
Vehicular Communications 43 (2023) 100654
Contents lists available at ScienceDirect

Vehicular Communications

journal homepage: www.elsevier.com/locate/vehcom

QoS-SLA-aware adaptive genetic algorithm for multi-request offloading

in integrated edge-cloud computing in Internet of vehicles

Huned Materwala a,b, Leila Ismail a,b,c,∗, Hossam S. Hassanein d

a Intelligent Distributed Computing and Systems (INDUCE) Research Laboratory, Department of Computer Science and Software Engineering, College of
Information Technology, United Arab Emirates University, United Arab Emirates
b National Water and Energy Center, United Arab Emirates University, United Arab Emirates
c Cloud Computing and Distributed Systems (CLOUDS) Lab, School of Computing and Information Systems, The University of Melbourne, Australia
d School of Computing, Queen’s University, Canada

a r t i c l e i n f o a b s t r a c t

Article history:
Received 11 November 2022
Received in revised form 3 July 2023
Accepted 26 July 2023
Available online 1 August 2023

Keywords:
Artificial intelligence (AI)
Computation offloading
Genetic algorithm (GA)
Intelligent transportation system
Internet of things (IoT)-edge-cloud
computing
Internet of vehicles (IoV)

The Internet of Vehicles over vehicular ad hoc network is an emerging technology enabling the
development of smart applications focused on improving traffic safety, traffic efficiency, and the
overall driving experience. These applications have stringent requirements detailed in the Service Level
Agreement. Since vehicles have limited computational and storage capabilities, applications’ requests
are offloaded onto an integrated edge-cloud computing system. Existing offloading solutions focus on
optimizing the application’s Quality of Service (QoS) in terms of execution time while respecting a
single SLA constraint. They do not consider the impact of overlapped multi-request processing nor the
vehicle’s varying speed. This paper proposes a novel Artificial Intelligence QoS-SLA-aware adaptive genetic
algorithm (QoS-SLA-AGA) to optimize the application’s execution time for multi-request offloading in a
heterogeneous edge-cloud computing system, which considers the impact of processing multi-requests
overlapping and dynamic vehicle speed. The proposed genetic algorithm integrates an adaptive penalty
function to assimilate the SLA constraints regarding latency, processing time, deadline, CPU, and memory
requirements. Numerical experiments and analysis compare our QoS-SLA-AGA to baseline genetic-based,
meta-heuristic Particle Swarm Optimization (PSO), random offloading, All Edge Computing (AEC), and All
Cloud Computing (ACC) approaches. Results show QoS-SLA-AGA executes the requests 1.04, 1.23, 1.05,
and 9.41 times faster on average compared to the PSO, random offloading, ACC, and AEC approaches
respectively. Moreover, the proposed algorithm violates 49.58%, 60.36%, 16.26%, and 80.42% fewer SLAs
compared to PSO, random, ACC, and AEC respectively. In contrast, the baseline genetic-based approach
increases the requests’ performance by 1.14 times, with 24.03% more SLA violations.

© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons .org /licenses /by /4 .0/).

1. Introduction

Internet of Vehicles (IoV) over Vehicular Ad-hoc Networks (VANETS) is a self-organizing network of vehicles equipped to exchange
data between mobile vehicles and infrastructure [1]. The vehicles act as smart nodes having sensing, computing, storage, and network-
ing capabilities [2], [3]. Data exchange is realized using vehicle-to-vehicle (V2V), vehicle-to-roadside (V2R), vehicle-to-infrastructure (V2I),
vehicle-to-cloud (V2C), and vehicle-to-pedestrian (V2P) communication. IoV provides mechanisms to develop applications for safe driving
and efficient traffic management [4]; such applications include accident prevention, infotainment, real-time navigation, image processing,
and pattern recognition for autonomous driving. However, the vehicle’s limited computation and storage capabilities hinder the deploy-
ment of these compute-intensive and time-critical applications.

Vehicular cloud computing (VCC) [5] has been developed to enable compute-intensive vehicles’ requests to be processed on remote
cloud servers [6] to comply with the processing and resource requirements of Service Level Agreements (SLAs). However, latency require-

* Corresponding author at: Intelligent Distributed Computing and Systems (INDUCE) Research Laboratory, Department of Computer Science and Software Engineering,
College of Information Technology, United Arab Emirates University, United Arab Emirates.

E-mail address: leila@uaeu.ac.ae (L. Ismail).
https://doi.org/10.1016/j.vehcom.2023.100654
2214-2096/© 2023 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons .org /licenses /by /4 .0/).

https://doi.org/10.1016/j.vehcom.2023.100654
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/vehcom
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vehcom.2023.100654&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:leila@uaeu.ac.ae
https://doi.org/10.1016/j.vehcom.2023.100654
http://creativecommons.org/licenses/by/4.0/

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
ments of communication-bound applications may be violated due to long-distance data transmission between vehicles and remote cloud
servers.

Consequently, Vehicular Edge Computing (VEC) [7] pushed cloud services to the edge of the radio access network in closer proximity
to the mobile vehicles, thus reducing communication delay. However, the VEC servers (deployed within Roadside Units (RSUs)) may
violate the stringent deadline constraints of compute-intensive applications due to their limited computing capabilities. Consequently, it
becomes necessary to develop a mechanism to offload vehicular requests onto an integrated edge-cloud computing system to comply
with SLA requirements of latency for communication-bound applications (e.g., traffic alert and accident prevention) and processing for
computation-bound applications (e.g., computer vision and multimedia), while optimizing applications’ Quality of Service (QoS) [8].

