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Abstract—Autonomous vehicles heavily rely on sensor data to
make pivotal driving and traffic management decisions. However,
the reliability of such data can be profoundly impacted by many
impairments, such as the adverse environmental and weather
conditions, the presence of obstacles, and the vehicle’s limited
view of road and traffic conditions of larger areas. Collaboration
between vehicles can help improve the perception of vehicles
beyond their line-of-sight, and increase accurate detection of
objects. Vehicular Edge Computing (VEC) has emerged as a
propitious computing paradigm that can foster the realization
of autonomous vehicles. However, maximizing the cooperative
perception of vehicles has been mostly overlooked. In this paper,
we propose the Cooperative Perception-based Task Offloading
(CPTO) scheme. CPTO enables task offloading in VEC with
the goal of maximizing the cooperative perception of vehicles
and minimizing the latency of perception aggregation, while
abiding by a certain deadline. Towards that end, we formulate
the task offloading problem as a multi-objective 0-1 integer linear
program (0-1 ILP). We also propose a greedy heuristic, called
the CPTO-Heuristic (CPTO-H) scheme, to solve the optimization
problem. Extensive simulations show that CPTO significantly
outperforms the baseline task offloading scheme in terms of
perception intensity, service capacity, and satisfaction ratio.
Furthermore, CPTO-H closely approaches the optimal solution,
with a small gap of up to 3.7% and 2.4% in terms of perception
intensity and satisfaction ratio, respectively.

Index Terms—Autonomous Vehicles, Vehicular Edge Comput-
ing, Cooperative perception, Task Offloading.

I. INTRODUCTION

With the advent of Autonomous Vehicles (AVs), the global
market of self-driving cars is expected to reach 400 billion
by 2025 [1], and the number of AVs is expected to reach
62.4 million by 2030 [2]. In AVs, crucial driving and traffic
management decisions are delegated to onboard computing
units [3]. Fostering the self-driving process in AVs neces-
sitates the reliance on multiple onboard sensors, including
LiDAR, radar, and GPS, to sense the surrounding physical
and atmospheric conditions and send the collected data to
the onboard computing unit [3]. However, the reliability of
such data can be hindered by several factors, such as severe
weather, the vehicle’s limited view of its surroundings, and
the presence of obstacles [4]. Reliability issues can also be
attributed to the inherent limitations of the on-board sensors,
resulting from the trade-off between range and resolution [5].
This can profoundly impact the vehicle’s traffic perception,
thus diminishing road safety and traffic efficiency [5].

The vehicle’s traffic perception can be improved by ag-
gregating the sensed data from other vehicles and enabling
cooperative perception [6]. This can be achieved by sharing
sensor data among vehicles and exploiting extraneous data
from other vehicles to ameliorate the detection capabilities of a
single vehicle and enhance traffic situational awareness [3]. To
transmit such extraneous data, researchers have focused on the
cloud computing paradigm [7]. However, due to the massive
number of onboard sensors, an AV is expected to trigger
approximately 4 terabytes of data every two hours [6]. The
transmission of such an excessive amount of data to remote
data centers can lead to prolonged latency and excessive traffic
influx at backhaul links, rendering real-time object detection
via cloud computing impractical [7].

Vehicular Edge Computing (VEC) is considered a promising
paradigm that can overcome the limitations mentioned above
[8] [9]. This is because VEC moves the computing service
within the proximity of the end-user, which can drastically
curtail the delay [3], and significantly reduce the number of
ineffective transmissions [9]. Edge nodes can either be static or
mobile according to the availability of resources [10]. In VEC,
vehicles can be used as edge nodes by exploiting their in-
creasingly powerful onboard computing units [11]. Offloading
cooperative perception tasks to vehicles to improve situational
awareness has recently been proposed in the literature [7], [8],
[12], [13].

Existing task offloading schemes that enable cooperative
perception in VEC focus on optimizing specific metrics, such
as latency and energy consumption [7], [10], [12], [13].
However, maximizing the level of cooperation between ve-
hicles has been mostly overlooked. Intuitively, increasing the
level of cooperation between vehicles can improve situational
awareness [14], [15]. However, as the number of vehicles
collaborating with the same vehicle (i.e., worker/edge node)
increases, this can impact the worker’s ability to reduce the
delay of the perception aggregation process.

