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Abstract

The growing demand for video streaming is straining the current Internet, and man-

dating a novel approach to future Internet paradigms. The advent of Information-

Centric Networks (ICN) promises a novel architecture for addressing this exponential

growth in data-intensive services, of which video streaming is projected to dominate

(in traffic size).

In this thesis, I present a novel strategy in ICN for adaptive caching of variable video

contents tailored to different sizes and bit rates. My objective is to achieve optimal

video caching to reduce access time for the maximal requested bit rate for every user.

At its core, my approach capitalizes on a rigorous delay analysis and potentiates

maximal serviceability for each user. I incorporate predictors for requested video ob-

jects based on a popularity index (Zipf distribution). In my proposed model, named

DASCache, I present queuing analysis for Round-Trip Time (RTT) of cached objects,

providing a cap on expected delay in accessing video content. In DASCache, I present

a Binary Integer Programming (BIP) formulation for the cache assignment problem,

which operates in rounds based on changes in content requests and popularity scores.

DASCache reacts to changes in network dynamics that impact bit rate choices by
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heterogeneous users and enables users to stream videos, maximizing Quality of Ex-

perience (QoE). To evaluate the performance of DASCache, in contrast to current

benchmarks in video caching, I present an elaborate performance evaluation carried

out on ndnSIM, over NS-3.
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Chapter 1

Introduction

The dynamics of the Internet, which have scaled adequately over the past twenty

years, are currently faltering under the projected growth of data demands. With the

rise of mobile computing, especially the advent of smart handheld devices, people

have more access to the Internet than ever. The dream of having ‘Information at my

fingertips any time, any place’ is no longer a dream at all. Thus, the generated data

traffic has increased at an inconceivable speed and is exhausting network resources,

such as available bandwidth, IP address, etc. In 2013, statistics showed the global

IP traffic per month was 51,168 PB; that amount is going to nearly double by 2016,

reaching 91,260 PB [12]. More importantly, multimedia data is expected to increase

to a considerable percentage. It is projected that, by 2016, video streaming will

amount to more than 55% of overall data traffic [13] in conservative estimates.
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1.1 Motivation

The current host-centric Internet architecture fails to confront the challenge under

this intensive video delivery reality. Every time a user is interested in some video

content, an independent communication tunnel between the user’s device and the

server must be established at the very beginning. This mechanism will add up all

the users’ data demands on the server side, resulting in heavy processing burden.

With increased number of users sharing the common links to the server, once limited

network resources on these links are exhausted, the consequent network congestion

and huge access delay then degrades the users’ experience.

To remedy the aforementioned problems, one direct way is to make video content

providers put more investment in upgrading hardware and network infrastructure.

However, another approach is to build an application layer overlay network, e.g.,

Peer-to-Peer Network (P2P) and Content Distribution Network (CDN).

By having symmetry in roles where a client could also be a server, P2P overlay

network [3, 30] relieves the burden of satisfying increased data demand on the content

server. With the assumption that all clients in P2P network are altruistic, data can

be retrieved from not only the origin server, but other clients simultaneously, which

thereby improves the data delivery efficiency.

CDN [32, 31] is another typical example of an overlay network which utilizes surrogate

servers to retain copies of identical contents, offloading the traffic from the origin

server. Users’ requests will be directed to the nearest surrogate server instead of

traveling through a congested routing path to the origin server. CDN helps to promote

the information availability and benefits users by reducing access latency.
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In addition, handling the increased multimedia traffic can also be done via a client-

driven method, called Dynamic Adaptive Streaming over HTTP (DASH) [37]. DASH

could provide time-shift control on media requests according to varying network con-

ditions and achieves the highest quality of streaming as possible. The fundamental

feature of DASH is to encode a media stream with multiple alternative bit rates and

chop it into a sequence of small HTTP-based file segments of the same length while

each one contains a short interval of playback time. These segments are provided on

ordinary servers; for each segment, DASH client will adapt automatically between

versions of video and choose the best possible quality to download. As shown in Fig-

ure 1.1, such adaptation decision is made according to real-time bandwidth, without

incurring stalls in the playback. Therefore, based on the individual network condi-

tion, a user now could be served with the most suitable bit rate which guarantees the

best viewing experience.

Server
User’s Device

Internet

Time

Bandwidth

Playback Time

Media Quality

High

Medium

Low

Playback Time

Media Quality

HTTP Server with Segmented Video 

Objects
Video Objects Received by User

Figure 1.1: Dynamic Adaptive Streaming over HTTP

Even though CDN and P2P provide overlays over the Internet to disperse the burden

on the server in order to handle large amounts of content demand, they both have
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their own issues which have limited progress for years. For example, there is always

debate on heavy bandwidth usage, copyright infringement and security, which slow the

application of P2P. As to CDN, replicas must be synchronized all the time via either a

pull-based or push-based cooperation scheme between the origin and surrogate server,

which makes managing CDN not only costly but constrained by the scale of topology.

DASH is a creative way to adjust users’ requests according to network load so that it

deduces the influence of network performance on users but intrinsically, DASH never

solves the fundamental issue of the resource strain on the current Internet.

Therefore, all these approaches which are based on current host-centric architecture,

do not give an ultimate solution. They basically are functionality patches to upgrade

the Internet, fulfilling tasks which were not designed to be addressed before.

1.2 Objectives

In recent years, a rising concern in the paradigms governing the Internet has resulted

in the emergence of a new architecture, Information-Centric Network (ICN) [43]. That

is proposed as the next generation of the Internet designed to intrinsically handle large

content and distribute it via network layer primitives which essentially unravel the

vicious cycle of ‘patching over patches’ on the current Internet architecture. In ICNs,

rather than adopting the client-server approach of the current host-centric Internet,

the core premise is adapting to content and catering to both consumers and producers.

There are several appealing features of ICN, such as: time and space decoupling, nam-

ing over network layers, multi-path routing, all which make optimization over han-

dling large content dissemination possible. More importantly, ICN exploits caching
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as a networking primitive which solves the efficiency issue of content delivery over the

current Internet thoroughly.

The challenge of catering to video content, as a dominant type of traffic, is also

instrumental in the development of ICNs. To this end, some researchers attempted

data manipulation such as transcoding to address video caching in ICNs. Yet, the

problem of addressing heterogeneous caching over variable chunks of different bit

rates, without incurring in-network data processing, remains unsolved.

In this thesis, inspired by dynamic adaptive streaming, I present a novel model,

DASCache, to handle heterogeneous video content caching in ICNs. My objective is

simply to minimize the average retrieval time for requested videos, to facilitate rapid

streaming over ICNs which improves Quality of Experience (QoE) for all users. My

approach addresses variable bit rates and content sizes, to mimic realistic scenarios

where different users would demand the best possible bit rates given the heterogeneity

of their devices and link conditions. Utilizing DASCache, users with varying network

conditions will experience higher throughput and are thus able to switch to videos

with better resolution, achieving the best experience possible.

1.3 Organization of Thesis

The remainder of the thesis is organized as follows. I proceed with a complete litera-

ture overview, including recent research on caching schemes in ICNs and predecessor

work on dynamic adaptive streaming in Chapter 2. Chapter 3 presents my system

model of DASCache management strategy. My experiment setup and performance

evaluation results are detailed in Chapter 4 and I conclude in Chapter 5 with my final
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remarks and proposals for future work in this viable direction.
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Chapter 2

Background and Related Work

To explain my contributions, it is necessary to detail background from the areas of

ICN and DASH. In this chapter, I reveal the fundamental features of ICN (especially

ICN Caching) and the working process of DASH which are the premise of my work.

2.1 Information-Centric Networks

The problem with the current Internet arises from architecture which was previously

projected to handle communication at a time when only rare resources need to be

shared along a long-distance link [43]. It was impossible for the designers to predict

the data traffic burst of today’s Internet at that given time. To meet the requirements

that the Internet was not designed for, patches to current architecture have to be

applied (e.g., CDN, P2P and Mobile IP). Nevertheless, more and more patches could

only add complexity to the Internet, which thereby degrades the performance further.

Information-Centric Network emerges which takes into consideration both the current

and future need of the Internet. Driven by the fact that users are more interested
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in receiving information, rather than where it is located, ICN totally abandons the

host-centric model and achieves appealing features as follows.

2.1.1 Decoupling in ICN

Unlike the current Internet where the user must provide a specific location to denote

from which place the information could be retrieved, ICN addresses this issue by em-

ploying publish-subscribe (Pub-Sub) model [2, 14]. Information sources advertise the

contents through Publish to the network and then users subscribe to what content

they need. Inside ICN, content notification service is responsible for matching the

subscriptions to corresponding publications. Each terminal contains a name resolu-

tion, which plays the same role of Domain Name System (DNS) server in the current

Internet, and a named-based routing responsible for data delivery, as shown in Fig-

ure 2.1. These two features will be explicated in detail in Section 2.1.2. Based on

this model, the user does not need to know the exact destination (i.e. IP address of

the server) but instead consults name resolution and then dispatches the subscrip-

tion. The routing of subscription and publication are entirely left to ICN. Publishers

will not be aware of how many subscribers are interested in the content, neither do

subscribers, which thereby ensures space decoupling in ICN.
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Name Notification Service

Name

Resolution

Service

Name Based

Routing

Name Based

Routing
Cache

Figure 2.1: ICN Architecture

Different from the traditional Pub-Sub system [10, 11], ICN is pure receiver-driven

architecture. The action of Publish in a traditional model contains actual data trans-

mission, which means users can only subscribe and retrieve information in the future:

users’ Subscribe can only be accepted by the publisher after the content is prepared.

However, Publish in ICN is only an announcement of information availability and

registers the content in notification service. It is user’s subscription that pulls the

actual data from the data source. Therefore, the subscription could be registered even

before the corresponding content is published. In ICN, publication and subscription

do not need to be time synchronized.

Decoupling in time and space guarantees the flexibility of ICN architecture and par-

ticularly allows for native support of mobility which is not easily satisfied in current
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Internet via Mobile IP. As wireless devices will switch networks and IP addresses fre-

quently, Mobile IP is proposed to handle intermittent connectivity through a method

called triangular routing : mobile device first needs to register in a home network

where data packets will be first routed to and then delivered from that place to cur-

rent location via a communication tunnel. This mechanism is inefficient since the

routing path is non optimal. However, in ICN, since the host has no binding to some

particular IP address, this problem is tackled in a much easier way: the mobile user

just needs to re-send the subscription after moving to a new location and the contents

will be delivered directly and optimally to the mobile user’s current location instead.

2.1.2 Naming in ICN

Another important feature which distinguishes ICN from the current Internet is the

network-layer naming, a key to Pub-Sub model which involves no topology informa-

tion. A name specified to each content is the only identity for matching between

publication and subscription. It ensures that users do not need extra attention to

content address and provides more flexibility to network, choosing the best source for

retrieving information. Design in naming varies in different ICN projects. It could be

flat or hierarchical, readable or un-readable. A name could look like a HTTP request

in a hierarchical design or merely a string of meaningless numbers.