Several works proposed computation offloading algorithms for an integrated edge-cloud computing system in the Internet of Things
(IoT)/IoV networks. They focus on optimizing the applications’ QoS without considering SLA requirements [9–15], or respecting SLA without
QoS optimization [16–21]. Some works proposed QoS-SLA-aware offloading solutions [22–29]. To the best of our knowledge, no work has
considered the impact of multi-requests overlapping in heterogeneous edge-cloud computing system servers. Thus, we propose a novel
Artificial Intelligence QoS-SLA-aware adaptive genetic algorithm (QoS-SLA-AGA) for offloading vehicular requests. It aims to optimize the
QoS by minimizing the total execution time of the vehicular requests while respecting SLAs in terms of latency (the total communication
time of the request), processing time, deadline (the summation of communication and computation times), CPU, and memory requirements
via an adaptive penalty function. The algorithm learns from selected search space solutions to find an improved one. In addition, the
proposed offloading algorithm considers the impact of executing multiple requests in edge/cloud resources on application performance in
IoV. The specific contributions of this work in the field of computational offloading in the IoV are the following:

• We formulate an optimization algorithm for multi-request offloading in a heterogeneous integrated edge-cloud computing system for
IoV that minimizes the total execution time of vehicular requests while respecting the requests’ SLA requirements.

• We propose a novel QoS-SLA-AGA to solve the formulated constrained optimization problem via an adaptive penalty function.
• We provide complexity and convergence analysis of the proposed algorithm.
• We conduct experiments to obtain the optimal values of GA’s parameters driving the algorithm towards convergence.
• We compare the performance of the proposed algorithm with baseline genetic-based, meta-heuristic Particle Swarm Optimization

(PSO), random offloading, all edge computing, and all cloud computing approaches in terms of total execution time (seconds) and SLA
violations (SLAVs) with varying SLA requirements or the number of requests.

The remainder of this article is organized as follows. In Section 2, we discuss related work. Section 3 describes the system model of an
integrated edge-cloud computing system for the IoV. We formulate the offloading optimization problem in Section 4. Section 5 explains
our proposed QoS-SLA-AGA algorithm for offloading. Section 6 presents our numerical experiments, comparative analysis, and performance
results. Finally, we conclude and suggest future directions in Section 7.

2. Related work

We divide the current literature on offloading for an IoT-edge-cloud integrated computing system into three categories:

1) QoS-aware offloading that optimizes applications’ QoS without considering SLA requirements [9–15],
2) SLA-aware offloading that respects applications’ SLA constraints without enhancing the QoS [16–21], and
3) QoS-SLA-aware offloading that optimizes applications’ QoS while respecting SLA constraints [22–29].

QoS-aware offloading solutions, Pham et al. [9] proposed a game-theoretic approach to execute mobile device requests locally on the
device or an edge server. The algorithm optimizes the weighted sum of the request’s execution time and the device’s energy consumption.
However, the reply’s communication time and the device’s mobility are not considered. Xu et al. [10] proposed a decomposition-based
evolutionary algorithm to offload vehicular requests on edge nodes such that the total execution time of the request is minimized, and
the resource utilization of the edge nodes is maximized. However, the mobility of the vehicle outside the communication range of the
edge executing the request is not considered. Similarly, the deep learning [11], [12], the Non-dominated Sorting GA (NSGA) III [13], and
the Particle Swarm Optimization [14], [15] offloading algorithms do not consider the mobility of the vehicles/devices when optimizing the
requests’ execution times. In addition, algorithms in [9–14] do not consider edge/cloud servers’ heterogeneity.

SLA-aware offloading solutions, the optimization algorithms in [16–20] schedule mobile devices’ requests to either edge, edge/cloud, or
mobile/edge to optimize requests’ acceptance, edge/cloud profit, mobile devices and edges servers energy, requests acceptance along with
edge operational cost, and network usage respectively. The algorithms used in these works are based on Lagrangian relaxation, simulated
annealing, deep reinforcement learning, or heuristic. Wu et al. [21] proposed an offloading algorithm either locally on the IoT device or
edge/cloud such that the total energy consumption of the IoT device is the minimum. These works consider a request’s total execution
time as a constraint. However, the algorithms [16–21] do not consider the devices’ mobility and heterogeneity among the edge/cloud
servers. Moreover, the communication time to deliver the request’s reply is not considered in [18], [21].

QoS-SLA-aware offloading solutions, the algorithms in [22], [23] offload IoT devices’ requests to edge/cloud using dynamic switching
and fuzzy logic respectively. The requests’ execution times are optimized in [22] and the execution time and edges’ resource utilization
in [23]. These algorithms consider the requests’ execution times as constraints. Algorithms in [24–27] schedule vehicles’ requests either
on the vehicle, vehicle/edge, or vehicle/edge/cloud. The total execution time of the requests and the computational costs are optimized in
[24], [25] using game theory, whereas the total execution time and load balancing on the edges are optimized using mixed-integer non-
linear programming in [26]. Zhu et al. [27] minimize the weighted sum of maximum execution time and total quality loss using linear
programming and particle swarm optimization. A request’s execution time is considered a constraint in [24–26], whereas the execution
time and the vehicle’s available CPU and memory are considered constraints in [27]. Peng et al. [28] proposed NSGA II and strength Pareto
evolutionary algorithm to schedule mobile device’s requests either locally or edge/cloud such that summation of the total execution time
of the requests and the device’s energy consumption is minimized while respecting the constraint on the request’s execution time. Liao
2

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
Table 1
Summary of past works on QoS, SLA, and QoS-SLA-aware computation offloading in an integrated IoT-edge-cloud computing system.