In this paper, we propose the Cooperative Perception-based
Task Offloading (CPTO) scheme. CPTO aims to maximize the
cooperative perception of vehicles and minimize the latency of
the perception aggregation process while abiding by a deadline
requirement. CPTO formulates the task offloading process as
a multi-objective 0-1 Integer Linear Program (0-1 ILP). To
the best of our knowledge, CPTO is the first task offloading
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scheme in VEC that maximizes the cooperative perception
between vehicles while reducing aggregation latency. Consid-
ering that the formulated problem in CPTO is NP-hard, we
also propose a greedy heuristic, called the CPTO-Heuristic
(CPTO-H) scheme, to approximate the optimal solution and
enable its practical use.

We evaluate the performance of CPTO and CPTO-H com-
pared to a representative of the state-of-the-art schemes that
focus on latency while overlooking the cooperative perception
of vehicles. Simulation results show that CPTO and CPTO-
H significantly outperform the baseline scheme regarding of
perception intensity, service capacity, and satisfaction ratio.
The performance of CPTO-H is also compared to the op-
timal solution rendered by CPTO. Simulation results show
that CPTO-H closely approaches CPTO, with a performance
gap of up to 3.7% and 2.3% regarding perception intensity
and satisfaction ratio. This is while rendering a significant
improvement, of up to 97.5%, regarding the time taken to
solve the optimization problem compared to CPTO.

The remainder of the paper is organized as follows. Section
II highlights some of the related work. Section III provides
a detailed description of CPTO and CPTO-H. Section IV
discusses the performance evaluation and simulation results.
Finally, section V presents our conclusions and future direc-
tions.

II. RELATED WORK

Extending situational awareness through cooperative per-
ception by offloading computational tasks to moving vehicles
that act as mobile edge nodes has recently been studied in
several works [7] [12] [13] [10]. In [10], the authors study task
allocation of video applications to vehicles or Road Side Units
(RSUs) for object detection. They propose a multi-objective
scheme that focuses on minimizing latency and quality loss. In
[12], authors propose a task offloading scheme that improves
the cooperative perception by maximizing the data transmis-
sion rate of vehicles to maximize the number of tasks that can
run on vehicles or RSUs. In [13], a task offloading scheme is
proposed that considers the task’s deadline requirement, and
the energy restrictions of vehicles when acting as edge nodes.
In [7], the authors propose a cooperative group formation
scheme for task offloading in VEC. They exploit the use of
vehicles for distributed learning, where the quality of learning
increases as the size of the formed group increases. The
scheme focuses on forming the largest group possible while
ensuring that the formed group is capable of completing
the task. However, this scheme cannot be easily adopted
for cooperative perception tasks. The system is designed for
federated learning, which requires local models to be built
in each car. More recent works [16] [17] have developed a
reinforcement learning (RL) scheme using Deep Q-network
(DQN) to determine when to offload, discard, and opt for local
processing for cooperative perception to stop the system from
using unnecessary offloading.

One aspect which has been overlooked in the literature is
optimizing the amount of collaboration between vehicles while

ensuring the stringent requirements of the real-time perception
aggregation process. In this paper, we improve cooperative
perception and situational awareness by proposing a multi-
objective task offloading scheme that maximizes the number
of collaborating vehicles while minimizing the latency of the
perception aggregation process.

III. COOPERATIVE PERCEPTION-BASED TASK
OFFLOADING (CPTO)

In this section, we provide a detailed description of the
the system model, the ILP optimization problem, the problem
analysis, and the heuristic scheme CPTO-H.

A. System Model and Overview

Consider a set of vehicles U={u1, u2,..., un} moving in
a certain area. Vehicles can act as users or workers (i.e.,
edge nodes). Users offload their perception tasks to workers,
which can be moving vehicles or static RSUs. Let W ={w1,
w2, ...wm} be the set of workers that are willing to offer
their computational resources to execute the offloaded tasks
in exchange for some incentives.