More importantly, naming is designed at the network layer which promises ICN the

capability of information-awareness which enables content delivery from an optimal

source. Current Internet refers to Open Systems Interconnection (OSI) model de-

sign [46]. A packet header formulated in each communication layer attaches to a

Service Data Unit (SDU) and then constitutes a Protocol Data Unit (PDU) which
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will be passed to the lower layer as a SDU. When the packet arrives at network layer,

incremental headers from upper layers make the data packet inefficient to decode.

In the current Internet, there is no demand to interpret delivered content in order

to maintain the design of between-layer isolation. Such that, inefficient decode is

not regarded as a problem since information is treated as a string of binary codes.

However, such opaque design weakens the control and losses opportunities of network

optimization. In contrast, ICNs re-design the network layer to achieve exact knowl-

edge of what is transmitted by parsing the name of the content, which makes ICNs

able to adjust routing hop-by-hop and exploit in-network storage automatically and

optimally.

2.1.3 Caching in ICN

Caching is considered to be an essential component of ICN architecture. As shown

in Figure 2.1, each router in ICN is equipped with name-based routing algorithm

and cache storage. Caching in ICN could effectively reduce redundant data traffic

generated by duplicated requests made from different users. Unlike the current In-

ternet which must ensure a communication tunnel between explicit data consumer

and producer, ICN supports information retrieval from anywhere so that users’ re-

quests may be satisfied by not only the data source but any intermediate nodes in the

network. ICN is a feasible solution to alleviate the pressure from rapid data traffic

growth (especially multimedia) without resorting to the application layer (like CDN

and P2P).

Caching in ICN can be categorized into two types, On-Path caching and Off-Path

caching. Off-Path caching is also referred as content replication with the aim of
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increasing data availability. By notifying and coordinating with name resolution

service, a selection of routers on which requests are normally not reachable become

alternative content providers. Off-Path caching is similar to CDN in concept but

content replication happens to network layer primitives. As to On-Path caching,

data could be only cached on routers along the forwarding path from information

providers to consumers. If data has already been cached in ICN routers by requests

from previous consumers, it will save time for delivering cached content to subsequent

users once the name resolution paths of the contents overlap.

2.2 Architecture of Content-Centric Network

ICNs have substantially gained interest from both the research and industry commu-

nity. There are several ongoing projects implementing versions of the ICN, e.g.,

DONA [21], Publish-Subscribe Internet Technology (PURSUIT) [16], Scalable &

Adaptive Internet solutions (SAIL) [14], COMET [17], to name a few. Pioneering

among these architectures is the Content-Centric Network (CCN), also known as

Named Data Network (NDN), developed by Jacobson et al. in [20]. CCN stands

out as one of the prominent architectures that witnessed significant uptake by the

research community; facilitating rapid benchmarking and insightful performance anal-

ysis across proposed protocols and schemes.

In this section, I focus on the CCN project as an example to explain basic concepts

and features discussed in ICN and show how it is implemented in detail.
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2.2.1 Name Structure

CCN is a chunk-based delivery system. Contents are split into chunks where each one

is identified by a unique name. Content Name in CCN is structured hierarchically

and consists of several components. Each component should be encoded in binary,

convenient for transmission. However, since names in CCN, represented as variable-

length binary bytes, are not human-readable, names are usually shown with format of

Uniform Resource Identifier (URI), using delimiters (e.g., ‘/’) to separate components

which are represented by strings or integers (meaningful characters). For example, a

CCN Content Name can be ‘/cs.queensu.ca/thesis/wenjie.tex/ v1/ s0’.

In the above example, components are organized in a tree structure shown in Fig-

ure 2.2. In addition, naming in CCN also reflects current application-level convention,

which tracks the evolution of information; s is a segment marker followed by an inte-

ger (0 in the example) which represents a block offset value; v is a version identifier

catering to frequent updates to information followed by a version number. In CCN,

a longest prefix matching rule is applied for searching requested content. Through

traversal of naming tree, subscriber’s application thus can discover accessible data

and control requested information with various levels of granularity for efficient deliv-

ery. For example, after the application has received the first version and first segment

of data, it could either ask for the most right sibling s1 by requesting for name

of ‘/cs.queensu.ca/thesis/wenjie.tex/ v1/ s1’ or even retrieve the whole content with

any version via requesting ‘/cs.queensu.ca/thesis/wenjie.tex’.
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cs.queensu.ca

thesis

wenjie.tex

_v1 _v2

_s0 _s1 _s2

4

Figure 2.2: CCN Naming Tree (reproduced from [20])

2.2.2 Node Model

Inherited from ICN Pub-Sub model, CCN retrieves information through a receiver-

driven mechanism as well. There are two types of CCN packets, Interest and Data,

both of which own a common component, ContentName, as shown in Figure 2.3.

This component is used to match between subscription and publication: users need

to first broadcast queries with an appointed ContentName in an Interest packet and

any data source (either the server or an intermediate router) in which exists content

with the identical ContentName to Interest packet responds with Data packet.
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Selector
(order preference, publisher  lter, scope, ...)

Nonce

Content NameContent Name

Data

Data packetInterest packet

Signature
(digest algorithm, witness, ...)

Signed Info
(publisher ID, key locator, stale time, ...)

2

Figure 2.3: CCN Packet Format (reproduced from [20])

CCN router, also known as Content Router (CR), has three main data structures:

Content Store (CS), Forwarding Information Base (FIB) and Pending Interest Table

(PIT). They are abstracted as tables in CR within which each entry is indexed by

unique Content Name. A brief example is shown in Figure 2.4. Compared with the

current Internet where the IP address is used as an index, lookup over all entries in

CCN is extremely fast by applying hashing techniques with complexity O(1) while

expensive O(log(n)) tree search or TCAM (high-end hardware) has to be used in IP

network.
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3

Figure 2.4: Components of CCN Router (reproduced from [20])

The FIB accomplishes a similar task to current IP network for requests routing ex-

cept it could choose multiple output interfaces simultaneously for forwarding Interest

packets towards several potential data sources guided by name-based routing strategy.

Therefore, within CCN, it is possible to seek for information in parallel.

The PIT, however, is used to keep track of the Interest packets in order to guide Data

packet downstream along the routing path to the subscriber. CCN uses ‘bread crumb’

strategy to couple name resolution and data routing. Only the Interest packet needs

to be routed to potential source. As the Interest packet arrives at a certain router, it

registers in PIT, leaving the ‘bread crumb’. Once matched Content Name is found

on some node, the corresponding Data packet simply follows this ‘bread crumb’ in

PIT towards the initial requester without routing.

Content Store acts differently with the buffer memory in IP router because of its
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replacement strategy (e.g., LRU or LFU). The buffer in an IP router is basically

a FIFO queue to balance the uneven speed between input and output interfaces.

However, since CCN packet is self-identified with a unique name, Data packets kept

in the Content Store have potential benefit to other consumers whose request is for

the same content.

When an Interest packet arrives at Content Router, the Content Name is first ex-

tracted and longest prefix lookup is applied over Content Store. If the same name can

be found, the subscription is immediately satisfied with local cache and the Interest

is discarded. Otherwise, the forwarding process is initiated. The Content Name is

searched among entries in PIT. A matched entry means the request for the same

content has ever reached this router before but has not been satisfied yet. Such that,

there is no need to propagate this packet to the potential information source again.

Instead, CR only generates the ‘bread crumb’ by adding the arrival interface of the

new Interest packet to Requesting Face (as shown in Figure 2.4) of the entry to ensure

when the corresponding Data packet arrives, a copy could be sent through interface

that the new Interest packet arrived on. Otherwise, a further searching should be

carried out upon FIB table. If there is a matching entry in FIB, the Interest packet

has to be sent upstream towards data source and a new PIT entry thus is created to

keep track of the routing path.

When a Data packet arrives, a longest-match lookup within Content Store is also

preferred over PIT. A matched entry found in Content Store means the same content

has been cached on this router such that this duplicated packet is discarded. Oth-

erwise, data is first cached in Content Store and then several copies are sent out via

each interface listed in the Requesting Face of corresponding PIT entry.
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2.3 Caching Over Information-Centric Networks

In this section, I discuss related work on caching schemes over ICN. I first emphasize

the characteristics of caching in ICN compared with other overlay networks and then

provide a brief explanation of several issues which are broadly concerned in research.

Within these research problems, caching decision policy is highlighted.

2.3.1 Comparison With Caching in Overlay Networks

Caching in ICN differs from current overlay networks (e.g., CDN and P2P) in many

ways. First of all, due to unified and consistent naming, there exists a one-to-one

matching between the content and its name which enables ICN’s network layer to

be information-aware which makes it possible for ICN to take advantage of caching.

Secondly, in ICN, caching is ubiquitous. Compared with CDN and Web caching, an

important research problem in these two areas is to determine a set of nodes in the

network on which cache space should be allocated. However, caching opportunities

in ICN are everywhere, which reflects the high dynamics of the system. Thirdly,

in CDN, data is pushed and updated manually on surrogate servers based on prior

knowledge (such as access frequency) and could only be visited through connection

redirection made by DNS resolution. While in Web caching, the cache space only on

those nodes which lie on the request route are accessible. ICN, however, synthesizes

these two designs, providing both Off-Path and On-Path caching.

Nevertheless, there is still one point common between caching in ICN and overlay

networks. Same as overlay networks, ICN also faces the problem of where and what

content should be cached. The goal of content placement in ICN is to optimize
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objectives by targeting different metrics under particular application scenario, such as

energy efficient delivery [28] or video streaming, catering to different traffic types, such

as file, multimedia, web page, etc. As decoupling architecture makes optimization

hop-by-hop possible, caching in ICN achieves more flexibility in control and thus

surpasses overlay networks by providing cross-application performance improvement

instead of just aiming at saving data traffic and alleviates the load on the original

server.

2.3.2 Research Problems

Recently, there are three main areas which receive sustained attention from the re-

search community: cache capacity allocation, cache space sharing and cache decision

policy respectively [45].

The research of cache capacity allocation is: given fixed total storage resources, how

to arrange capacity among all nodes in ICN to make sure the whole system reaches

its optimized performance. Different methods have been proposed to tackle this

problem. Rossi et al. in [34] utilize the information of network topology and allocate

cache capacity based on centrality of each node. For example, if I use the simple

degree centrality d(i) which is defined by the number of links on each node, the cache

storage is proportional to
d(i)∑
i d(i)

such that nodes with high connectivity in topology

will be allocated more resources. A similar idea is discussed in [42] and [33], authors

define Core and Regular to distinguish routers in ICN where Core are those nodes

located on important intersections in the topology and should be allocated more cache

space. Wang et al. in [40] proposed a model, solving the optimal allocation problem

by dynamic programming, in which it takes not only the static topology but also the
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dynamics of users’ requests into consideration.

Since ICN architecture supports cross-application caching, different traffic types must

compete for limited cache resources. Research on cache space sharing is to find a way

to partition cache capacity across different traffic classes on all nodes. In 2004, Lu et

al. has already proposed an approach to adjust partition ratio in the context of web

caching based on the dynamic feedback control in [29]. A native approach under the

scenario of ICN is to use a fixed ratio on each node but the issue of efficiency is argued

in some work [9]. Carofiglio et al. presented in [9] a dynamic partition method using

priority-based sharing and weighted fair sharing. Lower priority class of contents will

be replaced by contents belonging to higher priority classes dynamically.

