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Abstract—Extreme edge computing (EEC) refers to the end-
most part of edge computing wherein computational tasks and
edge services are deployed only on extreme edge devices (EEDs).
EEDs are consumer or user-owned devices that offer computa-
tional resources, which may consist of wearable devices, personal
mobile devices, drones, etc. Such devices are opportunistically
or naturally present within the proximity of other user devices.
Hence, utilizing EEDs to deploy edge services or perform compu-
tational tasks fulfills the promise of edge computing of bringing
the services and computation as close as possible to the end-
users. However, the lack of knowledge and control over the EEDs
computational resources raises a red flag, since executing the
computational tasks successfully becomes doubtful. To this end,
we aim to study the EEDs randomness from the computational
perspective, and how reliable is an EED in terms of executing
the tasks on time. Specifically, we provide a reliability model for
the EEDs that takes into account the probabilistic nature of the
availability of the EEDs’ computational resources. Moreover, we
study the reliability of executing different types of computational
tasks in EEC systems that are distributed across the EEDs. Lastly,
we carry out experimental results to analyze the EEDs and the
EEC systems’ reliability behavior in different scenarios.

Index Terms—Reliability, modeling, edge computing, extreme
edge computing, task offloading

I. INTRODUCTION

Edge computing is a paradigm that aims at bringing stream-
ing services such as extended reality (XR), online gaming,
content delivery services, etc., and computational services such
as distributed Machine Learning (ML) training and inference
[1], [2], closer to the end user, without the need for the
cloud [3]. This is due to the fact that utilizing the cloud
resources suffers from a huge latency overhead, besides that
such computational tasks and services are time-restricted and
delay-sensitive, respectively. In edge computing, tasks are
offloaded from resource-limited edge devices to enterprise-
owned devices such as edge servers, which are usually lo-
cated at the Radio Access Network (RAN) sites [4], [5].
Conversely, Extreme Edge Computing (EEC), which is the
endmost part of the edge computing continuum, aims at
offloading the tasks only to consumer and user-owned devices
that offer computational resources rather than the edge servers.
Examples of such devices can be smart wearable devices,
personal mobile devices, and smart home appliances, drones,
etc. These Extreme Edge Devices (EEDs) are abundant and

naturally the nearest part of the edge to the end users, and
may possess better connectivity with the end users than the
RANs. In fact, utilizing such devices for computation or
services allows for achieving the low-latency premise of edge
computing. However, this comes at the cost of encountering
the challenge of the unpredictable behaviour of such devices
in terms of the availability of their computational resources.
In fact, it is impractical to have complete knowledge about
the computational behaviour and the local tasks that are being
executed by the EEDs, whether for privacy or other concerns.
Moreover, the tasks or services at the edge may have compu-
tational demands that change with time in a deterministic or
stochastic manner. Indeed, the EED’s capability to allocate
the required computational resources, finish the offloaded
tasks on time, or guarantee an uninterruptible edge service
becomes questionable. Therefore, it is essential to study the
reliability of the EEDs from the computational perspective,
and more specifically, the ability of such devices to finish
computational tasks on time and provide ceaseless and steady
edge service, given that there exists uncertainty in the tasks’
demands or the EEDs’ computational resources. Moreover,
since computational tasks or services in an EEC system can
be distributed across the available EEDs in the system as
sub-tasks or sub-services, the studying of the reliability of
an EEC system in terms of executing the task successfully
or providing a seamless service in a distributed manner is of
great importance.

A plethora of works has addressed the reliability in edge
computing from different perspectives. For instance, Wu et
al. [6] have proposed a client selection algorithm that takes
into account the reliability of the clients to improve the
training process in Federated Learning. The reliability is
simply assumed as the probability that a client will not be
dropped out during the training, where the probability is
sampled from a Gaussian distribution. Whereas the works
in [7], [8] have addressed the reliability of the containers
and virtual machines (VMs) at the edge servers, considering
that there exist software failures when initiating instances or
admitting service requests. To generalize the reliability model,
the works in [9] and [10] have considered a joint model for
the computation and communication reliability for drones and
smart vehicles, respectively. In both works, the computation
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and communication reliability model are represented by an
exponential distribution model. From a different perspective,
the authors in [11] have considered the reliability considering
the transient failure (i.e., the random hardware components
failure of edge devices). The hardware reliability of the devices
was assumed to follow an exponential distribution.