W
or

k Algorithm Considered system
components for
requests processing

Optimization objective function Considered requests’
SLA requirements

Ed
ge

se
rv

er
s’

he
te

ro
ge

ne
it

y
co

ns
id

er
at

io
n

Cl
ou

d
se

rv
er

s’
he

te
ro

ge
ne

it
y

co
ns

id
er

at
io

n

Re
qu

es
t-

re
pl

y
de

liv
er

y
ti

m
e

co
ns

id
er

at
io

n

M
ul

ti
-r

eq
ue

st
co

ns
id

er
at

io
n

Io
T/

V
eh

ic
le

m
ob

ili
ty

co
ns

id
er

at
io

n

D
yn

am
ic

ve
hi

cl
e

sp
ee

d
co

ns
id

er
at

io
n

Io
T/

V
eh

ic
le

Ed
ge

Cl
ou

d

La
te

nc
y

Pr
oc

es
si

ng
 ti

m
e

D
ea

dl
in

e

CP
U
 re

qu
ir

em
en

t

M
em

or
y

re
qu

ir
em

en
t

QoS-Aware

[9] Game theory � � ✗ Minimize the weighted sum of energy
consumption and execution time

✗ ✗ ✗ ✗ ✗ ✗ NA ✗ ✗ ✗ NA

[10] Decomposition-
based evolutionary
algorithm

✗ � ✗ Minimize total execution time and
maximize resource utilization

✗ ✗ ✗ ✗ ✗ ✗ NA � ✗ ✗ NA

[11] Deep learning � � � Minimize the weighted sum of total
execution time and vehicles’ energy
consumption

✗ ✗ ✗ ✗ ✗ ✗ ✗ � ✗ ✗ NA

[12] Q function of deep
neural network

� � ✗ Maximize resource utilization while
minimizing end-to-end delay

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ NA

[13] NSGA III � � � Minimize total execution time and mobile
devices’ energy consumption

✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗ NA

[14] Genetic algorithm
and PSO

✗ � � Minimize task response time ✗ ✗ ✗ ✗ ✗ NR NR � ✗ ✗ NA

[15] PSO ✗ � � Minimize the weighted sum of latency
and mobile devices’ energy consumption

✗ ✗ ✗ ✗ ✗ ✗ � ✗ ✗ ✗ NA

SLA-Aware

[16] Lagrangian
relaxation

✗ � ✗ Maximize the weighted sum of admitted
requests for processing

✗ ✗ � ✗ ✗ NR NA � ✗ � ✗

[17] Simulated
annealing

✗ � � Maximize cost profit of edge/cloud
systems

✗ ✗ � ✗ ✗ ✗ ✗ ✗ ✗ ✗ NA

[18] Deep reinforcement
learning

� � ✗ Minimize energy consumption of mobile
devices and edge servers

✗ ✗ � ✗ ✗ ✗ NA ✗ ✗ ✗ NA

[19] NR ✗ � ✗ Maximize requests’ admissions and
minimize admission cost

✗ ✗ � ✗ ✗ ✗ NA � ✗ ✗ NA

[20] Heuristic ✗ � � Minimize network resource usage and
maximize requests’ admissions

✗ ✗ � ✗ ✗ ✗ ✗ � ✗ ✗ NA

[21] Lyapunov
optimization

� � � Minimize energy consumption of IoT
devices

✗ ✗ � ✗ ✗ ✗ ✗ ✗ ✗ ✗ NA

QoS-SLA-Aware

[22] Dynamic switching ✗ � � Minimize total execution time ✗ ✗ � ✗ ✗ ✗** ✗ ✗ ✗ ✗ NA
[23] Fuzzy logic ✗ � � Minimize total execution time and

maximize resource utilization
✗ ✗ � ✗ ✗ � ✗ � ✗ ✗ NA

[24] Game theory � � ✗ Minimize total execution time and
offloading cost

✗ ✗ � ✗ ✗ ✗ NA � ✗ ✗ NA

[25] Game theory and
Lagrange multiplier

� � � Minimize the weighted sum of execution
time and cost of computational resource

✗ ✗ � ✗ ✗ ✗ ✗ ✗* ✗ � �

[26] Mixed integer
non-linear
programming

� � ✗ Minimize system utility in terms of
execution time and load balancing

✗ ✗ � ✗ ✗ � NA ✗ ✗ � ✗

[27] Linear
programming and
PSO

� ✗ ✗ Minimize the weighted sum of maximum
execution time and total loss quality

✗ ✗ � � ✗ NA NA ✗ ✗ ✗ NA

[28] NSGA II and SPEA � � � Minimize total execution time and mobile
devices’ energy consumption

✗ ✗ � ✗ ✗ NR NR ✗ ✗ ✗ NA

[29] Upper confidence
bound algorithm

� � ✗ Minimize deadline while maximizing
throughput

� ✗ ✗ ✗ ✗ � ✗ � ✗ ✗ NA

This paper Adaptive genetic
algorithm

✗ � � Minimize total execution time � � � � � � � � � � �

�– Considered; ✗ – Not considered; NA – Not Applicable; NR – Not Reported; NSGA – Non-dominated Sorting Genetic Algorithm; PSO – Particle Swarm Optimization; SPEA
– Strength Pareto Evolutionary Algorithm.

* Considered for cloud processing and not for edge processing.
** Heterogeneous in terms of disk size and not processing capabilities.

et al. [29] proposed an intent-aware upper confidence bound algorithm to maximize throughput and minimize deadline while respecting
long-term latency constraints. However, the algorithms in [23], [24], [27–29] do not consider the mobility of the IoT devices/vehicles,
and [22], [25], [27–29] do not consider communication time to deliver the reply of the request. The heterogeneity in the edge and cloud
servers is not considered by [24], [25].
3

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
Fig. 1. Integrated edge-cloud computing system model for the Internet of Vehicles.