Cache decision policy is one of the hottest topics in ICN research. It is an area which

studies what and where objects are to be placed in caches. My work on caching

strategy for dynamic adaptive streaming belongs to this area. In the next section, I

will provide detailed explanations on schemes within this scope.

2.3.3 Caching Decision Policy

According to the degree of coordination in cache decision process, caching decision

schemes can be classified as either explicit or implicit. Explicit caching policy re-

quires exchanging users’ access statistics (i.e. popularity of items), storage availabil-

ity among nodes which thereby incurs overhead. Instead, implicit caching decision is

made independently by each node and no statistics need to be exchanged.
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2.3.3.1 Explicit Caching Policy

Explicit caching has been widely explored under CDN. As mentioned earlier, each

surrogate node in CDN requires knowledge of the whole network through either offline

or online communication to work out the optimal solution. This results in added

maintenance costs. Considering the dynamics of ICN, it is necessary to propose

approaches which decrease the overhead of exchanging statistics. Recent research [45]

mainly utilizes two approaches: path coordination and neighbourhood coordination.

In path coordination, exchanging statistics only occurs on nodes located on rout-

ing path. Thus, piggyback is typically the fundamental approach to avoid excessive

coordination. For example, Li et al. in their work [24] focused on minimizing the

remaining traffic based on popularity of contents. Their distributed algorithm starts

with collecting item’s popularity statistics and refreshes periodically from lower tier

routers. Next, routers are responsible for passing the statistics together with the

caching decision along the name resolution path to higher tier routers. Such that,

each router could be notified what objects have been cached along the routing paths

from users, in order to avoid caching redundant objects.

In addition, neighborhood coordination is another way to maintain limited informa-

tion exchange. Just as its name implies, coordination only occurs on each node’s

direct or two-hop away neighbours. It is usually coupled with a modified forward-

ing strategy (Interest routing) in order to utilize caching more efficiently. Recent

research done by Li et al. [25] is representative of this approach. Figure 2.5 shows an

example of cache distribution with neighbourhood coordination in [25]. Authors used

a hash function to distribute different contents over adjacent routers. This method
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prevents duplicated caching in the neighborhood and chooses the outgoing interfaces

for Interest packet routing decided by that hash function. For example, the request

for chunk 0 received by R1 will not be forwarded to R2 according to default shortest

path protocol even though R2 is close to the server, but to R0 instead because hash

function on R1 could calculate that chunk 0 is highly possible to be cached on R0.

Server

Chunk {0,3,6,9}

Chunk {2,5,8,11}

Chunk {1,4,7,10}

Actual Interest Forwarding Path

Default Forwarding Path

R1

R2

R0

Figure 2.5: An Example of Cache Distribution With Neighbour Coordination

2.3.3.2 Implicit Caching Policy

Implicit caching policy works independently on each node. The advantage of this

approach stems from its simple implementation while still maintaining reasonably

good performance. However, since cached contents are not arranged from the whole

system’s point of view, implicit caching policy may not be the optimal solution.

• LCE: The simplest but widely applied policy is called leave copy everywhere
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(LCE) [20] which is also the default method in ICN protocol [14]. Contents will

be cached on each router along the delivery path. Since contents will always

be served from cache in downstream routers if there are any requests from

users, duplicated caching on upstream nodes thus incurs huge redundancy and

inefficient usage of cache storage. If the total capacity is limited, new incoming

objects in cache have to be switched out frequently following the Least Recently

Used (LRU) replacement scheme, even before it could serve any requests which

degrade the performance of this method further.

• LCD: Leave Copy Down (LCD) [22] is an improved version of LCE by restrict-

ing which nodes could cache contents. When there is a cache hit on a particular

router, only its direct downstream node could cache this object again. It helps

to move objects which are frequently hit close to users such that LCD achieves

better performance than LCE. Another approach, Move Copy Down (MCD), is

regarded as the upgraded version of LCD by eliminating the redundancy. When-

ever the cached contents are moved downstream, the replica will be removed

from cache on any upstream nodes.

• Prob: Copy with Probability (Prob) is a general approach. Caching decision is

made according to a probability p. This value p, could be fixed, standardized [4]

for each router, e.g., p = 1/4. In addition, p could also depend on the distance

of routing path. For example, if the hop count of the data packet delivery path

is 3, then p is set 1/3 for all nodes located on that route. This method thus

expects the object could be cached and only cached once.

• ProbCache: Probability p can be not only fixed but also dynamic. Psaras
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et.al. presented ProbCache model [33] which takes network topology into con-

sideration. Each router will be assigned a varied probability which is decided

inversely proportionally to the hop counts from users to this router. If the router

is close to requesters, undoubtedly, a higher probability should be assigned since

the further contents are cached, the less benefit the network can earn through

caching.

2.4 Dynamic Adaptive Streaming Over HTTP

Suffering from a continuously changing network condition, Internet users may not

possess a stable bandwidth during the whole process of video demand. If the number

of users under the service increases, the limited network resources then have to be

shared among more people, thus available bandwidth dedicated to each user will

decrease.

Therefore, in order to face the challenge of varying network conditions while still able

to satisfy increased data demand, especially on multimedia data, DASH is proposed

to recognize and adjust to network capacity dynamically for each user’s request with

the purpose of no interruption on playback no matter which section of streaming is

being watched and what the network condition is. If the current request exceeds the

bandwidth the network can provide, DASH changes stream on-the-fly to lower quality

without negotiation with streaming server. If not, DASH suggests streams switching

to higher quality automatically to reach maximum QoE for users.

In this section, the working process of DASH and its components will be explained

in detail. I will also elaborate that the ICN can seamlessly integrate with dynamic



2.4. DYNAMIC ADAPTIVE STREAMING OVER HTTP 25

adaptive streaming to serve various bit rates of streams. In the end, I present a brief

review on recent research on applying adaptive streaming over ICN.

2.4.1 QoE and QoS

Given similar pricing schemes from different network providers, the primary factor

which may influence the user’s choice among these network services is the expected

and experienced quality. Consequently, how users perceive reliability, usability and

quality becomes the primary interest of network providers who compete to improve

their services which brings, named Quality of Experience (QoE).

QoE combines users’ experience with non-technical parameters (e.g., glitches, arti-

facts, excessive waiting times, etc). However, another important concept, named

Quality of Service (QoS) is represented by technical parameters, such as throughput,

packet drop rate, latency, etc. Obviously, QoS problems imply QoE problems. Their

quantitative relationship could be found in [15].

A better QoE in my work could be defined as, with varying network conditions, users

who request for streaming data could receive better video quality with no interruption

or freezing in the playback.

2.4.2 DASH Principal

HTTP is regarded as a popular approach which is initially designed for file trans-

fer. However, applying HTTP over real-time multimedia streaming has its unique

advantage. Unlike other streaming methods such as Real-Time Streaming Protocol

(RTSP) [36] where it transmits data through a continuous stream over TCP or UDP
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transport and never tracks the state of client once the session is established, HTTP is

stateless and handles the request as a standalone transaction, thus promotes flexible,

and client-driven control.

Before user initiates DASH requests, there is a preparation stage on HTTP server

where streaming files are encoded with multiple bit rates and chopped into small

HTTP-based file segments. These various file formats are defined in Media Prepara-

tion Description (MPD).

MPD is organized hierarchically. As shown in Figure 2.6, it consists of one or more

non-overlapping Periods where each Period is to present a logical content segmenta-

tion (e.g., new contents, advertisements, etc.). Each Period consists of one or more

Representations, which describe available encoding options. In other words, Repre-

sentations define quality of stream differed by bit rates, resolution, codecs etc. A

Representation includes a number of small-piece, sequential Media Segments. These

segments are chopped with a fixed interval (e.g., 10s in Figure 2.6) pre-defined in

Representation and connected end to end with each other. Each Media Segment is

assigned a start time for fast seeking and a unique URL for individual request.
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Period

Period

MPD

Representation1

Representation2

Representation3

Period
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Url = cs.queensu.ca/s3.3gp

...
...

...

Figure 2.6: Media Preparation Description (MPD) Organization

After all versions of multimedia files have been prepared, MPD is spread over stream-

ing servers. When clients intend to watch streams, they have to request for MPD

at the very beginning through HTTP GET. Then, by parsing MPD, clients get to

know which bit rates are accessible on servers and based on the available bandwidth,

streaming control will suggest requesting media contents segment by segment via

assigned URL. This process is shown in Figure 2.7.
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the user. 

 

Figure 3 Solution overview – 3GP-DASH 

HTTP, as well as segment types and formats in the 3GPP instant

ation. A summary of the normative specification is also provided.

3.2
The concept of a Media P

[1], clause 12.2. A Media Presentation is a s

encoded data of some 

The data is accessible to the 

service to the user. As shown in 

 

 

 

 

Period boundaries permit to change a significant amount of i

135

Figure 2.7: Interaction between Client and Server in DASH (reproduced from [37])

The core component in HTTP streaming client is adaptation strategy in streaming

control. It basically is a feedback mechanism where DASH client updates decision

repeatedly in response to instant network condition. Such a decision usually is made

by measuring the average throughput of previous requested video contents and

is used to guide which bit rate should be chosen in the request for next segment.

Considerable research has been devoted to that adaptation strategy such as [41], [38]

and [39] considering playback smoothness, average quality, playback interruption, etc.

2.4.3 Design Over Information-Centric Networks

It is also instrumental in the development of ICN to cater to increased multimedia

demand. Inspired by the concept of dynamic adaptive streaming over HTTP, serving

multiple bit rates according to network condition is also appealing to research within
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the scope of ICN.

Since both DASH and ICN are client driven, dynamic adaptive streaming thus has op-

portunity to apply over ICN without much modification on existing working process.

The only change needs to be made is to substitute URL with a unique ICN name

to identify a Media Segment. Instead of delivery video files over current Internet,

ICN now is the underlying network. Clients still follow the same working process by

starting with subscribing MPD file, then requesting for a particular named content

explicitly.

Since all segmented files are transported over ICN, it is possible to accelerate delivery

via ubiquitous caching. Grandl et al. in [18] pointed out the issue of caching competi-

tion between contents in different bit rates over CCN. Caching all versions (bit rates)

of the same video content is not a feasible solution since it exhausts limited caching

resources quickly. Thus they proposed DASH-INC which only keeps the highest rate

in cache and performs transcoding once a lower rate is requested. However, such

method will incur two problems: First, since transcoding is a computationally inten-

sive task, in-node processing will become less feasible as the demand for video traffic

increases. As large number of requests arrive at some router, almost at the same

time, the router will be overloaded by transcoding which increases response latency

and degrades overall network performance. Secondly, video segments encoded with

the highest bit rates have the largest packet sizes. Caching only the highest bit rate

on routers which serve users requesting low bit rates is not an efficient method to

utilize cache capacity. Therefore, in my work, instead of transcoding, I argue for

caching multiple bit rates according to proposed strategy.
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Even though there is already plenty of research on DASH, these attempts are largely

HTTP based, and do not address ICN architectures with intrinsic caching capabilities.