Each user ui ∈ U offloads a perception task, which has
a computation workload or intensity qi (in CPU cycles/bit)
and involves a certain bits of data λi, constituting the size of
the perception frame. Each worker wj ∈ W has a maximum
CPU clock speed or CPU frequency, denoted Cj (in CPU cy-
cles/sec). The CPU frequency of worker wj is divided equally
among all the perception tasks offloaded to it. The number
of offloaded tasks to worker wj is the number of vehicles
currently using this worker (i.e., cooperating together), and is
denoted sj . The distance between user ui and worker wj is
denoted dij , and the propagation speed is denoted v. The data
rate of the transmission link is denoted Rij .

We assume that the perception frames are sent from users
to workers at a fixed rate of one perception frame per second
per user. Consider a certain perception range, denoted ξ. If
a user moves outside this range, it must collaborate with a
closer worker. The perception range is set in accordance with
the European Telecommunications Standards Institute (ETSI)
solution for short and medium distances, which are critical for
the safety of connected vehicles [18], [19].

CPTO runs periodically every 1 sec, in which it considers
offloading the perception tasks of a subset of users who have
exceeded their perception range. The task offloading problem
is formulated as a multi-objective optimization problem that
aims to jointly maximize the cooperative perception of vehi-
cles and minimize the latency of perception aggregation. The
total latency of running the perception aggregation task of user
ui on worker wj is denoted tij , and is given by Eq. 1, where
αij is the computation latency, βij is the propagation latency,
and γij is the transmission latency.

tij = αij + βij + γij (1)

As given by Eq. 2, the computation latency αij is the time
it takes worker wj to execute the perception aggregation task
of user ui. Note that the computation latency is affected by the
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number sj of users currently using the worker. As the num-
ber of users increases, the worker’s computational capability
decreases, and thus the computation latency increases.

αij =
qiλi

Cj/sj
(2)

The propagation latency βij , given by Eq.3, is the time it
takes the perception task to propagate from user ui to worker
wj .

βij = dij/v (3)

The transmission latency γij , given by Eq. 4, is the time it
takes to push the entire perception frame on the transmission
link between user ui to worker wj .

γij = λi/Rij (4)

CPTO minimizes the latency tij by maximizing the latency
difference gij , which acts as the utility gain from changing
the worker used for offloading, from the current worker wa to
a different one wb, as given by Eq. 5.

gij = tia − tib (5)

B. Problem Formulation

CPTO is formulated as a multi-objective 0-1 integer linear
program (0-1 ILP) with quadratic constraints, where the de-
cision variable xij is set to 1 if user ui offloads the task to
worker wj , and 0 otherwise. The objectives are maximizing
the latency difference gij and maximizing the cooperation
of vehicles. CPTO maximizes the cooperative perception of
vehicles by maximizing the summation of the placement
decision variable xij . The optimization problem is given by
Eq. 6.

max
x

n∑
i=0

m∑
j=0

xijgij (6a)

max
x

n∑
i=0

m∑
j=0

xij (6b)

s.t. xij

(
(

n∑
i=0

xij) + κj

)
≥ xijCi ∀j ∈W ∀i ∈ U (6c)

n∑
i=0

xijdij ≤ ξj ∀j ∈W (6d)

M∑
j=0

xij ≤ 1 ∀i ∈ U (6e)

xij ∈ {0, 1} ∀i ∈ U ∀j ∈W (6f)

The first optimization objective (6a) aims to maximize
the latency difference gij . The second objective (6b) aims
to maximize the cooperative perception by maximizing the
number of vehicles cooperating at each worker.

Constraint (6c) controls the number of collaborating ve-
hicles. This is because in case of a low congestion (mul-
tiple available workers), the delay objective over-dominates
and CPTO tends to offload to workers with low number of
collaborating vehicles to decrease the overall average latency.
However, this could negatively affect the cooperation between
vehicles, since the chosen workers would have a small number
of cooperating vehicles. To help mitigate this case, constraint

Algorithm 1 Multi-Objective Heuristic (CPTO-Heuristic)
Input: Users (U), Workers (W), percetionintensity ,Delay
Output: SelectedWorkers

1: for u ∈ Users do
2: nearbyWorkersDelayPerception = [ ]
3: SortedList = [ ]
4: SelectedWorkers = [ ]
5: for w ∈ Workers do
6: if dist(u,w) <= perceptionrange & delay! = 0 then
7: delay ← round(delay)
8: nearbyWorkers← (w, delay, percetionintensity)
9: end if