Table 1 presents the summary of past works on computation offloading in an integrated IoT-edge-cloud computing system. For each
work, it highlights the used algorithms, considered system components for processing the requests, the objective function used for opti-
mization, and the SLA requirements. In addition, the table shows whether those works consider the heterogeneity among edge and cloud
servers, communication time to transmit the reply to the IoT device/vehicle, requests overlapping, mobility of IoT devices/vehicles, and
dynamic speed of the device/vehicle. As shown in the table, among works on QoS-SLA-aware offloading [22–29], only [25] considers the
dynamic speed of the vehicle and [26] considers memory requirements as SLA. To the best of our knowledge, no work considers the im-
pact of multi-requests overlapping on the offloading decision and the dynamic speed of vehicles. In this paper, we propose a QoS-SLA-AGA
for offloading in an integrated edge-cloud computing system for IoV that aims to improve the QoS by minimizing the total execution time
of the applications’ requests while respecting the SLAs in terms of latency, processing time, deadline, CPU, and memory requirements.
Furthermore, our algorithm considers the impact of executing multiple requests in edge/cloud resources on application performance in
IoV.

3. System model

Fig. 1 shows our integrated edge-cloud computing system model for vehicular networks that consists of three layers: 1) vehicles, 2)
VEC, and 3) cloud computing. The first layer consists of H vehicles moving with dynamic speed on a bi-directional road. Each vehicle
vh (h ∈H) travels from a source to the destination location and has an application request ri (i ∈ I) that should be executed. A request
is represented as a tuple ri �

(
ψri , σri ,ϕri , Lmax

ri
, P max

ri
, Dmax

ri
, S vh (t) ,

(
xsrc

vh,ri
, ysrc

vh,ri

)
,
(

xdes
vh,ri

, ydes
vh,ri

))
. Requests in our system model are

atomic and cannot be further divided into sub-requests. Consequently, each request can be executed on at most one edge/cloud server.
The requests vary in terms of computational requirement (i.e., length, CPU, and memory utilization values) and communication demand
(i.e., data size).

The second layer (i.e., VEC) consists of J RSUs placed alongside the road at equidistant. Each RSU j (j ∈J) has a coverage range of
DRSU and is equipped with an edge server e j through a wired connection. The edge servers are heterogeneous in terms of processing and
storage capabilities. A vehicle vh can communicate with an edge server e j only if it is under the communication range of RSU j . We define
a binary variable αe j

vh
(t) ∈ {0,1}; such that αe j

vh
(t) = 1 means that vh is in the range of RSU j and can communicate with e j and αe j

vh
(t) = 0

otherwise. The third layer (i.e., cloud computing) consists of K heterogeneous cloud servers. The processing and storage capabilities of a
cloud server ck (k ∈K) is higher compared to that of an edge server e j, ∀ j ∈J , i.e., μe j � μck and θe j � θck .

Each edge server in our model receives a set of requests from the communicating vehicles. The server makes the offloading decision
for each request ri , i.e., to execute the request locally on the edge e j or to offload it to a cloud server ck for execution such that the
total execution time of all the requests is at the minimum while maintaining each request’s latency, processing time, deadline, CPU, and
memory SLA constraints. A binary variable βsz

ri
ε {0,1} , sz ∈ {

e j, ck
}

is defined such that, βsz
ri

= 0 if ri is executed locally on the edge
server e j and βsz

ri
= 1 otherwise. For each offloaded request, the edge server sends the request and information about the cloud server ck

to the cloud manager. The cloud manager then schedules the request to ck . Since both communication and computation are critical for
making the offloading decision, we next introduce the communication and computation models in detail. Table 2 lists the notations used
in this paper and their definitions.
4

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
Table 2
Notations and definitions.

Notation Definition

h, H, H, vh vehicle index, number of vehicles, set of vehicles, hth vehicle
i, I, I, ri , repi request index, number of requests, set of requests, ith request, the reply of ri

j, J ,J , e j , RSU j edge server/RSU index, number of edge servers/RSUs, set of edge servers/RSUs, jth edge server, jth RSU
k, K ,K, ck cloud server index, number of cloud servers, set of cloud servers, kth cloud server
z,Z, sz server (edge/cloud) index (z = { j,k}), set of edge and cloud servers (Z = {J } ∪ {K}), zth server

(
sz = {

e j , ck
})

ψri length of ri in Million Instructions (MI)
σri size of ri in kilobytes (KB)
ϕri CPU utilization of ri

Lmax
ri

maximum tolerable latency for ri

P max
ri

maximum tolerable processing time for ri

Dmax
ri

maximum tolerable deadline for ri

S vh (t) speed of vh at time t(
xsrc

vh ,ri
, ysrc

vh ,ri

)
source location (longitude, latitude) of vh while submitting ri(

xdes
vh ,ri

, ydes
vh ,ri

)
destination location (longitude, latitude) of vh that submitted ri

DRSU the coverage area of each RSU
μsZ processing speed of sz in Million Instructions per Second (MIPS)
θsz available memory of sz in KB
α

e j
vh

(t) Whether or not vh is in the communication range of RSU j that is equipped with e j

β
sz
ri

whether ri is executed locally on e j or offloaded to ck

T com
ri (sz)

total communication time of ri when executed on sz

T com
ri (x,y) communication time to transfer ri from x to y, where x ∈ {

vh, e j
}

and y ∈ {
e j , ck

}
T com

repi (x,y)
communication time to transfer repi from x to y, where x ∈ {

e j , ck, e j+y
}

and y ∈ {
vh, ck, e j+y

}
T proc

ri (sz)
processing time of ri when executed on sz

T I/O
ri (sz)