In addition to the work of DASH-INC, most of the recent research shows experimen-

tal results of current CCN protocol. In [23], Lederer et al. conducted extensive

experiments on protocol overhead when transmitting data packets upon HTTP and

CCN. Without considering the caching capability, the result proves the performance

of transmitting over CCN can definitely surpass over HTTP 1.0 but CCN incurs large

protocol overhead. The reason lies in the fact that CCN is immature and the im-

plementation is just a prototype. Liu et.al. conducted an experiment [27] studying

caching behaviour over CCN when dynamic adaptive streaming is applied. Clients in

the experiment generate requests in sequence and the results prove the effectiveness

of caching: the last client could even be served with bit rates higher than actual

bandwidth.

To the best of my knowledge, my work is the first attempt to tackle this problem in

ICN by caching contents with multiple bit rates according to their popularity.
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Chapter 3

DASCache System Model and Solution

In this chapter, I describe the system I built for video contents delivery with multiple

bit rates, in which my caching strategy assists to satisfy requests in order to achieve

least average access time per bit among all users. The problem is formulated as

optimization and solved by Binary Integer Programming (BIP).

3.1 Problem Formulation

It is important to explain the design of caching strategies in light of the operation of

ICN, and their intrinsic in-network caching properties. In this section, I will elaborate

on the proposed DASCache management strategy, and detail the assumptions and

axioms upon which my system is built. More importantly, the objective of minimiz-

ing access time while improving throughput is explained in terms of the facilitated

improvement in users’ QoE.
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3.1.1 System Description and Axioms

I build DASCache over CCN architecture. It is important to note that my proposed

strategy is designed to address the primitives of ICN paradigms in general, and is

not specific to CCN. However, I choose to address CCN as a viable use case to

demonstrate utility and benchmark to current state-of-the-art caching models in the

literature. This is further elaborated upon in the Performance Analysis, Chapter 4.

My system primarily targets video delivery in ICN. All packets in the envisioned

CCN scenario are assumed to be related to video contents and the size of network

is encompassed by a single ISP [24]. However, my solution could be generalized for

multiple (co-existing) ISPs by considering cache partitioning and multi-homing. To

maintain a concrete description, I will opt for analyzing and presenting DASCache in

light of a single ISP.

There are three different types of routers: the edge router, intermediate router and

a single gateway. It is assumed that all chunks are kept in a repository (main con-

tent producer) which is reachable via the ISP’s gateway over a high bandwidth link;

mimicking a common scenario in real world deployments and envisioned ICN archi-

tectures. All clients are served by edge routers; intermediate routers never connect

with clients directly. In this model, node failure is not considered. If there is any

router which is not accessible, DASCache just needs to refresh the routing topology

and runs for a new cache management solution.

Although CCN supports multi-path routing which increases the chance of cache hits,

the overhead studied by [35] demonstrated performance degradation at the same

time. In order to contain my model, I adhere to CCN’s default setting: single-path
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routing and use the shortest-path algorithm without cooperative schemes that add

an extra complication in building the model. My proposed strategy is indifferent to

any network topology. However, with the setting of single-path routing and a single

gateway, the routing topology could be abstracted as a tree (marked in red lines)

shown in Figure 3.1.
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Figure 3.1: Network Topology of DASCache

There is no transcoding involved in my work. All video segments encoded with

multiple alternative bit rates are backed up on the video repository in case they are

requested by users according to varying link conditions but missed by the cache in
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routers. DASCache will work in rounds to update the cache contents in each router.

The detailed working process will be explained in Section 3.1.2.

3.1.2 DASCache operation over rounds

DASCache works in rounds. In each round, the network provider is responsible to set

up a monitoring window to collect data at each edge router which contain users request

frequency on video contents and requested bit rates. Based on this aggregated data,

It is assumed that the network provider will be able to predict the bit rate chosen

by clients in the next round. DASCache is triggered to run for an optimal cache

allocation to tune the content placement according to this predicted information at

the end of each round, as shown in Figure 3.2. Once the placement is determined,

the contents in cache remain unchanged during the entire round.

T T T T

DASCache Refreshing Point

TT
t

One Round

Figure 3.2: DASCache Working Process
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3.1.3 Assumptions

I allow for variations in requested bit rates for every user, since adaptation algorithms

should cater to individual requests by each user. The chosen bit rates may vary even

under the service of the same edge router at any given time. However, because users

connected to a given edge router share similar network conditions, typically most

users will choose (end up with) the same bit rate that current network resources

could support.

Previous research made assumption that the web page requests from users received by

a server follows the Poisson Process [5]. As to my specific problem, the distribution

of requests for multimedia data received by CCN routers is still unclear. Since users’

requests on video objects influenced by the adaptive strategy and buffer status, the

real traffic model still needs further study. However, in this work, it is assumed

the Interest packets received by edge routers follow an independent Poisson Process.

Since DASCache only refreshes the contents of cache in CCN routers at the end of

each round, for the reason of simplicity, I also assume that the forwarded Interest

packets received by intermediate routers follow the Poisson Process as well.

3.1.4 Notations

All nodes in the proposed network are modelled as a connected graph G = (V,E) in

which node in V are composed of a set of Edge nodes N , intermediate nodes I and

a single gateway R. Node j, where j = 1, . . . , |V | is equipped with content storage

with capacity Cj
1.

1Cj represents the class-specific capacity dedicated to video caching at node j
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Video files are divided into K chunks, according to a fixed time interval, and each

chunk is identified by a unique number. Chunk k is requested by clients with prob-

ability {qk}k=1,...,K . There are B bit rates available for request while a vector S1×B

is used to denote the size of chunks encoded with different bit rates. For example,

S(b), b = 1, . . . , B denotes an element in vector S representing chunk size with bit

rate b. Hence, each video chunk now is identified by a two-dimensional index (k, b).

{(πB×1)j}j=1,...,|N | is defined as a binary indicator vector for edge router j, in which

element πj(b) ∈ {0, 1}, b = 1, . . . , B. If πj(b) = 1, it indicates that bit rate b is

requested by clients at edge router j. As it is assumed that clients served by the

same edge router will request for the same bit rate, thus I have
∑B

b=1 πj(b) = 1. Let

matrix {(xK×B)j}j=1,...,|V | denote my cache deployment configuration, where xj(k, b) ∈

{0, 1}, k = 1, . . . , K; b = 1, . . . , B. xj(k, b) = 1 indicates that the video chunks

indexed by (k, b) should be cached at node j during the next round.

Users’ requests received by each router is assumed to be following Poisson Process.

According to the superposition property, the interest arrival rate on intermediate

routers is the sum of rates of its children nodes. I denote the interest arrival rate

matrix at node j with {(λK×B)j}j=1,...,|V |. The element at row k column b represents

request rate for video chunk with index (k, b). As for edge router j, let λ′j denote the

request rate made by all clients and bj the chosen bit rate. Thus, I have λj(k, bj) =

λ′jqk.

{Lj}j=1,...,|N | is a sequence of node IDs. Elements in this sequence are those which

receive interest packets for video chunks sent from edge router j. In other words,

{Lj} contains nodes located on the routing path starting from edge node j. I define
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Lj(1) = j and Lj(i + 1) always denotes the ID of the next hop node of Lj(i) on

the routing path of Interest packet. The last element in {Lj} is the video repository

accessed by the ISP. For example, following the topology depicted in Figure 3.1 and

considering j = 2, L2 will be (2, 8, 12, 11, 15, 16).

To summarize, Table 3.1 lists all notations used in my model. Please note that those

symbols that have not been explained earlier but will be presented later are included

as well.

Table 3.1: Notations in System Model

V CCN routers within the ISP
N Edge routers
I Intermediate routers
R Gateway
K Number of Video Chunks
B Number of Available Bit Rates
Cj Cache capacity (size) of node j
qk Popularity distribution of requests for chunk k
πj Binary indicator of requested bit rate at edge router j
S Video chunk size
xj Cache deployment configuration matrix at router j
λj Interest request arrival rate matrix at router j
λ′j Sum of users’ request rate received by edge router j
Lj Set of nodes on routing path from edge router j
V RTTk(j) Virtual round trip time delay from edge router j
D(i, j) two-way delay between router i and j
P Processing and propagation delay on each link
θij Downlink bandwidth between router i and j
Qij Queueing delay between router i and j
µj Interest miss rate matrix at router j
ρij Traffic load on link between router i and j
Hj Set of children nodes of intermediate router j
ϕij(b) Data packet service time delivered from router j to i
RSij Residual service time on j when packets are delivered to i
NQ(b) Number of packets (encoded with b) in the queue
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3.1.5 Research Statement

As users adjust requested bit rates with varying network bandwidth, DASCache would

improve network performance and video delivery in terms of average throughput by

optimizing video cache placement over routers.

3.1.6 Optimization Objective

The problem is formulated as optimization. As in adaptive streaming, throughput is

a fundamental metric in rate adaptation algorithms to estimate maximal supported

bit rates by measuring the Round-Trip Time (RTT) delay of video chunks. I argue

for approximating the maximal average throughput each user could achieve by min-

imizing the average access time per bit. Therefore, the optimization objective could

be represented as:

min

|N |∑
j=1

E[AccessTimePerBit(j)]

|N |
(3.1)

The optimization only targets on the average throughput that the network can provide

without considering the fairness across all users. To calculate E[AccessTimePerBit(j)],

I first define the Virtual Round-Trip Time (VRTT) delay in Equation 3.2 whereD(i, j)

denotes the value of two-way delay among router i and j. Then, the VRTT of video

chunk k requested by clients under service of edge router j is:

E[V RTTk(j)] =

|Lj |−1∑
i=1

(
E[D(Lj(i), Lj(i+ 1))]

(
1− max

m=1,...,i
xLj(m)(k, b)

))
(3.2)
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The summation in Equation 3.2 is to add up the average delay on each link of routing

path starting from edge router until the node in which the interest is satisfied.

To elaborate through Figure 3.1, I take j = 2 as an example and bj as requested bit

rate. If there is no cache in the network, E[V RTTk(2)] is the sum of two-way delay on

links between routers (2, 8), (8, 12), (12, 11), (11, 15) and (15, 16). However, whether

data packets actually travel through the link depends on the cache on the routing path.

For example, delay between router (12, 11) should not be add into E[V RTTk(2)] when

the video chunk k has already cached in router 2, 8 or 12. To explain the max operator

in 3.2, if the maximal value among binary indicator x2(k, bj), x8(k, bj), x12(k, bj) is 1,

E[D(L2(12), L2(11))] will not be added. In general, Equation 3.2 sums up the delay

on links when the content has not appeared in cache along the routing path.