10: end for
11: SortedList← sortDelay(nearbyWorkers)
12: SortedList← sortPerception(nearbyWorkers)
13: SelectedWorkers← SortedList[0]
14: assign(u, SortedList[0])
15: end for
16: return SelectedWorkers

(6c) is added to act as a lower bound on the cooperation
between vehicles, where Ci denotes the lower bound of
cooperation of each vehicle. Since the optimization problem
only considers a subset of users who have exceeded their
perception range ξj , κj is added to consider users who occupy
the worker but are not involved in the optimization problem
(i.e, users who haven’t exceeded their perception range ξj).

Constraint (6d) ensures that the selected worker is located
within the required perception range. Constraint (6e) ensures
that the user is served by at most one worker. Constraint (6f)
ensures that each element xij in the binary placement matrix
X is set to either 0 or 1.

C. Problem Relaxation

The aforementioned problem can be considered as a
0/1 multi-objective multi-dimension Knapsack Problem (KP),
which has been proven to be NP-hard [20].

The optimization problem in Eq. 6 contains a quadratic
constraint, due to the multiplication of optimization variables
in constraint (6c). To convert the problem to one with only
linear constraints, constraint (6c) is relaxed to (7a). The term
((1− xij)× 2Ci) is added to ensure that the cooperation
constraint only works when a suitable placement is found by
the optimization problem (i.e., xij = 1).

(
(

n∑
i=0

xij) + κj

)
+ ((1− xij)× 2Ci) ≥ Ci ∀j ∈W ∀i ∈ U (7a)

D. CPTO-H

The time complexity of solving the proposed NP problem
grows exponentially with the scale of the problem. Therefore,
solving using exact dynamic programming and branch-and-
bound methods can only stay in the theoretical stage [20].
Thus, to solve the proposed optimization problem, CPTO-H
is proposed, which is detailed in Algorithm 1.

CPTO-H first loops on the users who have exceeded their
perception range (line 1). Then, for each user ui ∈ U , a search
is done to ensure that the correct placement is done on an
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eligible worker. In particular, this search is done to ensure
that the selected worker is within the required perception range
(line 6). Current workers are not included in the search, since
they are considered to have exceeded the user’s perception
range. Thus, workers with a delay difference of zero are not
included in the search procedure (line 6).

The delay difference is approximated to the nearest tenth
(line 7), to simplify the sorting steps later in the procedure.
Next, nearby eligible workers are added to a list with their
respective delay differences and perception intensities (line
8). After the list is built, CPTO-H applies multiple sorting
steps. First, the list is sorted in descending order according to
the delay difference (line 11), then it is sorted according to
perception intensities (line 12). The worker with the highest
perception intensity and delay difference is found in the first
index of the list. This worker is then added to a list of selected
workers (line 13). Finally, user ui is offloaded to the selected
worker (line 14). This last step is essential since it ensures
that workers’ perception intensity is updated after each user’s
placement.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of CPTO
and CPTO-H. To study the effect of optimizing the co-
operative perception and aggregation latency, we compare
CPTO and CPTO-H to a representative of the state-of-the-
art optimization-based task allocation schemes that focus on
aggregation latency and quality loss while overlooking cooper-
ative perception [10]. To demonstrate the effect of considering
cooperative perception in CPTO and CPTO-H, we slightly
modify the scheme in [10] to optimize the delay rather than
the delay and quality loss. We refer to the modified scheme
as a Single Objective-CPTO (SO-CPTO).

We use the following performance metrics: 1) the average
latency experienced starting from the time a perception frame
request is sent until a response is received, 2) the average
perception intensity, which is calculated as the average number
of collaborating vehicles associated with workers, 3) the ser-
vice capacity, which is the ratio of the number of successfully
offloaded tasks to the total number of tasks, 4) the satisfaction
ratio, which is the percentage of requests that have satisfied the
deadline requirement, and 5) the average offloading decision
latency, which is the average time taken by the different
schemes to reach the offloading decision.