Even though the reliability has been addressed in the litera-
ture from various perspectives, the computational perspective
of the EEDs and how it is affected by the task computational
demand and the utilization of available resources has been
disregarded. Moreover, all of the previous works assumed
complete knowledge about the exact allocated computational
resources of the EEDs, which may not be always the case
due to the lack of control over these devices, and the lack
of information about the other local tasks that are already
being executed by the EED. To this end, we opt to model
and study the EEDs’ computational reliability, and the ability
of the EEDs to execute the computational tasks on time
considering probabilistic task demands and available computa-
tional resources. The scope of this work is narrowed to focus
only on the reliability of computational task execution. The
contributions of this work can be summarized as follows:

1) We provide a statistical model for the EEDs reliability
considering different behaviours of task demands and
the availability of computational resources for the tasks.

2) We elaborate on the case of probabilistic task demand
and computational resources, and derive a closed-form
expression for the EEDs reliability.

3) We study and model the reliability of different types of
EEC systems according to different computational task
types.

The rest of the paper is organized as follows: We present the
EEDs reliability model in II, while section III present the EEC
systems reliability. We show the simulation results in Section
IV. We then discuss the work and future direction in V before
we conclude in Section VI.

II. MODELING OF EXTREME EDGE NODES RELIABILITY

Let T be a random variable (RV) that follows a distribution
fT , where fT represents the Probability Density Function
(PDF), T is the time taken for an EED to finish its task.
Therein, we define the reliability of the EED as the probability
of finishing a task before the deadline t as follows:

R(t) := F (t) = P (T ≤ t) =

∫ t

0

fT (x)dx, (1)

where F (t) is the Cumulative Distribution Function (CDF).
As for the time distribution fT , while several works have

considered an exponential distribution, Balter in [12] claimed
that the computational task times in almost all systems follow
a Type 1 Pareto distribution. However, considering one distri-
bution over another might not generalize every EEC system,
since the computational capacities of EEDs are heterogeneous,
and there is a huge variety of tasks at the edge, each of which
has different demands and characteristics. Therefore, we opt to
use a more generalized model, namely, the Generalized Pareto

Figure 1. The Generalized Pareto Distribution with different (a) shapes at
α = 2 (b) scales at ξ = 2

distribution (GPD) [13]. The GPD provides more degrees of
freedom in modeling as it is a generalization of exponential
distribution and all types of Pareto distributions. Therein, we
define the reliability of the EEDs as the CDF of the GPD, and
is defined as follows:

F (t;α, ξ) =

{
1− (1 + tα

ξ )−ξ ξ−1 > 0,

1− e−αt ξ−1 = 0,
(2)

where ξ and α are non-negative distribution parameters. As
it can be seen from Fig. 1, the parameter ξ represents
the asymptotic tail behaviour of the distribution, whereas
the parameter α, it represents how the reliability increases
over time, or the rate at which the reliability approach the
asymptotic behaviour. The asymptotic term represents the
behaviour where the increase in reliability over time become
insignificant, such that for t2 >> t1, R(t2) ≈ R(t1). The
distribution tail conveys that for some tasks, the EED may take
huge amount of time to execute the task, or may not execute
it at all, which results in making the EED less reliable. As
such, each EED can be characterized by a unique constant ξ,
where the asymptotic tail can indicate the maximum attainable
reliability from that EED for a specific time horizon.

The kth statistical moment of the GPD is only defined for
ξ > k. Therein, the first moment of the GPD is given by:

E[T ] =



1
α ξ = 0

1
α(1−ξ−1) , ξ > 1

undefined otherwise

(3)

For ξ < 1, we can still study the reliability of an EED,
however, estimating the mean task execution time becomes
implausible due to distribution tail behaviour. In fact, with
unfinished tasks or tasks that take a long time to execute,
estimating the EED’s mean time for task execution becomes
infeasible. Since we considered ξ as a constant, the parameter
α can be defined as the EED mean task execution rate
(tasks/sec). The EED task execution rate depends mainly on
three factors: 1) The computational capacity of the EED, 2)
the utilization of the computational resources for the task (i.e.,
the allocated computational resources for the task), 3) The
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computational demand of the task. Herein, we define the task
execution rate as the following:

λ =
uC

d
, (4)

where C is the computational capacity (cycles/sec) of the
EED, u is the utilization such that u ∈ [0, 1], and d is
the task demand (cycles/task). In this work, we consider the
utilization variable as the available computational resources
that are allocated from the EED to the task. In addition, it
acts as an indicator of how much the EED is utilizing from
its full computational capacity, where it abstracts many factors
(e.g., the scheduling algorithm, the number of threads inside
the CPU, etc.).