The expected access time per bit for chunk k requested from edge router j is denoted

as,

E[AccessTimePerBitk(j)] =
E[V RTTk(j)]

S · πj
(3.3)

Such that,

E[AccessTimePerBit(j)] =
K∑
k=1

qk ×
E[V RTTk(j)]

S · πj
(3.4)

Hence, the optimization objective in 3.1 is formally represented as:

min

|N |∑
j=1

K∑
k=1

qk ×
E[V RTTk(j)]

|N |S(bj)
(3.5)

where bj is subject to πj(bj) = 1.
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3.1.7 Queueing model and Derivations

In order to compute the V RTTj(k) in Equation 3.2, I make a quantitative analysis

for each link to calculate the D(i, j). Since processing and propagation delay are

relatively small, I assign a fixed value P to denote them on each link. Let θij denote

the downlink bandwidth between node i and j (data packet delivered from j to

i). When video chunk with bit rate b′ is transmitting, the average two-way delay

between node i and j, E[D(i, j)], consisting of propagation, processing, transmission

and queueing delay, is calculated as

E[D(i, j)] = P +
S(b′)

θij
+ E[Qij] (3.6)
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Figure 3.3: Queueing Model for Adaptive Streaming

I employ a multiclass M/G/1 queueing model [6] to calculate the queueing delay,

E[Qij]. M/G/1 is used to denote the type of queueing system where ‘M’ denotes the

memoryless arrival process. Since the Data packet is delivered according to Interest

request which is modelled as a Poisson Process, then data arrival on each router also

follows a Poisson Process which owns the memoryless property. ‘G’ is the general

probability distribution of service times. As to my specific problem, data packets

containing video contents with multiple bit rates are mixed up. The size of packets

encoded with a given bit rate is equivalent to each other because each packet contains

the same length of playback time. Such that, the job service time of a packet in the
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queueing system is always chosen from a set of fixed values determined by available bit

rates. Therefore, the output process owns neither memoryless property nor constant

service time. However, the service time for packets encoded with a particular bit rate

is deterministic. Based on the arrival rate of packets of different bit rates, I can still

calculate the mean service time for this queueing system. ‘1’ represents the number

of service node in the system where only one node is considered in my queueing model

to receive data packets.

The reason why I only consider multimedia data in the queueing analysis is to simplify

the system model. As mentioned in Chapter 1, streaming traffic is dominating the

total data traffic over the Internet. Other traffic types, such as web pages, emails, do

not lead in percentage of data traffic. According to the analysis (Equation 3.3 and

3.10) made in the following paragraphs, I can observe the smaller content size will

generate less influence on average queueing delay. Compared with several hundreds

or thousands of KB per segmented video file, a regular web page is usually several

dozens of KB at most. Therefore, other traffic types, like web pages have limited

impact on result of queueing analysis in my particular scenario and thus are omitted

in the model.

To use this model, I must ensure there is no overload on the link. Denote with ρij

the traffic load between node i and j, it means ρij < 1 must be satisfied. If not,

the buffer on node j is easily overflowed such that there will be a large number of

data packets dropped. If it is caused by an increase in the number of requests, a

rate adaptation strategy may arrange users affected by this congestion, by requesting

lower bit rates to relieve the load. Such a trend (increasing number of requests) could

also be monitored by ISP and make proper prediction. Otherwise, the network is not
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in a stable status and will return to original state later. In either case, ρij < 1 will

be satisfied in the end. Denote with router Hj a set of children nodes of router j in

tree topology. I have the following proposition to derive E[Qij].

Proposition 3.1.1. If ρij < 1, ∀j ∈ V, ∀i ∈ Hj, the average queueing delay for data

packets from router j to i is

E[Qij] =
1

2

∑B
b=1 µi(·, b)E[ϕij(b)]

2

1−
∑B

b=1 µi(·, b)E[ϕij(b)]
(3.7)

Proof. The queueing in my video delivery scenario is illustrated in Figure 3.3. Ac-

cording to the superposition property, the rate of interest packet which request for

bit rate b missed by caches in router i, µi(·, b) is given by,

µi(·, b) =
K∑
k=1

λi(k, b)(1− xi(k, b)) (3.8)

λi(k, b) =

‖Hi‖∑
m=1

µHi(m)(k, b) (3.9)

Equation 3.8 and 3.9 show the relation between interest arrival and interest miss

rate. Take Node 11 in Figure 3.1 as an example, Equation 3.9 means that the interest

packet arrival rate on Node 11 is the sum of rates missed by caches in Node 7 and 12.

Equation 3.8 calculates the interest miss rate on Node 11 based on the arrival rate

and whether requested contents are cached on Node 11 or not. If it is cached (which

means x11(k, b) = 1), the corresponding request could be immediately satisfied and

there will be no need to forward this interest packet. As node j is responsible for

forwarding data packet along the link to the node i according to the ‘bread crumb’

left by interest packet, µi(·, b) is also used as the data (encoded with bit rate b) input
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rate to the buffer in router j. The expected job service time of data packets encoded

by bit rate b, E[ϕij(b)] is given by,

E[ϕij(b)] = ϕij(b) =
S(b)

θij
(3.10)

and then, the traffic load ρij is,

ρij =
B∑
b=1

ρij(b) =
B∑
b=1

µi(·, b)E[ϕij(b)] (3.11)

when ρj < 1, it means that the input rate to the queue is less than the output rate.

Hence, the model is in stable status. In other words, the requested resource will never

exceed the maximum that the network can provide.

To calculate E[Qij], I apply Little’s Theorem2 and extend Pollaczek-Khinchin (P-K)

formula listed in [6]. In P-K formula, the expected waiting time in queue for the

ith packet is the sum of service time of any previous packets which arrive before ith

packet and the Residual Service time (RSij). RSij represents the remaining time seen

by the new packet when it arrives until current in-service packet is complete. Let us

denote NQ(b) the number of data packets waiting in the queue which are encoded

2Little’s Theorem [26] denotes the average number of packets in the queue is the product of
packet arrival rate and average time a packet kept in the queue when the network is in a steady
state
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with bit rate b. Such that, the expected queueing delay E[Qij] is,

E[Qij] = E[RSij] +
B∑
b=1

E[NQ(b)]E[ϕij(b)]

= E[RSij] +
B∑
b=1

µi(·, b)E[Qij]E[ϕij(b)]

= E[RSij] +
B∑
b=1

ρij(b)E[Qij]

=
E[RSij]

1− ρij

(3.12)

To apply in multiclass scenario, E[RSij] [6] is,

E[RSij] =
B∑
b=1

µi(·, b)E[ϕij(b)
2]

2
(3.13)

Because service time of data packets, ϕij(b) shown in Equation 3.10, is a deterministic

value, I will have E[ϕij(b)
2] = E[ϕij(b)]

2. Therefore, synthesis Equation 3.11 3.12 3.13,

queueing delay in 3.7 is proven.

3.2 Problem Solution

My objective in DASCache is to find the optimal video content placement, in every

round, which minimizes the average access time per bit to all users and thereby in-

creases their respective throughput. A solver is called at the end of every round, as

highlighted in Section 3.1.1, based on aggregated popularity predictors and changes

in traffic, to find an optimal cache assignment. In order to formulate a feasible opti-

mization problem, I explain a method in this section which transforms the objective
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given in Equation 3.5 to a binary integer programming (BIP) problem.

Synthesizing Equation 3.2 and 3.5, I apply the ‘big-M’ method (‘ M’ denotes a very

large positive number) to obtain a standard form of binary integer programming by

substituting maxm=1,...,i xLj(m)(k, b) in Equation 3.2 with an artificial binary variable

mj(i) and add another two constraints in Equation 3.18. My optimization problem

is finally formulated as follows,

min

|N |∑
j=1

K∑
k=1

|Lj |−1∑
i=1

E[D(Lj(i), Lj(i+ 1))](1−mj(i))

|N |S(bj)
(3.14)

s.t. ∀j ∈ [1..|N |], ∀l ∈ [1..|V |], ∀i ∈ [1..|Lj| − 1] (3.15)

bj = arg(πj(b) = 1) (3.16)

mj(i) = max
m=1,...,i

xLj(m)(k, bj) (3.17)

mj(i) ≤


xLj(i)(k, bj) + Mnj(i)

mj(i− 1) + M (1− nj (i))

,∀i > 1 (3.18)

∑
k∈K

∑
b∈B

Wl(b)xl(k, b) 6 Cl, (3.19)

Wl(b) =


S(bj) if l ∈ Lj

+∞ if not

(3.20)

mj(i), nj(i), xl(k, b) ∈ {0, 1} (3.21)

In the optimization constraints above, Equation 3.16 corresponds to my assumption

that users under the service of a common edge router request for the same bit rate.

Equation 3.19 constitutes the cache capacity constraint in optimization which ensures
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the size of cached video objects cannot exceed the upper limit (Cl). Wl(b) represents

required storage space to assign a video chunk encoded with bit rate b to node l in

Lj. However, Wl(b) is only equal to video chunk size on those routers which interest

requests for bit rate b ever reach. If not, Wl(b) is set infinity to avoid unnecessary

placement, as shown in Equation 3.20.

Note that in this problem, cache configuration matrix (xj) and artificial variables

(mj(i)) are both need to be solved. However, in Equation 3.14, we can see only the

artificial variables have non-zero coefficients. To ensure E[D(Lj(i− 1), Lj(i))] in 3.14

is a constant value, the optimization must run iteratively such that the entire problem

could be solved as a linear programming. The reason for this iteration lies in that:

E[D(Lj(i− 1), Lj(i))] is given by Equation 3.6 and 3.7. In Equation 3.7, in order to

calculate interest miss rate of each router (µi(·, b)), I rely on caching configuration

(xi(k, b)) in Equation 3.8. Therefore, I need to know the cache configuration to

calculate queueing delay which again influences the cache configuration.

My solution is to run iteratively, applying the result of xi(k, b) in the previous run to

queueing model and achieving a deterministic value of E[D(Lj(i − 1), Lj(i))]. Sub-

sequent runs constantly tune the cache configuration and this algorithm will stop if

two consecutive runs generate the same/close results.

My algorithm provides a new caching strategy, which takes network communication

and storage resources into consideration. Accordingly, each client’s demand is satisfied

with the minimal access time per bit to maximize their QoE. My solution presents a

benchmark since it gives the optimal average access time.
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Chapter 4

Performance Analysis

In this chapter, I evaluate the performance of my DASCache strategy using simula-

tion. I build a simulation model in order to mimic the scenario that users request

for streams encoded with multiple bit rates. I also develop testing cases in order to

observe the behaviour of caching strategy influenced by different factors.

4.1 Simulation Tool

The tools used in the experiment are Gurobi optimization solver [19] and Network

Simulator 3 (NS-3) with extended support on CCN architecture, ndnSIM [1].

4.1.1 NS-3 and ndnSIM

NS-3 is a discrete time, event driven network simulator. It builds a solid simulation

core which supports sufficient real-world network protocols from different layers, such

as UDP/TCP, IP and from different network types, such as, Wi-Fi, WiMAX, LTE,
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etc. The entire simulator is written in C++ with object-oriented design and each

protocol is encapsulated as a class or module. NS-3 is well documented and its

tracing function caters to the need of easy-debugging, problem diagnosis and result

analysis. NS-3 also separates simulation configuration from protocols implementation

which makes it convenient for users to adjust parameters, testing different scenarios.

The NS-3 simulation core supports research on not only IP based network, but also

non-IP network which leads to ndnSIM. ndnSIM is a a new network-layer module

in NS-3 which implements Content-Centric Network (CCN) architecture and can

seamlessly work on top of other underlying protocols (such as point-to-point media).

To setup and run simulation over ndnSIM (or NS-3 in general), users must initiate

NS-3, including the modules which want to be used to build the network topology

and install protocol stacks on nodes. Through configuring the event scheduler, users

can control when to start and stop transmitting packets.