I/O time of ri when executed on sz

Tri (sz) total execution time of ri when executed on sz

ωx,y bandwidth between x and y in gigabits per second (Gbps), where x, y ∈ {
vh, e j , ck, e j+y

}
dvh ,e j distance traveled by vh in the communication range of e j before submitting ri

d
ri−repi
vh

(t) total distance traveled by vh after submitting ri and before receiving repi

d̃
ri−repi
vh

(t) distance traveled by vh outside the range of e j , after submitting ri and before receiving repi(
xleft

e j
, yleft

e j

)
a point on the coverage boundary of RSU j such that xleft

e j
> xsrc

vh ,ri
and yleft

e j
= ysrc

vh ,ri(
xright

e j
, yright

e j

)
a point on the coverage boundary of RSU j such that xright

e j
< xsrc

vh ,ri
and yright

e j
= ysrc

vh ,ri

τm
ri (sz)

processing time of ri when overlapped with other requests on sz

τ a
ri (sz)

processing time of ri after other overlapping requests on sz has finished execution
nri (sz) number of requests being executed along with ri on sz

nri (sz) number of requests that were overlapping ri on sz and has completed execution before ri

χri (sz) number of times request data for ri is swapped between disk and memory on sz

ξsz time required to transfer data between disk and memory in sz

ρri (sz) the ratio of memory required by ri and the available memory on sz

q, Q offloading solution index, a set of offloading solutions in a generation of genetic algorithm

F̈q,
˜̈Fq non-penalized fitness score of q, normalized non-penalized fitness score of q

P lat
q latency violation of q

P proc
q processing time violation of q

P deadline
q deadline violation of q

P cpu
q CPU violation of q

P mem
q memory violation of q

P̃q normalized SLA violations of q
F q, Fq adaptive penalized fitness score of q, fitness score of q
n f number of feasible offloading solutions in a generation
γ the ratio of feasible to the total offloading solutions in a generation
Psize the population size, i.e., the number of offloading solutions
Cumm (q) cumulative fitness probability of q
Prob(q) fitness probability of q
λc , λm crossover rate, mutation rate
nmut number of requests for which the server allocation is mutated
G number of generations

3.1. Communication model

The communication time in our model consists of the time required to transmit a request data from vh to a scheduled server (based
on an offloading decision) and the time required to transmit the reply back to vh . Depending on the offloading decision (i.e., whether the
request is executed on an edge or cloud server) and speed of vh , there exist three scenarios as shown in Fig. 2:

• Scenario (a): vh is communicating with RSU j and ri is submitted to e j for execution. After ri is executed, vh is still in the communi-
cation range of RSU j (Fig. 2 (a)). Consequently, in this scenario, the communication time involves: (1) the time to transfer the request
from vh to e j and (2) the time to transfer the reply from e j to vh .

• Scenario (b): vh is communicating with RSU j and ri is submitted to e j for execution. After ri is executed, vh is in the range of RSU j+y
(Fig. 2 (b)). Consequently, in this scenario, the communication time includes: (1) the time to transfer the request from vh to e j , (2)
the time to transfer the reply from e j to cloud server ck , (3) the time to transfer the reply from ck to e j+y , and (4) the time to
5

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
Fig. 2. Calculation of communication time based on offloading decision and vehicle speed. (a) Vehicle request is executed on an edge server and the vehicle is in the edge
server’s range when a reply on the request is received, (b) vehicle request is executed on an edge server and the vehicle moves out of the edge server’s range before receiving
a reply on the request, and (c) vehicle request is executed on a cloud server.

transfer the reply from e j+y to vh [30]. The data transmission between e j and e j+y is achieved via the cloud instead of multi-hop
RSU transmission in our system model. This is because multi-hop RSU transmission is performed at a low rate which increases the
response time of the request [31].

• Scenario (c): vh is communicating with RSU j and ri is offloaded to the cloud and executed on a cloud server ck (Fig. 2). After ri is
executed, vh is in the range of RSU j+y . Consequently, in this scenario, the communication time includes: (1) the time to transfer the
request from vh to e j , (2) the time to transfer the requests from e j to ck , (3) the time to transfer the reply from ck to e j+y , and (4)
the time to transfer the reply from e j+y to vh . In (Fig. 2 (c)), vh moves out of RSU j ’s communication range before receiving a reply.
In case the vehicle is in the range of RSU j after ri is executed, the reply will be transmitted from ck to e j .

Based on these scenarios, the total communication time for a request ri when executed on a server sz | sz ∈ {
e j, ck

}
can be computed

as stated in (1).

T com
ri(sz)

=

⎧⎪⎪⎨
⎪⎪⎩

T com
ri
(

vh,e j
) + T com

repi
(
e j ,vh

); (
sz = e j

)
and

(
α

e j
vh

= 1
)

while receiving the reply

T com
ri
(

vh,e j
) + T com

repi
(
,e j ,ck

) + T com
repi

(
ck,e j+y

) + T com
repi

(
e j+y ,vh

); (
sz = e j

)
and

(
α

e j
vh

= 0
)

while receiving the reply

T com
ri
(

vh,e j
) + T com

ri
(
,e j ,ck

) + T com
repi

(
ck,e j+y

) + T com
repi

(
e j+y ,vh

); sz = ck

(1)
6

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
The communication times represented in (1) can be computed using (2)–(7).

