the traffic demand forecasting is based

on observations made during a time window, Thistory, [t −
Thistory, t− 1]. The contribution of slice s to the overall traffic

demand in such a period can be described by the following

vector:

κ(s)(t) =
(

κ(s)(t− Thistory), κ
(s)(t− (Thistory − 1)),

· · · , κ(s)(t− 1)
) (6)

Based on such an observed history of traffic demand, the

forecasting model, F, provides the predicted traffic demand for

the slicing window that is about to begin or a longer time

window, Thorizon, for the time period [t, t+ Thorizon − 1]. The

demand in this period can be denoted as follows:

κ̂(s) =
(

κ̂(s)(t), κ̂(s)(t+ 1), · · · , κ̂(s)(t+ Thorizon − 1)
)

(7)

Accordingly, the forecasting model depicted in Fig. 1 pre-

dicts the slices’ future contribution to the overall BS traffic

demand as follows:

F : RThistory∗S → R
Thorizon∗S

κ[t− Thistory, t− 1] → κ̂[t, t+ Thorizon − 1]
(8)

where κ̂ denotes the slices’ forecasted contribution to the

overall traffic demand. For the purpose of this paper, we

imitate the behavior of forecasting models with errors that

follow Gaussian distributions as detailed in Section IV. Hence,

forecasting model training is not addressed.

D. Proposed Forecasting-aided DRL-based O-RAN Slicing

As detailed in Fig. 1, a forecasting model is incorporated

to predict future traffic demand. Accordingly, the forecasting

module suggests a PRB allocation action purely based on

its forecasted contribution to the total demand, κ̂, as defined

in Equation 7. The DRL agent continuously monitors such

a suggested guiding action via O-RAN’s A1 interface. The

agent follows its current policy unless the action is significantly

different from that suggested by the forecasting module. The

forecasting module overwrites the agent’s policy in such a case

to prevent potentially damaging actions. A distilled action that

minimizes the divergence between the agent’s policy and the

forecasting module’s action is taken. The difference between

two actions is measured in terms of the Euclidean distance

between the action vectors as follows:
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TABLE I: Experiment Setup: RAN Slicing DRL Design

State Slices’ contribution to the overall BS’s traffic within a specific time window as defined in (2)

Action PRBs allocated to each slice as defined in (4)

Reward function
A weighted sum of a sigmoid function of the average latency experienced in a slicing window by the
various slices as defined in (5)

Reward function weights VoNR: 0.1, VR gaming: 0.7, Video: 0.2
DRL algorithm Proximal Policy Optimization (PPO)
Learning steps per run 10,000
Exploration rate 0.5
Exploration decay rate 0.5 (every 200 steps)
Action distance threshold 7%
Learning rate 0.01
Batch size 4

Algorithm 1 Proposed Forecasting-aided DRL Approach

Input: trained forecasting model, F, traffic demand historical

observations of size Thistory, forecast horizon, Thorizon, current

state, κ, current DRL policy, π, set of possible actions, A,

actions distance threshold, γthreshold

Output: distilled action, adistilled as defined in Section III-D

1: while t < T do:

2: Forecast κ̂ for the next Thorizon time steps, using F

3: Generate an action, aforecast, purely based on κ̂

4: Consult π given κ, and get the recommended action, aπ
5: if γ(aπ, aforecast) > γthreshold do:

6: Find the midpoint between the vectors, aπ and aforecast

7: Select an action, adistilled, closest to the midpoint to

minimize the divergence between aπ and aforecast

8: Take the distilled action, adistilled, to allocate PRBs for

each admitted slice

9: Update the value function, V , based on the received

reward, R

10: end if

11: end while

γ (aπ, aforecast) =

√

√

√

√

S
∑

s=1

(aπs − aforecasts)
2

(9)

where aπ and aforecast are vectors of actions recommended by

the DRL agent’s policy and the forecasting module respectively.

The agent does not follow the exact action recommended by the

forecasting module as it may not explicitly consider the slices’

SLAs, i.e., latency in our case. A distilled action that represents

the midpoint between the two actions’ vectors is taken instead.