4.1.2 Gurobi

Gurobi [19] is the state-of-the-art programming solver, particularly optimized for

solving linear programing (LP), integer programming (ILP), etc. Compared with

other solvers, Gurobi is designed to run in parallel which fully utilizes the computation

capability of processors thus accelerates searching the optimal results. It provides

various versions of API from Java, C++ to Python. To setup a solver, users need

to explicitly designate coefficients of variables and choose parameters to control the

searching for optimal value. For example, users may provide their own heuristics

in order to more efficiently cut the searching area, or control the threshold to stop
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searching when a suboptimal result is satisfactory in a bounded time.

4.2 Simulation Model

This section describes the simulation model I use to test the performance over Content-

Centric Network.

4.2.1 Simulation Process

I conduct the experiment in two phases. In the first phase, I implement an ILP

solver in which calls Gurobi engine to solve the problem of caching video chunks with

multiple bit rates on the optimal routers. The second phase is to conduct simulation

through ndnSIM. By customization on caching policy of ndnSIM, I create my own

policy that, as to any router which locates on the optimal position for video chunks

designated in the first phase, it keeps the chunks in the Content Store for the whole

simulation period.

4.2.2 Simulation Topology

Due to the complexity of my DASCache caching policy, I limit the size of ISP to

60 routers and assume there is only one gateway which connects directly with video

repository. As mentioned in the system model, after applying the default forwarding

strategy, tree-like topology could be abstracted. Therefore, I generate a tree topol-

ogy randomly following three constraints: tree height, maximum out degree and the
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number of leaf nodes. There could be multiple users connecting to a edge router si-

multaneously. However, since I have assumed that each user under the service of the

same edge router will request for the same bit rate, I create one superuser connecting

directly with edge router to represent all users by integrating their requests together.

4.2.3 Experiment Setting

I configure my ndnSIM simulation environment using all default settings of CCN

project except my own caching policy.

As mentioned in the system model, each video chunk is requested with a certain fre-

quency which distinguishes between popular and unpopular contents. This frequency

should be collected by ISP provider in order to make a caching decision. In the simu-

lation, each video is requested with a probability according to a Zipf distribution [7].

Such that, a superuser will subscribe for streams following that probability value to

reflect the request frequency of different chunks. The Zipf distribution is to assign

the video segment that ranks at i with pi = (βiα)−1, where β =
∑|N |

i=1

1

iα
. Here,

α represents the skewness factor. A large α means less video chunks have similar

popularity value while small α means that a large number of contents share similar

popularity value. The distribution of Zipf with different α is shown in Figure 4.1.
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Figure 4.1: Zipf Distribution

Five available bit rates are considered in my simulation. The size of video chunks

for these bit rates is determined according to sample videos [44] from Youtube. I

also set the lifetime of interest packet same as the video chunk period (10 seconds) to

mimic the scenario that if the data delivered overtime, the dynamic adaptive strategy

would switch to a lower bit rate and previously requested data would be discarded.

The parameters that are constant throughout all simulations are listed in Table 4.1.

Parameters that vary will be discussed in Section 4.3.
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Table 4.1: Simulation Environment Parameters

Parameters Values

Number of video chunks (K) 6000
Video period 10 seconds
Number of routers in ISP (|V |) 60
Max out degree 5
Propagation delay (P) 5 milliseconds
Available bit rates (B) 5
Size of bit rate chunks (S) {332, 390, 454, 1364, 2465}KB
Bandwidth between gateway and video repo 1 Gbps
Bandwidth between routers within ISP 20 Mbps
Simulation period 1500 seconds

4.2.4 Request Generation

As what I are proposing is a strategy for caching in ICN, not for dynamic adaptive

streaming, in order to simplify the simulation, I choose not to use a real DASH client

but design an application, generating requests for streams with an appointed bit rate

which is regarded as what the dynamic adaptive streaming recommends.

To decide this bit rate and assign it to the superuser who will request, the network

bottlenecks must be considered and the traffic cannot exceed the upper limit of avail-

able bandwidth. Generally, the network bottleneck could be any link within the ISP

or the ‘last mile’. The ‘last mile’ refers to the link between edge router and user’s

device. In my simulation, I only present results where the bottleneck is within ISP.

The reason why I do not consider the ‘last mile’ is elaborated in Section 4.3.5.

Thus, I make the following request generation rule of three steps:

• I Random bit rate is chosen and assigned to each superuser and take it as the
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predicted one.

• II Choose initial average request rate (λ) for superuser to ensure that the traffic

load on the link is close to full load between edge router and its direct parent.

• III Calculate traffic load (ϕ) according to Equation 3.11 over all the links within

the topology. If ϕ < 1 is not satisfied on any link, average request rate (λ) of

clients whose interest/data packets pass through that link must be declined

proportionally.

Repeat step III. until there is no violation on all links. Applying this rule, the traffic

load on some links in the network will be close to full and become the bottlenecks.

These bottlenecks will prevent users from switching to streams with better quality

which makes the chosen bit rate reasonable in the simulation. If users switch to higher

bit rate, the bottlenecks will be overloaded which results in a large amount of packet

drop. Thus, the throughput could be extremely low which forces adaptive strategy

to switch the video quality back.

4.2.5 Performance Metric

My DASCache caching strategy targets on optimizing access time per bit. However,

the ultimate goal is to improve the throughput measured by users which increases the

chance of switching to streams with better quality. Therefore, Average Throughput

is used as the performance metric in my analysis.

To get this value, first, I calculate the average throughput per superuser by having

video chunk size divided by average data packet retrieval time (
S

T̄
) where T̄ is mea-

sured by two timestamps between the departure of interest packet and the arrival of
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corresponding data packet at user’s device. Next, Average Throughput is achieved by

taking average over all superusers.

Since I need to measure the RTT of users’ requests to calculate throughput, the delay

on ‘last mile’ must be appointed in addition to the experiment settings above. As the

dynamic adaptive streaming strategy will ensure that users only request for what the

network could support, I set the RTT on ‘last mile’ 0.5 second. This is an important

value which will influence the performance dramatically. I will show the effect of this

variable and further analysis in Section 4.3.5.

4.2.6 Performance Comparison

As my DASCache method relies on collected statistics and only refreshes cache at the

beginning of a new round. In order to make fair comparison, I use periodic LRU (P-

LRU) and periodic LFU (P-LFU). P-LRU is modified version of classic Least Recently

Used (LRU) scheme but the replacement only occurs at the beginning of new round

based on the request sequence it records in the previous round. Similar change is

made to P-LFU which is based on Least Frequently Used (LFU) scheme.

4.3 Simulation Results

This section shows multiple scenarios to test different factors which may influence the

throughput. I study these factors, comparing the performance among DASCache, P-

LRU and P-LFU.

I adjust the following parameters:
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Skewness of Zipf distribution (α) represents the popularity of streams by denot-

ing the probability of requests on each video chunk (pi). As stated earlier, I have,

β =

|N |∑
i=1

1

iα
(4.1)

pi =
1/(iα)

β
(4.2)

Cache Capacity Percentage(ω) is to define the total cache capacity percentage

which is dedicated to keep multimedia data over all routers within the entire ISP.

Given the fixed number of video objects and corresponding size of each bit rate, the

cache space for all routers is ω ·K ·
∑B

i=1 S(i). As to each router, the cache capacity

is determined by cache allocation ratio (ε).

Cache allocation ratio(ε) denotes how many times the cache capacity on edge

routers is larger than the capacity on intermediate routers. Suppose I already

determined ω, the cache space for edge routers Cj and for intermediate routers Ci

are calculated as follows,

Ci =
ω ·K ·

∑B
i=1 S(i)

|V |+ (ε− 1)|N |
(4.3)

Cj = ε · Ci (4.4)

Tree Height(η) The height of the tree topology in the simulation.

Leaf Number(τ ) The number of edge routers of tree topology in the simulation.

I also conduct one extended experiment that demonstrates the influence of ‘last mile’

delay on the performance, using υ to denote the delay on that link.
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In the experiments: testing cache capacity percentage (ω), skewness factor (α) and

cache allocation (ε), I fix the network topology and test multiple sets of bit rates

requested by superusers. When I test the effect of topology (tree height), I only use

one set of bit rates; yet examine multiple topologies. All collected data are averaged

and shown in 10% confidence interval in the following sections.

4.3.1 The Effect of Cache Capacity Percentage

How much capacity the routers could use to cache multimedia data is controlled by

Cache Capacity Percentage (ω). This section describes the effect of this factor on

average throughput.

4.3.1.1 Base Experiment

In this experiment, I run tests over five percentage values and choose homogeneous

cache allocation (ε = 1) which means that the storage for keeping streaming data is

equally split over routers within the ISP. This is a base experiment where I evaluate

performance under different size of cache dedicated for multimedia data. Table 4.2

lists all the parameters used in the experiment.

Table 4.2: Parameters for Base Cache Capacity Experiment

Parameters Values Description

Skewness Factor (α) 1.2
Allocation Ratio (ε) 1.0
Tree Height (η) 4
Number of Edge Nodes (τ) 35
Capacity Percentage (ω) 0.5%, 1%, 2%, 5%, 10%
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Figure 4.2(a) shows the average throughput improvement as the the cache capacity

allocated for multimedia data increases among all three caching strategies. My DAS-

Cache approach outperforms two other caching schemes. For example, when ω = 2%,

DASCache has a 9.2%, 37.1% improvement over P-LFU, P-LRU respectively. Among

these three strategies, P-LRU yields the worst performance in the experiment. Since

P-LRU records the most recent subscriptions from users during the last round, it can-

not distinguish between subscriptions which are mixed with popular and unpopular

requests thus degrades the performance. The outcome of P-LFU and DASCache are

close, because LFU is also a popularity-based scheme. Through caching the most

popular contents at any router, LFU caters to most of the requests which improves

the average throughput significantly. However, the reason for the performance differ-

ence between P-LFU and DASCache lies in the fact that DASCache optimizes the

data delivery considering the delay and storage utilization in a synthesized manner.

For example, it is possible for DASCache not to keep the most popular content, sav-

ing the cache storage for multiple less popular contents with lower bit rates (smaller

size) while caching the most popular content at the parent node of the current router

to satisfy more requests from sibling nodes, which thereby, achieves better cache

utilization.

Observed from the simulation result in the Figure 4.2(a), with larger cache capacity,

the average throughout increases at a lower speed. For example, when ω doubles,

increasing from 0.5% to 1%, from 1% to 2% and from 5% to 10%, the performance of

DASCache improves 24.8%, 15.7% and 8.5% respectively. This results from the fact

that larger cache capacity could satisfy more interest requests for popular contents but

the new contents kept in increased cache space are requested less often than previous
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ones. In other words, enlarging cache space could generate obvious performance

improvement only when previous space is small. Otherwise, since contents in previous

large cache space could already answer most of popular requests, the improvement

will be limited.

All three caching schemes provide much improvement compared to the no cache

situation (around 2,000 Kbps, which I do not show in the figure). It proves the

importance of caching in terms of QoE.

4.3.1.2 Experiment with Larger Cache Allocation Ratio

This experiment tests the scenario where more cache size is allocated on edge routers

than intermediate routers over different total cache capacity. Table 4.3 lists all the

parameters chosen for this experiment.