T com
ri
(

vh,e j
) = σri

ωvh,e j

(2)

T com
repi

(
e j ,vh

) = σrepi

ωe j ,vh

(3)

T com
repi

(
e j ,ck

) = σrepi

ωe j ,ck

(4)

T com
repi

(
ck,e j+y

) = σrepi

ωck,e j+y

(5)

T com
repi

(
e j+y ,vh

) = σrepi

ωe j+y ,vh

(6)

T com
ri
(
e j ,ck

) = σri

ωe j ,ck

(7)

In scenarios (b) and (c), the mobile vehicle will move out of RSU j ’s communication range and will be in the communication range
of RSU j+y while receiving the request’s reply. Consequently, to deliver the reply to the vehicle and to compute the communication time
in scenarios (b) and (c), the cloud manager should determine RSU j+y , i.e., yth RSU after RSU j , which is located on the path between
vh ’s source and destination. The path between the source and destination can be computed by the cloud offline using an extended A*
algorithm [32]. The selection of the extended A* algorithm is based on its performance compared to the shortest path algorithm. The
algorithm determines an optimal path between the source and destination in a way that reduces the vehicle’s fuel consumption. The
algorithm begins by dividing driving mode, through a signalized intersection, into four driving conditions. This is based on the current
state of traffic lights. Then, it calculates the probability for each driving condition. These conditions are described below.

1. Driving through the intersection at a constant speed: The state of traffic light approached by the vehicle is green and will remain the
same while the vehicle is passing through the intersection while maintaining its current speed.

2. Driving through the intersection by accelerating: The state of traffic light approached by the vehicle is green and will change to red
in a short time. Consequently, the vehicle should accelerate to the maximum speed limit to pass through the intersection before the
end of the green phase. After crossing the intersection, the vehicle decelerates from the maximum speed to the average road speed.

3. Driving through the intersection by decelerating: The state of traffic light approached by the vehicle is red and will change to green
in a short time. Consequently, the vehicle should decelerate to the minimum speed limit to pass through the intersection after the
end of the red phase. The vehicle accelerates to the average road speed after passing the intersection.

4. Waiting at the intersection: The state of traffic light approached by the vehicle is red and will remain the same for a long time.
Consequently, the vehicle should decelerate and stop at the intersection till the traffic light becomes green. The vehicle accelerates to
the average road speed after passing the intersection once the phase of the signal is green.

The path between the source and destination is determined in a way that the fuel consumption of a vehicle is the minimum. The fuel
consumption rate of the vehicle for each driving condition is calculated based on acceleration and velocity data.

As shown in Fig. 3, the cloud manager will determine the yth RSU after RSU j
(
i.e., RSU j+y

)
on the path between the vehicle’s source

and destination based on the vehicle’s speed, the vehicle’s position, and the request’s execution time. The value of yth RSU is determined
as described below:

• Each vehicle transmits its speed to the communication edge server. The server further sends this information to the cloud manager.
• The cloud manager computes the distance vh had traveled in the communication range of RSU j before submitting request ri , i.e.,

dvh,e j , as stated in Equation (8).

dvh,e j =
{

xleft
e j

− xsrc
vh,ri

; xsrc
vh,ri

> xdes
vh,ri

xsrc
vh,ri

− xright
e j

; xsrc
vh,ri

< xdes
vh,ri

(8)

• Depending on the vehicle’s speed and the request’s total execution time, the manager will dynamically compute the total distance vh
will travel after submitting ri to RSU j and before receiving repi , i.e., dri−repi

vh
(t), as stated in (9).

d
ri−repi
vh

(t) = svh (t) × Tri(sz) (9)

• The cloud manager will now calculate d̃
ri−repi
vh

(t) which is the distance vh will travel outside the range of RSU j , after submitting ri
and before receiving repi , as stated in Equation (10).

d̃
ri−repi
vh

(t) =
{

d
ri−repi
vh

(t) − (
DRSU − dvh,e j

) ; dvh,e j + d
ri−repi
vh

(t) > DRSU

0; otherwise
(10)

• The value of yth RSU is then computed using Equation (11). The value of y will be updated in real-time based on the speed of vh .

y (t) =
⌈

d̃
ri−repi
vh

(t)

DRSU

⌉
(11)
7

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
Fig. 3. Calculation of yth RSU, on the path between the vehicle’s source and destination, to send a reply to the request.

Fig. 4. Calculation of processing time in a multi-request scenario.

3.2. Computation model

The computation time in our system model includes the processing time to execute the request on an edge/cloud server and the I/O
time required for the request data transfer between the memory and disk of an edge/cloud server. The processing time and I/O time are
explained below in detail.

3.2.1. Processing model
The processing time of a request in our system model depends on whether the request is executed alone or with other requests on an

edge/cloud server. Consequently, there exist three cases as shown in Fig. 4.

• Case (i): request ri is executed alone on an edge/cloud server sz .
8

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
• Case (ii): execution of requests ri and ri+1 overlap on server sz and ri completes execution before ri+1. In this case, the processing
speed of sz is divided among requests ri and ri+1 [33].

• Case (iii): execution of requests ri and ri+1 overlap on server sz and ri completes execution after ri+1. In this case, the processing
time of ri includes the time when the execution of ri and ri+1 overlaps (i.e., τm

ri(sz)
) and the time when ri executes alone after ri+1

has finished execution (i.e., τ a
ri(sz)

).

Depending on which server is selected for execution based on the offloading decision, the processing time of the request can be
computed as stated in (12).

T proc
ri(sz)

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(
ψri
μsz

)
; case (i)(

ψri ×nri (sz)

μsz

)
; case (ii)

τm
ri(sz)

+ τ a
ri(sz)

; case (iii)

(12)

where τm
ri(sz)

, τ a
ri(sz)

, and nsz can be calculated using (13)–(15).