This prevents the agent from taking actions that contradict the

forecasted demand. This additionally accommodates potential

forecast errors. The distilled action is integrated into the DRL

agent’s learning process to speed up its convergence to the

optimal slicing configuration. Algorithm 1 defines how a DRL-

based slicing xApp seeks guidance from the forecasting module

and updates its policy accordingly while it is active (i.e., t < T ).

E. Baselines

a) Forecasting-based DRL state representation: We first

implement a forecasting-based approach that embeds the fore-

casted traffic demand as part of the DRL state. This approach

utilizes the forecasting module in a preprocessing step similar

to [10] and [11]. We integrate this step in the O-RAN flow

proposed in Section III-C and use the forecasting model’s

output as an extra input feature to the DRL-based agent via O-

RAN’s A1 standardized interface. Hence, the forecasted traffic

demand is embedded as part of the DRL state representation in

addition to the traffic demand observed in the preceding slicing

window as defined in (3), where κ ∈ R
(Thorizon+1)∗S. The first

baseline approach’s steps are described in Algorithm 2.

Algorithm 2 Forecasting-based DRL State Representation

Input: trained forecasting model, F, traffic demand historical

observations of size Thistory, forecast horizon, Thorizon, current

DRL policy, π, set of possible actions, A

Output: action, a as defined in (4)

1: while t < T do:

2: Forecast κ̂ for the next Thorizon time steps, using F

3: Embed the future traffic demand in the system state,

i.e., κ ∈ R
(Thorizon+1)∗S

4: Consult π given κ, and get the recommended action, aπ
5: Update the value function, V , based on the received

reward, R

6: end while

b) Non-forecasting-aided DRL: We also implement a tra-

ditional DRL approach that follows the same DRL mapping

defined in Section III-B. This approach is not guided by the

proposed forecasting module.

c) Non-DRL forecasting approach: Finally, we implement

an approach that purely relies on forecasting to allocate re-

sources. PRBs are allocated to each slice solely based on such

a slice’s forecasted contribution to the total demand, κ̂.

IV. EXPERIMENT SETUP AND NUMERICAL RESULTS

A. Experiment Setup

We investigate a deployment scenario using the O-RAN

workflow proposed in Section III-C. Hence, we restrict DRL

agents’ exploration as reflected by the exploration rate and its

decay specified in Table I. We conduct an exhaustive exper-

iment that follows the mapping defined in Section III-B and

implements the proposed approach. The simulation is designed

to reflect extreme situations in which the available PRBs are

configured to be less than the actual demand. We then compare

the convergence performance of the proposed approach against
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TABLE II: Experiment Setup: Simulation Parameters Settings

Video VoNR VR gaming

Scheduling algorithm Round-robin per 1 ms slot

Slicing window size PRB allocation among slices every 100 scheduling time slots

Forecasting error Gaussian distribution, mean = 0, standard deviation = 0, 0.1, 0.2, 0.23, 025, 0.3, 0.4

Forecasting horizons Thorizon = {1, 2, . . . , 10}
Packet interarrival time Truncated Pareto (mean = 6 ms, max = 12.5 ms) Uniform (min = 0 ms, max = 160 ms) Real VR gaming dataset [12]
Packet size Truncated Pareto (mean = 100 B, max = 250 B) Constant (40 B) Real VR gaming dataset [12]
Number of users Poisson (max = 43, mean = 20) Poisson (max = 104, mean = 70) Poisson (max = 7, mean = 1)
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Fig. 2: Convergence performance of the proposed forecasting-aided approach under 4 different traffic patterns.

the baselines defined in Section III-E. Moreover, we test the

agents that follow Algorithm 1, and the non-DRL forecasting

approach against various forecasting errors as defined in Table

II. This allowed us to examine the effect of forecasting errors

on the performance of the two approaches.

We use live VR gaming data from [12] as an example

of realistic patterns of immersive services in 6G networks.

We specifically incorporate 4 different trace files reflecting

traffic patterns from multiple games and distinct configurations

per game. Moreover, we combine such patterns with video

and voice over new radio (VoNR) traffic requests to reflect

3 different slice types in our experiment. Such requests are

generated following the models defined in Table II as in [6]. In

such models, VoNR users produce requests of small and static

sizes, while VR gaming users generate the largest requests.