However, considering a constant task execution rate for a
task is impractical, since there are always other local tasks on
the EED side, besides the lack of complete knowledge about
the EED local computation behavior. Hence, the task execution
rate can be one of the following:

1) An RV, where the utilization U and the task demand D
are RVs that follow some probability distributions (i.e.,
U ∼ fU and D ∼ fD). Hence, the mean task execution
rate is given by:

α = C E[λ] = C E
[
U

D

]
. (5)

2) A function of time, i.e., λ(t), where the utilization and
the task demand changes deterministically with time.
As such, the mean task execution rate at time t is the
function average and is given by:

α(t) =
1

t

∫ t

0

λ(τ)dτ =
C

t

∫ t

0

u(τ)

d(τ)
dτ. (6)

3) A stochastic process, where the utilization and the
demand are time indexed RVs. The mean task execution
rate at time t is then given by:

α(t) = C E[λ(t)] = C E
[
U(t)

D(t)

]
. (7)

In this work, we will elaborate on the first case where there
is uncertainty with known distribution in the task demand and
the EED utilization of their computational resources, while
we keep the doors open for future contributions for the other
cases.

Let D be a uniform RV that follows the distribution fD,
where fD represents the task demand distribution with a range
of [Dmin, Dmax], with Dmin and Dmax denoting the minimum
and maximum demands possible, respectively.

The first moment or the average demand Dm is given by:
Dm = Dmax+Dmin

2 . Thereafter, the reciprocal RV ,D−1 = 1
D ,

follows an inverse uniform distribution, and its first moment
is defined as:

E[D−1] =
log(Dmax)− log(Dmin)

Dr
=

log
(

4Dm
2Dm−Dr

− 1
)

Dr
(8)

where Dr = Dmax − Dmin is the demand range. Let U be
another RV that follows a uniform distribution fU , where
fU represents the utilization distribution with a range of
[Umin, Umax], with Umin and Umax denoting the minimum and
maximum utilization possible, respectively, and an average of
Um = Umax+Umin

2 .
Since the demand and the utilization are non-negative RVs,

then according to Melvin [14], the first moment of their
division can be expressed as:

E
[
U

D

]
= E [U ]E

[
1

D

]
, (9)

and hence, by substituting in Eq. (5), the mean task execution
rate can be given by:

α =
C Um log

(
4Dm

2Dm−Dr
− 1

)
Dr

(10)

One can see that the mean task execution rate considering
uniform distributions depends mainly on the average compu-
tational capacity utilization, the average, and the range of the
task demand. Lastly, considering ξ > 1, the reliability of an
EED given a time deadline t can be expressed as:

R(t) = 1−

1 +
t C Um log

(
4Dm

2Dm−Dr
− 1

)
ξ Dr

−ξ

(11)

III. MODELING OF EXTREME EDGE SYSTEMS
RELIABILITY

In this section, we study the reliability of EEC systems. We
consider a simple EEC system that consists of one orchestrator
and n EEDs. We assume the case of distributed tasks only,
where the orchestrator is responsible for distributing the task
across the EEDs as sub-tasks, while the EEDs are responsible
for performing the computation required for the sub-tasks.
We define the reliability of an EEC system as the probability
that the whole system accomplishes the distributed task on
time. There are mainly two types of distributed tasks: 1) Tasks
whose results depend only on a single completion, such that
if only one EED finished its sub-task, the task result will
be carried out, and 2) Tasks whose results depend on the
completion of all the distributed sub-tasks. Accordingly, we
categorize EEC systems into two types, namely, series systems
and parallel systems.

A. Series Systems

In series systems, the total system reliability for distributing
a task is defined for tasks whose result depends on the
completion of all sub-tasks. Furthermore, such tasks also have
two different types:

1) Series non-Sequential (SNS) tasks, where each sub-
task does not require any results from other sub-tasks.
However, the system will wait until all the EEDs to
finish their sub-tasks. In fact, it will wait for the EED
that takes the longest time in order to carry out the
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result of the task. Examples of such tasks can be found
in blockchain, when there exist n validators, and all of
them are required to validate a transaction. In such case,
the slowest node dictates the total validation time.