τm
ri(sz)

= min∀rp∈sz

(
T proc

rp(sz)

)
, p �= i (13)

τ a
ri(sz)

=

⎛
⎜⎜⎝

ψri −
(

τm
ri (sz)

×μsz

nri (sz)

)
μsz

⎞
⎟⎟⎠× (

nri(sz) − nri(sz)

)
(14)

nri(sz) = #
ri ,rp∈sz

(
Trp(sz) < Tri(sz)

)
, i �= p (15)

3.2.2. I/O model
The I/O time for a request ri on server sz in our system model refers to the time it takes to transfer data between disk and memory in

case the memory requirement of ri is more than the available memory of sz . The I/O time of ri when executed on sz for the three cases
discussed before can be computed using (16).

T I/O
ri(sz)

=
⎧⎨
⎩
(
χri(sz) × ξsz

) ; cases (i) and (ii)

ξsz + σri ×ξsz ×nri (sz)

θsz
; case (iii)

(16)

where χri(sz) is calculated using (17) and (18) as follows.

χri(sz) =
{

ρri(sz) − 1; ρri(sz) > 1

0; ρri(sz) = 1
(17)

ρri(sz) =

⎧⎪⎨
⎪⎩
⌈

σri
θsz

⌉
; case (i)⌈

σri ×nri (sz)

θsz

⌉
; cases (ii) and (iii)

(18)

4. Problem formulation

We formulate a computation offloading optimization problem in an integrated edge-cloud computing system for IoV. The objective of
the optimization problem is to minimize the total execution time of all the requests in the system under specified latency, processing
time, deadline, CPU, and memory requirements constraints for each request. The total execution time of a request ri is computed as
the summation of the request’s communication, processing, and I/O times as stated in (19). To this end, the corresponding optimization
problem can be formulated as stated in (20).

Tri(sz) = T com
ri(sz)

+ T proc
ri(sz)

+ T I/O
ri(sz)

, ∀i ∈ I, sz ∈ {
e j, ck

}
(19)

Problem:

minimize
∑
∀i∈I

Tri(sz), sz ∈ {
e j, ck

}
(20)
9

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
s.t. C1: ∀i ∈ IT com
ri(sz)

≤ Lmax
ri

, sz ∈ {
e j, ck

}

C2: ∀i ∈ IT proc
ri(sz)

≤ P max
ri

, sz ∈ {
e j, ck

}

C3: ∀i ∈ ITri(sz) ≤ Dmax
ri

, sz ∈ {
e j, ck

}

C4:
∑

∀ri∈sz

ϕri ≤ ϕmax
sz

, sz ∈ {
e j, ck

}
and ϕri ≥ 1

C5:
∑

∀ri∈sz

σri ≤ θsz , z ∈ Z

C6: α
e j
vh

(t) ∈ {0,1} ,∀ j ∈ J , ∀h ∈ H

C7:
∑
j∈J

α
e j
vh

(t) = 1,∀h ∈ H

C8:
∑
∀z∈Z

β
sz
ri

= 1,∀i ∈ I

where
∑

∀i∈I Tri(sz) is the sum of the total execution time of all the requests in the system. The constraints in the above optimization
problem are as follows:

• C1 ensures that the communication time of each request does not exceed the maximum tolerable latency requirement of that request.
• C2 guarantees that the execution time of each request is less than the request’s permissible maximum processing time requirement.
• C3 ensures that the total execution time of each request is below the maximum tolerable deadline for that request.
• C4 ensures that the total CPU utilization of all the requests that are being executed simultaneously on a server should not exceed

the server’s CPU utilization threshold. This is to ensure that the server is not overloaded as overloading may degrade the requests’
performances.

• C5 ensures that the memory requirements of a request should be less than the server’s available memory. This is to reduce the
amount of data transfer between disk and memory.

• C6 and C7 denote that each vehicle can only communicate with one edge server at a given time.
• C8 ensures that each request is executed at most by only one edge/cloud server.

Theorem 1. The optimization problem in (20) is NP-hard.

Proof. To prove the NP-hardness of the offloading problem, we first consider a special case of the problem where the SLA requirements of
the requests in terms of latency, processing time, and deadline, i.e., C1 – C3 in (20), are not violated. Consequently, the offloading problem
is rendered to minimization of the sum of the total execution times for all requests. We prove that the special case of our offloading
problem is NP-hard by reducing a known NP-hard problem, i.e., multiple knapsack problem [34], to the special case of our offloading
problem in a polynomial time. We denote this by (21).

(Multiple knapsack) ≤ p
(
Offloadingspecial case

)
(21)

Multiple knapsack is a well-known NP-hard problem [35], where given a set of knapsacks, each having a certain capacity, the objective
is to assign disjoint subsets of items (each item having a weight and a value) to a unique knapsack such that the total value of items is
maximized while the total weight of items in each knapsack should not exceed the knapsack’s capacity. For any instance of the multiple
knapsack problem, an instance of the offloading problem’s special case can be constructed where the vehicles’ requests represent the
items, and the edge and cloud servers represent the knapsacks. The request’s resource requirements

(
ψri , σri ,ϕri

)
represents the weight

and the total execution time represents a value. For an edge or cloud server, its threshold CPU utilization ϕmax
sz

and available memory θsz

represent the capacity. Then, filling the items to knapsacks is equivalent to assigning the requests to the edge/cloud servers such that the
sum of the total execution time of all the requests is minimized, and the ϕmax

sz
and θsz requirements of the servers are satisfied.