A. Simulation Setup

We have implemented CPTO, CPTO-H, and SO-CPTO
using Python and integrated the simulator with IBM CPLEX
optimization solver [21] to solve the optimization problems.
Realistic mobility traces have been employed by using Luxem-
bourg SUMO traffic dataset (LuST) [22]. This dataset includes
the mobility patterns of buses in Luxembourg city, with an
average speed of 22.3 kmph in routes of 26.44 min on average.
The number of vehicles (users) is set to 90. We set the number
of static workers to 30, while varying the number of moving
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Fig. 1: Average latency of CPTO, CPTO-H, and SO-CPTO
over a varying number of workers

workers from 90 to 210 to test the effect of the density of
workers on the system.

The computation frequency of workers ranges from 22 to
23 GHz. The uplink data rate of the vehicles that act as users
ranges from 23 to 25 Mbps. DSRC, which supports data rates
of 4.5 to 27 Mbps [23], is the communication technology
adopted. Following with the range specified by ETSI for short
and medium distances [19], the perception range is set to 200
m. The perception lower bound Ci ranges from 1 to 2. The
perception task studied throughout the simulations is similar
to the one used in [12], which is the computation of image
data. This computing task can include feature detection and
perspective transformation, essential tasks for traffic percep-
tion. The computation intensity is set to 1e9 cycles/sec, and
the perception frame size is 20 KB. The delay deadline is set
to 0.6 sec. The simulation period is set to 5 minutes, and the
optimization problem is solved periodically each 1 second.
The number of users involved in the optimization problem
for offloading is variable for each run of the decision-making
schemes. Only the users who have exceeded the perception
range are considered in the offloading schemes.

B. Simulation Results and Analysis

In our experiments, we assess the performance of CPTO,
CPTO-H, and SO-CPTO over a varying number of moving
workers. Simulation results are presented at a confidence level
of 95%.

Figure 1 depicts the performance of the different schemes
regarding the average latency. As the number of moving
workers increases, the average delay decreases in all schemes
because the system becomes less congested, as the number
of workers available for each user increases. SO-CPTO yields
the lowest average latency compared to CPTO (-14.6%) and
CPTO-H (-17%) across the different number of moving work-
ers. This is because SO-CPTO focuses only on optimizing the
average latency, whereas both CPTO and CPTO-H jointly opti-
mize the latency and the cooperative perception of vehicles. As
depicted in Figure 1, CPTO-H closely approaches the optimal
solution CPTO, with a performance gap of up to 4.6%.

We conduct the same comparison regarding the average
perception intensity. As depicted in Figure 2, as the number
of workers increases, the perception quality decreases (i.e.,
the number of vehicles offloading their cooperative perception
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Fig. 2: Average perception intensity of CPTO, CPTO-H, and
SO-CPTO over a varying number of workers

to a worker decreases). This is because the availability of
placement options increases as the number of moving workers
increases. Thus, the schemes choose the workers associated
with the low number of users, so as to optimize the average
delay. Consequently, the perception intensity decreases. CPTO
and CPTO-H, account for both minimizing the average latency
and maximizing the cooperation, render higher perception
intensity across different numbers of workers compared to SO-
CPTO, which only aims to optimize the average latency. CPTO
shows an increase of 14.3%, while CPTO-H shows an increase
of 16.1% when respectively compared to SO-CPTO. CPTO-
H closely approaches the perception intensity of CPTO, with
a performance gap of 4.4%. Figure 1 and Figure 2 adopt the
same pattern as direct result of the perception intensity’s effect
on latency. The computation latency is the most significant
factor in affecting the average latency of the system, where the
computation latency decreases proportionally as the perception
intensity decreases. On the other hand, both the propagation
and the transmission delays have a minor effect on the system.
This can be attributed to the fact that small distances between
workers and users, result in the propagation delay having a
minimal effect on the system. Additionally, the almost similar
uplink data rate of users results in the transmission delay
having a minor effect on the average latency of the system.
This ultimately leaves the computation delay, affected by the
number of vehicles cooperating at a worker, to have the biggest
effect.