2) Series Sequential (SS) tasks, where the result of each
sub-task depends on the results of other sub-tasks. An
example of such tasks is Distributed ML Inference [15],
where a trained ML model is divided into multiple
segments, and each segment is sent to an EED to per-
form the required segment computation. Each segment
in the model requires the output from the previous
segments. As a result, the ML model output can only
be available if and only all the EEDs performed the
segments computation successfully in order.

Let T1, T2, ..., Tn be independent RVs which represent the
time taken by the EEDs to finish their sub-tasks. Let Tmax =
max(T1, T2, ..., Tn), which represents the time of the EED that
takes the maximum time until it finishes its task. Therein, the
probability that the EEC SNS system finishes the task by a
time deadline of t is simply as follows:

Rs(t) := P (Tmax ≤ t) = P (max(T1, T2, ..., Tn) ≤ t)

=

n∏
i=1

Fi(t)
(12)

where Fi is the CDF function from Eq (2).
Afterwards, let T1, T2, ..., Tn be the ordered time taken by n

EEDs to finish their ordered sub-tasks. Therein, the probability
of the EEC SS system finishing the task on time t is as follows:

Rs(t) := P
(
(T1, T2, ..., Tn) ≤ t

)
=

n∏
i=1

Fi

max

t−
i−1∑
j=1

Tj , 0

 (13)

where the term
∑i−1

j=1 Tj represents the time taken by previous
EEDs to finish their sub-tasks. The max function indicates
that if the time taken by the previous EEDs exceeds the time
deadline t, then the system fails to finish the task, and hence,
has a reliability of 0.

B. Parallel Systems

In parallel systems, the total system reliability for distribut-
ing a task is defined for tasks whose result depends only on a
single sub-task completion out of all sub-tasks. In other words,
the task result can be carried out as soon as the first EED
finishes its sub-task. An example of such tasks is Federated
Learning, where a global ML model needs to be trained on
the local datasets of the EEDs. The global model is distributed
across the EEDs as a sub-task, and each EEDs perform the
computation required for the ML model training individually,
and lastly, the orchestrator consolidates all the trained models
into one global model. In fact, a trained global model can
be available even if only one EEDs trained the model, even
though the model quality might be poor.

Let T1, T2, ..., Tn be the time taken by n EEDs to finish their
individual sub-tasks. Let Tmin = min(T1, T2, ..., Tn), which

represents the time of the EED that takes the minimum time to
finish its sub-task, then the system reliability is the probability
of that EED finishing on time t and is given by:

P (Tmin ≤ t) = P (min(T1, T2, ..., Tn) ≤ t)

= 1−
n∏

i=1

(1− Fi(t))
(14)

IV. SIMULATION RESULTS

In this section, we first demonstrate the reliability behaviour
of the EEDs considering the GDP distribution. In Figure 2,
we show how the reliability changes with respect to average
computational resource utilization, average task demand, and
the range for the task demand, considering different time
deadlines and values for the constant ξ. Figure 2 (a) depicts the
reliability against the average resource utilization considering
C = 1 GHz, Dr = 2× 109 cycles and Dm = 5× 109cycles.
It can be observed that the reliability increases as we increase
the utilization of the computational resources. Intuitively, more
resources allow higher task execution rate, and hence, higher
reliability. Moreover, we can notice that as we increase the
parameter ξ, the EED can achieve better reliability behaviour.
Similarly, as we increase the time deadline of the task, the
EED can have more time to execute the task and achieve
better reliability. In Figure 2 (b), the reliability versus the
average task demand is shown considering Um = 0.7. It
can be seen that as the task demand increases, the reliability
decreases. In fact, the increase of the task demands while
fixing the resources’ utilization imposes more load on the
EED and lowers the task execution rate, and therefore, the
EED becomes less reliable given the same time deadline. In
a similar behavior, as the constant ξ and the time deadline t
increase, the EED achieves better reliability behaviour overall.
Lastly, the reliability versus the demand range is shown in
Figure 2 (c). Interestingly, as the task demand range increases,
the reliability slightly increases. As a matter of fact, with a
wider range of the computational demand, fewer demands
become more likely to occur, allowing the EEDs to have a
better task execution rate.