Besides, video users experience more frequent requests than

the other two services. Different constant values of c1 and c2
parameters are utilized for the slices in the reward function

based on their respective latency requirements.

B. Numerical Results

a) Convergence Performance: Despite the aforemen-

tioned restricted exploration settings, the proposed approach

converges to the optimal allocation configurations given the

scenarios shown in Fig. 2. On the other hand, due to such

restrictions, the non-forecasting-aided DRL approach fails to

converge in almost all the scenarios. Moreover, the number

of steps needed by our approach to converge to the optimal

configuration is significantly less than the non-forecasting-aided

DRL approach when both converge as in Fig. 2a. This is

primarily due to guidance from the forecasting module that

prevents the agent from exploring potentially damaging actions.

Algorithm 2 only includes the forecasted demand in its state

so it does not directly overwrite potentially damaging actions

or accommodate forecasting errors. Hence, its performance is

also inferior to Algorithm 1.

The figure also shows a remarkable improvement in the

initial reward values of our approach compared to the other two

DRL-based baselines. In our approach, a distilled action is only

triggered when there is a big gap between the agent’s action

and that recommended by the forecasting model. Hence, only

potentially damaging actions are replaced by an action closer

to the forecasted conditions allowing for a safer exploration.

Eventually, based on the configured action distance threshold

of our approach, the forecasting model was only consulted 8.9%

of the time on average. Consequently, the DRL agent recovers

quickly to a near-optimal slicing configuration and the received
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Fig. 3: Convergence performance of the proposed approach

under different forecasting error models (traffic pattern 1).

reward becomes relatively higher.

Relying on forecasting solely never leads to convergence

given imperfect predictors as Fig. 2 suggests. This confirms our

hypothesis in Section III-D. The non-DRL forecasting approach

does not explicitly consider the various slices’ SLA fulfillment.

Hence, our approach outperforms the non-DRL forecasting

approach as it aims at satisfying latency requirements reflected

in the reward function.

b) Forecast Error Effect: We also examine the effect

of the forecast error on the convergence performance. The

proposed approach is robust against forecast errors that follow a

Gaussian distribution with a standard deviation up to 0.25 in the

case of traffic pattern 1 as shown in Fig. 3. This is a significant

error given that the range of the forecasted values is 1. Such

robustness is attributed to accommodating potential forecasting

errors in Algorithm 1 through divergence minimization instead

of solely relying on the forecasted action. Nevertheless, when

the standard deviation is higher than 0.25, the exploration

becomes relatively unstable. DRL agents fail to converge in

such scenarios. However, the overall reward is still kept in

a relatively good range. Furthermore, the proposed algorithm

still has relatively high initial reward values compared with the

traditional DRL approach as seen in Fig. 3.

This observation is confirmed by the statistics compiled in

Fig 4. The proposed approach noticeably outperforms all the

other DRL-based baselines and maintains the highest initial

reward value on average, even when the error is high. Our

approach also has the fastest convergence rate. Furthermore,

100% of the conducted scenarios converge to the optimal

resource allocation configuration given that the forecasting

error’s standard deviation is 0.25 or lower. Since forecasting

models are imperfect, especially with new immersive services,

this gives insights into the accepted error ranges. It also shows

that forecasting models used in our approach do not have to

be ideal. Finally, the forecasting-based state representation ap-

proach shows an inferior performance to the proposed approach

in almost all the cases even when using perfect predictors.

V. CONCLUSION AND FUTURE WORK

In this paper, we conduct an exhaustive experiment to study

the effect of forecasting on the convergence performance of

DRL-based O-RAN slicing. We propose a forecasting-aided

DRL algorithm and an O-RAN deployment workflow that prove
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Fig. 4: Convergence performance averaged over multiple runs

(the higher the better except for number of steps to converge).

to remarkably enhance the convergence performance and to

be robust against forecasting errors. We plan to investigate

the possibility of building forecasting models that achieve the

observed acceptable error ranges using the VR gaming data. We

will also explore combining such models with other approaches

such as constrained DRL and transfer learning as a promising

step toward trustworthy DRL in O-RAN slicing.
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