We assess the different schemes regarding the service ca-
pacity. As depicted by Figure 3, as the number of workers
increases, the service capacity increases in all schemes. This
can be attributed to the fact that as the number of workers
increases congestion decreases, since the number of eligible
workers available to a specific user increases, which increases
the number of perception tasks that can be served. Since
SO-CPTO focuses on optimizing the average latency only, it
tends to choose workers that minimize the latency, without
considering the need to assign all requests. Therefore, SO-
CPTO sacrifices placing all the vehicles’ requests to optimize
the average latency. Accordingly, the service capacity of SO-
CPTO is always lower than that of CPTO and CPTO-H. In
contrast, CPTO and CPTO-H strive to tend to all vehicles’
requests to maximize the cooperative perception. Thus, CPTO
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Fig. 3: Service capacity of CPTO, CPTO-H, and SO-CPTO
over a varying number of workers
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Fig. 4: Satisfaction ratio of CPTO, CPTO-H, and SO-CPTO
over a varying number of workers

and CPTO-H render a higher service capacity of 11.7%
and 15% increase when respectively compared to SO-CPTO.
CPTO-H yields a higher service capacity than CPTO, with
an increase of up to 3.7%. This is due to the fact that the
perception constraint (6c) prevents CPTO from offloading
to workers that have a perception intensity lower than the
required lower bound of cooperation Ci.

Figure 4 shows the satisfaction ratio of CPTO, CPTO-H,
and SO-CPTO over varying number of workers. As shown in
Figure 4, as the number of workers increases, the satisfaction
ratio in all schemes increases. This is due to the resulting
decrease in congestion, which in turn decreases the number
of users sharing the same worker. This increases the available
CPU speed dedicated to offloaded tasks, which decreases the
computation delay, thus increasing the percentage of requests
satisfied within the specified deadline. Note that SO-CPTO
yields the lowest satisfaction ratio among all schemes. This
is since SO-CPTO renders the lowest service capacity, which
directly impacts the satisfaction ratio. In contrast, CPTO and
CPTO-H optimize both the latency and cooperative perception,
thus yielding a higher service capacity than SO-CPTO, which
in turn leads to a higher satisfaction ratio. CPTO and CPTO-H
shows an increase of 2% and 4.3% when respectively com-
pared with SO-CPTO. CPTO-H achieved a higher satisfaction
ratio of an 2.4% increase compared to CPTO due to the fact
that it didn’t consider the perception lower bound constraint
(6c).

Figure 5 depicts the performance of CPTO and CPTO-
H regarding the average offloading decision latency over
a varying number of workers. As the number of workers
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Fig. 5: Average offloading decision latency of CPTO and
CPTO-H over varying number of workers

increases, a fewer number of users becomes associated with
each worker, which reduces congestion, and thus the offloading
task becomes easier. Thus, the average decision time for the
offloading task decreases. The heuristic offloading scheme
CPTO-H yields a significant reduction, of up to 97.5%, in
the time taken to solve the offloading problem compared to
the conventional optimization technique adopted by CPTO.

V. CONCLUSION AND FUTURE WORK

In this paper, we have proposed the Cooperative Perception-
based Task Offloading (CPTO) scheme. CPTO strives to foster
reliable autonomous vehicles by maximizing the level of
cooperative perception between vehicles. CPTO exploits task
offloading in Vehicular Edge Computing (VEC) to jointly
maximize cooperative perception and minimize perception
aggregation latency. Towards that end, CPTO formulates the
task offloading problem as a multi-objective 0-1 integer linear
program (0-1 ILP). A greedy heuristic scheme, CPTO-H, has
also been proposed to enable a practical approximation of
the optimal solution rendered by CPTO. Extensive evaluations
show that CPTO-H closely approaches CPTO, with a perfor-
mance gap of up to 4.6%, 4.4%, 3.7%, and 2.4% regarding
aggregation latency, perception intensity, service capacity, and
satisfaction ratio, respectively. This is while sustaining a
significant improvement regarding offloading decision-making
latency, reaching up to 97.5%. In addition, simulations have
shown that CPTO and CPTO-H outperform a baseline scheme
that only focuses on latency, regarding perception intensity,
service capacity, and satisfaction ratio. In the future, we
plan further improvements in perception intensity by using
predictive techniques that take environmental conditions into
consideration.

ACKNOWLEDGMENT

This research is supported by a grant from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
under grant number ALLRP 549919-20.

REFERENCES

[1] Statista, “Projected autonomous vehicle market size worldwide between
2021 and 2025,” https://www.statista.com/statistics/1224515/av-market-
size-worldwide-forecast/ , 2022.