Table 4.3: Parameters for Cache Capacity Experiment With Larger Size on Edge Routers

Parameters Values Description

Skewness Factor (α) 1.2
Allocation Ratio (ε) 5.0 Changed from 1.0 to 5.0
Tree Height (η) 4
Number of Edge Nodes (τ) 35
Capacity Percentage (ω) 0.5%, 1%, 2%, 5%, 10%

From Figure 4.2(b), I can see that all three caching strategies behave in a similar

manner to the experiment conducted with ε = 1. At each cache percentage (ω) point,

my DASCache approach still outperforms the other two strategies. By comparing
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scenarios between ε = 1 and ε = 5 as shown in Figure 4.3, I observe that the perfor-

mance at ε = 5 is slightly better than ε = 1 in terms of average throughput. This is

because more requests could be satisfied closer to users with larger capacity on edge

nodes. However, such improvement is negligible. The reason is that, under current

setting of skewness factor (α = 1.2), even though there are more cache hits occurred

on edge routers at ε = 5 compared with ε = 1, the total number of cache hits at

ε = 5 is even less than ε = 1 as seen in Table 4.4. Although some requests could

be responded to faster, being closer to users, which produces a positive effect on the

performance with larger cache space on edge routers, content redundancy degrades

the cache utilization which means some previously cached contents, now must be

retrieved from the server thus offsetting the positive effect.

Table 4.4: Average Number of Cache Hits Over Different Total Cache Capacity

ω 0.5% 1% 2% 5% 10%
ε = 5.0 13,644 16,224 18,349 20,461 21,374
ε = 1.0 13,836 16,453 18,656 20,761 21,669
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Figure 4.2: Effect of Cache Capacity Percentage
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Figure 4.3: Cache Allocation Over Different Total Cache Capacity

4.3.2 The Effect of Skewness Factor

There is no doubt that users’ requests will influence the behavior of caching in ICN.

I choose Zipf distribution to represent the popularity of video objects. The request

probability of each video object is affected by skewness factor (α). This section shows

the effect of this value.

4.3.2.1 Base Experiment

In this experiment, I fix the cache capacity percentage ω to be 2% and test over α

among 0.6, 0.8, 1.0, 1.2, 1.4, 2.0. This is a base experiment where I test multiple

access patterns made by users with various α values under simple cache allocation

and fixed total cache size. Table 4.5 lists all parameters used in the simulation.
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Table 4.5: Parameters for Base Popularity Experiment

Parameters Values Description

Skewness Factor (α) 0.6, 0.8, 1.0, 1.2, 1.4, 2.0
Allocation Ratio (ε) 1.0
Tree Height (η) 4
Number of Edge Nodes (τ) 35
Capacity Percentage (ω) 2%

Figure 4.4(a) indicates that my DASCache strategy achieves the best average through-

put compared with P-LRU and P-LFU schemes among all tested values of α. For

example, when α = 0.8, my strategy provides improvement of 15.0% and 35.9% com-

pared with P-LRU and P-LFU respectively. When popularity skewness increases, I

observe that all caching schemes achieve significant performance improvement. The

reason for this phenomenon is that the larger skewness means fewer contents will

be requested frequently. For example, the total number of video objects which may

be requested with the probability of first 50% is 1,126 when α = 0.6. However, as

α = 2.0, the most popular video (ranked first) already will be requested with proba-

bility more than 50%. Therefore, even if the total cache capacity remains unchanged,

the amount of popular data is smaller as α is larger, thus more of popular video

objects can be kept in the cache and respond to requests at a faster speed.

4.3.2.2 Experiment with Larger Cache Allocation Ratio

This experiment tests the scenario where more cache size is allocated on edge routers

than intermediate routers over various skewness values of Zipf distribution. Table 4.6

lists all parameters used in the simulation.
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Table 4.6: Parameters for Popularity Experiment With Larger Size on Edge Routers

Parameters Values Description

Skewness Factor (α) 0.6, 0.8, 1.0, 1.2, 1.4, 2.0
Allocation Ratio (ε) 5.0 Changed from 1.0 to 5.0
Tree Height (η) 4
Number of Edge Nodes (τ) 35
Capacity Percentage (ω) 2%

From Figure 4.4(b), I see that all three caching strategies generate very close results

compared with the experiments conducted with ε = 1 on very α point. Figure 4.5 com-

pares the the performance of DASCache with base experiment, the result shows that

the difference enlarges as α is larger and achieves a slightly better average throughput

with ε = 5.0 since more requests could be satisfied closer to users.

Table 4.7 and 4.8 reveals the insight of this observation by listing statistics of cache

hits. The ratio in the table is the number of cache hits which occurred on edge routers

versus on all routers. When α = 2.0, the ratio is 98.2% and 99.6% respectively as

ε = 1.0 and ε = 5.0. Since most of requests have already been satisfied on one-hop

away edge routers as ε = 1.0, the limited improvement when ε = 5.0 is expected.

However, when α is a small value (such as 0.8), the ratio of cache hit increases from

73.3% to 91.6% which is regarded as a big improvement but the average throughput

still remains unchanged. From these results, I observe that the total number of cache

hits with ε = 5.0 is lower than ε = 1.0. Such result is due to cache redundancy. Since

in the simulation, all superusers will request following the same Zipf distribution and

the total cache space is fixed, as each edge router is allocated more capacity, contents

which are previously cached on intermediate nodes could be kept closer to subscribers

but these objects have to be duplicated among edge routers. In contrast, smaller cache
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capacity on edge routers forces some popular contents to be stored on the common

parent of edge routers which saves cache capacity for perhaps less popular contents by

sharing among all its children nodes. Particularly when α is small, as the difference

of request frequency between streams is also small, more cached contents on edge

routers (ε = 5.0) not only cannot satisfy as many requests as α is high but loses space

to cache maybe-not-the-most-popular contents.

Table 4.7: Average Number of Cache Hits Over Different Popularity Skewness (ε = 5.0)

α 0.6 0.8 1.0 1.2 1.4 2.0
Hit on Edge Nodes 2,637 6,232 11,759 17,708 22,103 26,610
Hit on Any Nodes 3,016 6,804 12,457 18,349 22,525 26,702
Ratio 87.4% 91.6% 94.4% 96.5% 98.1% 99.7%

Table 4.8: Average Number of Cache Hits Over Different Popularity Skewness (ε = 1.0)

α 0.6 0.8 1.0 1.2 1.4 2.0
Hit on Edge Nodes 2,155 5,349 10,528 16,366 21,009 26,283
Hit on Any Nodes 3,414 7,296 12,920 18,656 22,707 26,757
Ratio 63.1% 73.3% 81.5% 87.7% 92.5% 98.2%

4.3.2.3 Experiment with Smaller Cache Capacity Percentage

This experiment tests the scenario where smaller capacity is dedicated for multimedia
caching in ICN over various skewness values of Zipf distribution. Table 4.9 lists all
parameters used in the simulation.
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Table 4.9: Parameters for Popularity Experiment With Smaller Total Cache Capacity

Parameters Values Description

Skewness Factor (α) 0.6, 0.8, 1.0, 1.2, 1.4, 2.0
Allocation Ratio (ε) 1.0
Tree Height (η) 4
Number of Edge Nodes (τ) 35
Capacity Percentage (ω) 0.5% Changed from 2% to 0.5%

From Figure 4.4(c), I can tell that less total cache capacity will obviously decrease the

average throughput over all skewness factor points. Compared with base experiment

as shown in Figure 4.6, the performance difference is more obvious with a higher

popularity skewness value. For example, as α = 0.6 and ω changes from 0.5% to

2%, my DASCache strategy achieves a 14.1% improvement but when α = 2.0, the

improvement augments to 85.3%. This is because the cached content in augmented

space could answer more requests (more cache hits) with a larger α.
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Figure 4.4: Effect of Skewness Factor
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Figure 4.5: Cache Allocation Over Different Popularity Skewness
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Figure 4.6: Total Cache Capacity Over Different Popularity Skewness

4.3.3 The Effect of Cache Allocation

With fixed total cache capacity dedicated for multimedia data, how to arrange this

capacity over routers is still a problem and may influence the performance of caching.

Section 4.3.1.2 and 4.3.2.2 have already given analysis under different ω and α. This

section studies performance under various cache allocation patterns.
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4.3.3.1 Base Experiment

I conduct this experiment over five ε values to represent different allocation patterns.

Table 4.10 shows all parameters used in the simulation.

Table 4.10: Parameters for Base Cache Allocation Experiment

Parameters Values Description

Skewness Factor (α) 1.2
Allocation Ratio (ε) 0.2, 0.5, 1.0, 2.0, 5.0
Tree Height (η) 4
Number of Edge Nodes (τ) 35
Capacity Percentage (ω) 2%

Shown in Figure 4.7, I observe that my DASCache strategy performs the best under

various ε values. When the cache capacity on edge nodes enlarges, average throughput

is improved but the performance difference is still small. The underlying reason is the

same to the analysis done in section 4.3.2.2 that redundant cached contents exhaust

space for caching new objects which neutralizes the benefit of moving more contents

closer to subscribers. Therefore, by testing using various values of α, ω and ε, I can

conclude that cache allocation is not a big concern under my simulation scenario.

However, it is worth noting that, based on the setting I made that the bandwidth

of links within ISP are all the same (which is similar to the real case), the traffic

congestion is likely to occur close to the gateway. If the bandwidth of links varied and

congestion appeared close to the edge router, it could be expected that large cache

space of edge routers will produce much more significant improvement of average

throughput than current setting.
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Figure 4.7: Effect of Cache Allocation Ratio

4.3.4 The Effect of Topology

Performance evaluation in above sections are under various bit rate choices which

simulates different network conditions. In this section, I turn my attention to the

effect of network topology on all three caching strategies.

There are two variables, tree height (η) and the number of edge routers (τ) which are

considered in my experiments. To test the effect of tree height, I fix one set of bit

rate choices from superusers and randomly select topologies to run the simulation.

To test the effect of number of edge nodes, I randomly choose one topology but test

multiple sets of bit rate choices and compare the results with previous experiments.

4.3.4.1 The Effect of Tree Height

I conduct this experiment over topologies with four different tree heights but maintain

the total number of caching routers. This can represent the scenario where caching for



4.3. SIMULATION RESULTS 71

multimedia data is applied over various ISPs with similar topology size but different

maximum hop counts to users. Table 4.11 lists all parameters used in the experiment.

Table 4.11: Parameters for Base Tree Height Experiment

Parameters Values Description

Skewness Factor (α) 1.2
Allocation Ratio (ε) 1.0
Tree Height (η) 4, 5, 6, 7
Number of Edge Nodes (τ) 35
Capacity Percentage (ω) 2%

From Figure 4.8(a), I can see that the performance of all three caching strategies

degrades as the tree height raises. The reason is straightforward: since the tree

height raises, data packets which are not served from any cached nodes have to

travel through a longer path to the server which increases the delay thus leads to

lower average throughput. My DASCache strategy still leads regarding performance

among all test cases.

I also carry out an experiment which tests the scenario where more cache size is

allocated on edge routers than intermediate routers over different topology shapes

(maximum hop counts). Table 4.12 lists all parameters used in the experiment.
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Table 4.12: Parameters for Tree Height Experiment with Larger Size on Edge Routers

Parameters Values Description

Skewness Factor (α) 1.2
Allocation Ratio (ε) 5.0 Changed from 1.0 to 5.0
Tree Height (η) 4, 5, 6, 7
Number of Edge Nodes (τ) 35
Capacity Percentage (ω) 2%

From Figure 4.8(b), I observe a similar trend on performance compared with the base

experiment. Larger cache capacity on edge routers does provide better performance

as I can see in Table 4.13, but this advantage shrinks as the tree height increases.