Afterward, we show the EEC systems reliability for the par-
allel, SNS, and SS systems, while varying the time deadline,
the number of devices within the system, and the abstract task
execution rate of the EEDs in Figure 3 with the assumption of
ξ−1 = 0. Figure 3 (a) depicts the system reliability against the
time deadline of the task. It can be noticed that the parallel
system has the best reliability behaviour and converges to its
maximum faster than the other systems. In addition, one can
notice that the SS systems have reliability of 0 for shorter time
deadlines. Indeed, with short time deadlines, the time taken by
EEDs to execute their sub-tasks exceeds the deadline, and as
a consequence, that task has not been accomplished on time.
Subsequently, the system reliability as we increase the number
of EEDs in the system is depicted in Figure 3 (b). We can
see that with more EEDs in the system, the reliability of the
parallel system increases, whereas the series system decreases.
As a matter of fact, increasing the number of EEDs in parallel
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Figure 2. The reliability behaviour with different time deadlines and ξ’s with
respect to (a) average resource utilization (b) average task demand (c) demand
range.

systems increase the chances of that task being executed, since
only one EED is needed to carry out the task result. On the
contrary, increasing the number of EEDs in a series system
lowers the chances of that task being executed, since the
result is dependent on all the EEDs’ sub-task execution. In
other words, more dependencies with uncertainty decrease the
reliability of the overall system. In addition, the SS systems
reliability goes to 0 after a certain number of EEDs in the
system. Basically, with more EEDs in the SS system, the

total time taken by the EEDs to finish the task increases, and
once the total time exceeds the deadline, the task cannot be
finished on time. Last but not least, the system reliability as we
increase the EEDs average task execution rate in the system is
depicted shown Figure 3 (c). Intuitively, if the task execution
rate increases the individual EEDs reliability, then the total
system reliability also increases. Also, for low task execution
rates, the SS systems have also 0 reliability, because with low
execution rates the EEDs also cannot finish the task on time.

Figure 3. The reliability of EEC systems while varying (a) time deadline (b)
number of devices (c) task execution rate
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V. DISCUSSIONS AND FUTURE DIRECTIONS

The reliability of EEDs can be used as a metric for various
applications such as client selection or scheduling, where the
aim can be to select or schedule the most reliable devices
to execute the task. Moreover, it can be used in designing
incentive mechanisms, such that EEDs that are more reliable
can be paid more or cost more. In addition, the system trade-
offs in terms of reliability and other metrics such as cost can
be further studied. For instance, in parallel systems, recruiting
more EEDs increases the system reliability, however, it costs
more to recruit more EEDs. The following question arises
here: What is the optimal number of devices to recruit such
that we can maximize the system reliability and minimize the
recruitment costs? Costs can be an abstraction of other metrics
such as energy consumption, latency, monetary pricing, etc.

Throughout this work, we considered the GDP distribution
for the task times at the EEDs. Even though there exist
other plausible distributions such as Half-Caushy or Half-Log
Normal, the GDP distribution is the strongest candidate as it
is a generalization of multiple distributions, in addition to its
ability to be tweaked such that it can fit any exponentially
looking data. Moreover, we assumed uniform distributions for
the resources’ utilization and the task computational demand
for ease of analysis. In fact, for the resources’ utilization, such
assumption is valid in EEC systems, where EEDs can estimate
the range of how much resources they can utilize for that
task, guaranteeing a minimum and maximum value for the
utilization, where the utilization could be anywhere within the
estimated range.

As for future directions, analyzing the EEDs reliability
for streaming services is of great importance. Reliability for
streaming services refers to the ability of the EED of offering
an uninterruptible and seamless service to the end users
continuously. The reliability should be analyzed at each point
in time, and is not associated only with a time deadline. In
addition, other realistic distributions for the task or service
computational demands can be also studied to provide a more
realistic reliability model. Furthermore, the other cases for the
task execution rate (e.g., a function of time or a stochastic
process) should also be analyzed to accommodate different
types of tasks and services in the model. Finally, since the aim
is to provide a general and realistic reliability model for all
EEC systems, a further study that takes into account multiple
orchestrators with multiple tasks or services and the queuing
analysis of the system is of utmost importance.

VI. CONCLUSION

In this work, we studied the EEDs randomness from the
computational perspective, and how reliable is an EED in
terms of executing the tasks on time. Specifically, we modeled
the reliability of the EEDs while taking into account the prob-
abilistic nature of EED’s computational resources, along with
the tasks’ computational demand. Furthermore, we studied the
EEC systems’ reliability while considering different types of
tasks in EEC systems. Lastly, we carried out simulation results

to show the EEDs reliability behavior in different scenarios,
in addition to the EEC systems’ reliability.
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