[2] Business-Wire, “Self-driving cars market global forecast to 2030: In-
creasing demand for level 1 and level 2 cars and rising investment
in development of level 4 and level 5 cars will propel market,”
https://www.businesswire.com/news/home/20220215005655/en , 2022.

[3] Tang, Gu et al., “Vehicular edge computing for multi-vehicle per-
ception,” in International Conference on Connected and Autonomous
Driving (MetroCAD), 2021, pp. 9–16.

[4] Thandavarayan, Sepulcre, and Gozalvez, “Cooperative perception for
connected and automated vehicles: Evaluation and impact of congestion
control,” IEEE Access, vol. 8, pp. 197 665–197 683, 2020.

[5] D. D. Yoon and Ali, “Performance of decentralized cooperative per-
ception in v2v connected traffic,” IEEE Transactions on Intelligent
Transportation Systems, pp. 1–14, 2021.

[6] Business-Wire, “Intel editorial: For self-driving cars,
there’s big meaning behind one big number: 4 terabytes,”
https://www.businesswire.com/news/home/20170414005225/en/Intel-
Editorial-For-Self-Driving-Cars-There.

[7] Liu and Blough, “Cooperative task-oriented group formation for ve-
hicular networks,” in IEEE Consumer Communications Networking
Conference (CCNC), 2022, pp. 584–592.

[8] Tang, Chen et al., “Vecframe: A vehicular edge computing framework
for connected autonomous vehicles,” in IEEE International Conference
on Edge Computing (EDGE), 2021, pp. 68–77.

[9] Yu, Yang, and Zhang, “Edge-assisted collaborative perception in au-
tonomous driving: A reflection on communication design,” in 2021
IEEE/ACM Symposium on Edge Computing (SEC), 2021, pp. 371–375.

[10] Zhu, Pastor et al., “Fog following me: Latency and quality balanced
task allocation in vehicular fog computing,” in IEEE International
Conference on Sensing, Communication, and Networking (SECON),
2018, pp. 1–9.

[11] Corporation, “Nvidia drive agx developer kit. [online]. available:,”
https://developer.nvidia.com/drive/drive-agx, 2020.

[12] Krijestorac, Memedi et al., “Hybrid vehicular and cloud distributed
computing: A case for cooperative perception,” in IEEE Global Com-
munications Conference, 2020, pp. 1–6.

[13] Kazmi, Otoum et al., “A novel deep reinforcement learning-based
approach for task-offloading in vehicular networks,” in IEEE Global
Communications Conference (GLOBECOM), 2021, pp. 1–6.

[14] Monteil, Billot et al., “Cooperative highway traffic: Multiagent model-
ing and robustness assessment of local perturbations.” Transportation
Research Record, pp. 1–10, 01 2013.

[15] Guériau, Billot et al., “How to assess the benefits of connected vehicles?
a simulation framework for the design of cooperative traffic management
strategies,” Transportation Research Part C Emerging Technologies,
vol. 67, 04 2016.

[16] Higuchi, Ucar et al., “Vehicular edge offloading based on anticipated
value of computational tasks,” in IEEE 94th Vehicular Technology
Conference (VTC2021-Fall), 2021, pp. 1–5.

[17] Aoki, Higuchi, and Altintas, “Cooperative perception with deep rein-
forcement learning for connected vehicles,” in IEEE Intelligent Vehicles
Symposium (IV), 2020, pp. 328–334.

[18] Thandavarayan, Sepulcre, and Gozalvez, “Redundancy mitigation in
cooperative perception for connected and automated vehicles,” in 2020
IEEE 91st Vehicular Technology Conference (VTC2020-Spring), 2020,
pp. 1–5.

[19] ETSI-ITS, “Intelligent transport system (its); vehicular communications;
basic set of applications; analysis of the collective - perception service
(cps),” June 2019.

[20] He, Sheng et al., “Multi-objective deep reinforcement learning based
time-frequency resource allocation for multi-beam satellite communica-
tions,” China Communications, vol. 19, no. 1, pp. 77–91, 2022.

[21] Cplex, “V12. 1: User’s manual for cplex,” International Business Ma-
chines Corporation, vol. 46, no. 53, p. 157, 2009.
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