When η = 7, the average performance with ε = 1.0 even exceeds ε = 5.0. As I fix

total cache size, the worse cache utilization with large ε prevents caching more video

objects. Such that, video objects which are missed by cache have to be retrieved from

the server. When the tree height raises, the cost of traveling increases correspondingly.

The benefit of larger capacity of edge nodes is neutralized further by the cost of extra

data packet traveling. I can expect from the trend that, when the tree height is

higher, the performance of ε = 5.0 could be worse. It supports the conclusion I made

in Section 4.3.3 by testing over different topologies.

Table 4.13: Average Throughput between ε = 5.0 and ε = 1.0

4 5 6 7
ε = 5.0 6332.3 5624.1 4949.8 4339.3
ε = 1.0 6096.7 5500.3 4958.8 4439.7
Difference 235.5 123.8 -8.9 -101.4
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Figure 4.8: Effect of Tree Height
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4.3.4.2 The Effect of Number of Edge Nodes

In addition to the tree height, the number of edge nodes (τ) is another factor which

controls the shape of topology. The simulation in this section can represent the case

where different numbers of nodes are assigned to serve users directly while other

routers are only responsible for Interest/Data packet delivery. I conduct three exper-

iments using the same parameters as listed in Table 4.2, 4.5 and 4.10 except the τ is

set 45.

Figure 4.9(a), 4.9(b) and 4.9(c) show the comparison on performance of my DASCache

management strategy as τ = 45 with all base experiments conducted in above sections

as τ = 35. I observe that when I test on cache capacity percentage (ω) or skewness

factor (α), the performance curves of experiments conducted with τ = 35 and τ = 45

almost overlap. When I test on cache allocation (ε), the curve of τ = 45 is even flatter

than τ = 35. Since 75% of the routers in the topology are edge routers as τ = 45,

adjusting the cache allocation ratio will incur less changes on the cache space of edge

routers than τ = 35. Therefore, I can conclude that the number of edge routers in

the topology has no influence on the performance of DASCache under my simulation

setting.
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Figure 4.9: Effect of Number of Edge Nodes
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4.3.5 Extended Experiment: Delay on ‘last mile’ Link

The delay on ‘last mile’ (υ) will have a prominent influence on the average throughput.

The choice of this value is critical in the simulation. Suppose users had a very bad

communication channel via the edge router (e.g. a user is far away from signal tower)

and thus the ‘last mile’ delay will be huge. For example, if transmitting a video

object takes 99 seconds over ‘last mile’ and only 1 second over links within ISP,

through caching in ICN, I make the delay within ISP 0 second (almost impossible

unless cache directly at edge router) which is the best performance the system can

provide. The overall improvement will only be 1%. Such that, if the bottleneck

happens on ‘last mile’ link, caching in ICN will not have much effect on performance

improvement and it is beyond what optimization can do. In this extended experiment,

I show results under different delay on ‘last mile’. The parameters used are the same

as listed in Table 4.2.

Figure 4.10 presents results with ‘last mile’ delay of 0.1s 0.5s and 1.0s. The result

proves my earlier analysis that υ seriously impacts on the overall performance of

caching in ICN. As P-LRU produces the worst performance among three caching

strategies, I only generate curves of DASCache and P-LFU. Compared with υ = 0.5s

and υ = 0.1s, the performance difference between DASCache and P-LFU is shrinking

as υ = 1.0s and the smaller increasing speed of the average throughput also shows

the effect of ‘last mile’ delay: large delay offsets the benefit of caching. Considering

the experiment parameters I applied, I finally chose a fixed value of υ = 0.5s and

never considered the bottleneck on the ‘last mile’.
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Figure 4.10: Effect of ‘last mile’ Delay

4.4 Summary

In this chapter, I presented tools and the simulation model used in the experiments;

I also tested and analyzed multiple factors which may influence the performance of

my DASCache management strategy.

According to the simulation results, my DASCache strategy outperforms classic LFU

and LRU based caching schemes over all conducted experiments which proves the

correctness and effectiveness of my method within multiple scenarios, in which bit rate

choices and network topologies vary. Among all tested factors which may influence

the outcome of my method, I conclude that:

• Allocating more cache space for multimedia data is beneficial in improving the

average throughput measure by each user.

• My DASCache can dynamically reflect the popularity of contents requested
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by users. In the experiment, I use Zipf distribution as a study case and my

method works very well when the skewness factor is assigned a high value. When

skewness value is lower, which means harder to distinguish between popular and

unpopular contents, my DASCache still maintains the best performance.

• Cache allocation is not regarded as an important factor to influence the perfor-

mance based on my simulation setting. As the total cache space is determined,

more cache space on edge routers decreases the average latency but increases

the caching redundancy as well. Such redundancy neutralizes the performance

improvement of moving contents closer to users which results in negligible dif-

ference among cases, testing multiple allocation ratios.

• Network topology is generated according to the tree height and the number of

leaf nodes. As to the factor of tree height, if the maximum routing hop counts

increases, the average throughput is expected to decrease since data has to

travel through a longer path. However, having different numbers of edge nodes

in topology shows almost the same simulation results, which proves it will not

influence the overall level of performance.
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Chapter 5

Conclusions and Future Work

In this thesis, I proposed my cache management strategy, DASCache, which aims

to improve the QoE of users over ICN. The novel idea of this method is to achieve

the optimal cache assignment considering dynamic adaptive streaming which caters

to the increased demand for multimedia data. My proposed strategy, DASCache,

outperforms two other caching schemes as simulation confirms.

In future work, instead of requiring global knowledge from network provider, I plan

to extend my work and develop a distributed algorithm to make the solution more

flexible to deal with dynamics of network (emphe.g., frequent bit rate switch by

user), and scale with larger networks. As my formulation is based on an LP which

is inherently NP-hard, I advocate for extending this work with dynamic heuristics

that could operate at quasi-optimality in the large scale. Another challenge lies in

existing rate adaptation algorithms not working as expected under ICN, suffering

from the serious cache oscillation [18]. Proposing an ICN-aware adaptation strategy

that addresses this is necessary in utilizing in-network caching.
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Another open topic is related to interest aggregation. In a chunk-based delivery

system, like CCN, interest request aggregation is proposed to avoid flooding. It is a

mechanism for each router to keep track of unsatisfied requests and discard duplicate

ones to decrease unnecessary traffic within the network. When a new interest packet

arrives at a router, it will be recorded by the router and then forwarded to the next

hop. However, before the corresponding data is sent back to this router, any interest

packet for the same chunk will never be dispatched again.

If interest aggregation is considered, the average interval between forwarding two

subsequent requests for video chunk indexed by (k, b) at router i will be RV RTT (i)+

λi(k, b) in which RV RTT is denoted as Residual Virtual Round-Trip Time. It means

the same Interest packet could be forwarded by the router again after an average

period of time during which the current subscription is satisfied (RV RTT ) and the

next Interest has arrived (λi(k, b)). Such that, the interest arrival and miss process

on routers within ISP is now a renewal process since the holding times take on a

general distribution rather than an exponential one.

Carofiglio et al.[8] use filtering probability (pfilt) to revise the average rate to make the

model close to the real scenario. The idea of the method is to filter those incoming

interest packets of which the interval is less than RV RTT . As the interval between

two requests satisfies exponential distribution in a Poisson Process, the filtering prob-

ability at router i in my model could be represented as,

pi,filt(k, b) = P (interval time > RV RTT (i))

= e−λi(k,b)RV RTT (i)
(5.1)
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Because of decomposition property of Poisson Process, with interest request aggrega-

tion, the interest miss rate in Equation 3.8 will be updated to,

µi(·, b) =
K∑
k=1

pi,filt(k, b)λi(k, b)(1− xi(k, b)) (5.2)

Although the simulation result of [8] shows that such a feature has limited impact

on V RTT , the influence on queueing model still needs further analysis. It is also

necessary to experiment under video delivery scenario since each content usually has

larger size.
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and Vinicio Vercellone. Design considerations for a network of information. In

Proceedings of the 2008 ACM CoNEXT Conference, page 66. ACM, 2008.

[3] Stephanos Androutsellis-Theotokis and Diomidis Spinellis. A survey of peer-

to-peer content distribution technologies. ACM Computing Surveys (CSUR),

36(4):335–371, 2004.

[4] Somaya Arianfar, Pekka Nikander, and Jörg Ott. On content-centric router de-

sign and implications. In Proceedings of the Re-Architecting the Internet Work-

shop, page 5. ACM, 2010.

[5] Martin F Arlitt and Carey L Williamson. Internet web servers: Workload char-

acterization and performance implications. IEEE/ACM Transactions on Net-

working (ToN), 5(5):631–645, 1997.



BIBLIOGRAPHY 83

[6] Dimitri P Bertsekas, Robert G Gallager, and Pierre Humblet. Data networks,

volume 2. Prentice-hall Englewood Cliffs, NJ, 1987.

[7] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching

and zipf-like distributions: Evidence and implications. In INFOCOM, volume 1,

pages 126–134. IEEE, 1999.

[8] Giovanna Carofiglio, Massimo Gallo, Luca Muscariello, and Diego Perino. Model-

ing data transfer in content-centric networking. In Proceedings of the 23rd Inter-

national Teletraffic Congress, pages 111–118. International Teletraffic Congress,

2011.

[9] Giovanna Carofiglio, Vinicius Gehlen, and Diego Perino. Experimental evalua-

tion of memory management in content-centric networking. In Communications

(ICC), 2011 IEEE International Conference on, pages 1–6. IEEE, 2011.

[10] Antonio Carzaniga and Alexander L Wolf. Content-based networking: A new

communication infrastructure. In Developing an Infrastructure for Mobile and

Wireless Systems, pages 59–68. Springer, 2002.

[11] Antonio Carzaniga and Alexander L Wolf. Forwarding in a content-based net-

work. In Proceedings of the 2003 conference on Applications, technologies, ar-

chitectures, and protocols for computer communications, pages 163–174. ACM,

2003.

[12] Cisco. Cisco visual networking index: Forecast and methodology. http:

//www.cisco.com/c/en/us/solutions/collateral/service-provider/

ip-ngn-ip-next-generation-network/white_paper_c11-481360.html.

Accessed on 2014-12-18.



BIBLIOGRAPHY 84

[13] Cisco. Cisco visual networking index: Forecast and methodology, 2011–2016.

CISCO White paper, pages 2011–2016, 2012.

[14] AB Ericsson and Edwall Thomas. The network of information:architecture and

applications. FP7-ICT-2009-5-257448/D-3.1, 2011.

[15] Markus Fiedler, Tobias Hossfeld, and Phuoc Tran-Gia. A generic quantitative

relationship between quality of experience and quality of service. Network, IEEE,

24(2):36–41, 2010.

[16] Nikos Fotiou, Pekka Nikander, Dirk Trossen, and George C Polyzos. Developing

information networking further: From psirp to pursuit. In Broadband Commu-

nications, Networks, and Systems, pages 1–13. Springer, 2012.
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