As the NP-hard multiple knapsack problem is reduced to the special case of the offloading problem, the special case is an NP-hard
problem as well. Consequently, it can be inferred that the offloading problem is also NP-hard. Therefore, we propose an adaptive genetic
algorithm to obtain the optimal solution in polynomial time.

5. Proposed QoS-SLA-aware adaptive genetic offloading algorithm

The proposed offloading aims to minimize the total execution time of the vehicles’ requests while respecting each request’s SLA
requirements. In this paper, we propose a QoS-SLA-AGA to obtain the solution of the NP-hard offloading algorithm. GA [36], [37] is based
on the theory of natural evolution where a subset of near-optimal offloading solutions from one generation is used to obtain the offspring
solution for the next generation. At each generation, the algorithm converges towards the global optima. In the context of our optimization
problem, global optima can be defined as an offloading solution that results in the minimum requests execution time while respecting
each request’s SLA requirements. An offloading solution, referred to as chromosome in genetic algorithm terminology, consists of server
allocation for each request. The length of a chromosome is the same as the number of requests to be allocated. Each request-server
10

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
Algorithm 1: QoS-SLA-Aware Adaptive Genetic Offloading Algorithm.
Input: H, I, J , K , ri , e j , ck, Psize, λc, λm, q, nmut

Output: Scheduled requests on edge and cloud servers
/* A. Initialization of offloading solutions */
1: for q = 1 to Psize do /* for each offloading solution in the population */
2: for i = 1 to I do /* for each request */
3: requesti ← ri

4: serveri ← select Random
({

e j | αe j
vh

(t) = 1
}

∪ {ck | k ∈ K}
)

/* allocating a server randomly from a set of servers that consists of

the edge server to which the request is submitted and the cloud servers */
5: end for
6: of f loading_solution (q) ← tuple (requests, servers) /* assigning the requests to servers is an offloading solution in the population

*/
7: end for
8: population ← tuple (of f loading_solutions) */ population consists of initialized offloading solutions */
9: repeat
/* B. Evaluation of offloading solutions */
10: for q = 1 to Psize do /* for each offloading solution in the population */
11: F̈q ← Equation (22) /* compute non-penalized fitness value */
12: P lat

q , P proc
q , P deadline

q , P cpu
q , P mem

q ← Equations (23), (24), (25), (26), (27) /* compute latency, processing time, deadline, CPU, and
memory requirements violations */

13:
∼
F̈ q ← Equation (28) /* compute normalized non-penalized fitness value */

14:
∼
P q ← Equation (29) /* compute normalized penalty for constraints violations */

15: F q ← Equation (30) /* compute adaptive penalized fitness value */
16: Fq ← Equation (31) /* compute fitness value */
17: end for
/* C. Selection of offloading solutions to reproduce solutions for the next generation */
18: for q = 1 to Psize do /* for each offloading solution in the population */
19: Prob(q) ← Equation (33) /* computing fitness probability for each solution */
20: Cumu (q) ← Equation (32) /* computing cumulative fitness probability for each solution */
21: rnd(q) ← GenRandomNum(0, 1) /* generating a random number for each solution */
22: end for
23: for k = 1 to Psize do /* for each solution in the population */
24: selected_solution (k) ← f ind (Cumu > rnd (k)) /* select a solution such that the random number lies between cumulative
probability bounds for that solution */
25: end for
/* D. Crossover operation to develop solutions for the next generation */
26: pairs_list ← GeneratePairs(selection_solution) /* generate pairs of offloading solutions from the selected solutions */
27: for each pair ∈ pairs_list do
28: select parent_solution1 and parent_solution2 f rom each pair /*define parent solutions for each pair */
29: cutof f ← GenRandomNum(1, I) /*generate a random cutoff value between 1 and the length of each solution. The length of
a solution is the number of requests */
30: t ← 1 /* initialize a variable */
31: for 1 ≤ t < cutof f do /* for tasks before the cutoff value */
32: of f spring_solution1(t) ← parent_solution1(t) /* offspring 1 will have request-server mapping similar to parent 1 */
33: of f spring_solution2(t) ← parent_solution2(t) /* offspring 2 will have request-server mapping similar to parent 2 */
34: end for
35: for cutof f < t ≤ I do /* for tasks after the cutoff value */
36: of f spring_solution1(t) ← parent_solution2(t) /* offspring 1 will have request-server mapping similar to parent 2 */
37: of f spring_solution2(t) ← parent_solution1 (t) /* offspring 2 will have request-server mapping similar to parent 1 */
38: end for
39: solution (pair) ← Best(parent_solution1, parent_solution2, of f spring_solution1, of f spring_solution2) /* selecting
the best two solutions among parents and offspring for next-generation */
40: end for
/* E. Mutation operation to diversify offloading solutions in a generation */
41: for i = 1 to nmut do /* for the total number of mutation operations */
42: rnd (i) ← GenRandomNum (1, (I × Psize)) /* generate a random number between 1 and total requests in the entire population */
43: if rnd (i) mod I = 0 then /* if the remainder after dividing the random number with the total number of requests is zero */

44: solutioni ←
(

rnd(i)−(rnd(i) mod I)
I

)
/* finding the solution where the random number lies */

45: request_to_reallocatei ← I /* finding the request for reallocation for that solution */
46: else /* if the remainder after dividing the random number with the total number of requests is not zero */

47: solutioni ←
(

rnd(i)−(rnd(i) mod I)
I

)
+ 1

48: request_to_reallocatei ← remi

49: end if
50: Solutioni(request_to_reallocatei) ← select Random

{
e j , ck | α

e j
vh

(t) = 1,k ∈ K
}

/* randomly reallocating the server for the

selection request */
51: end for
52: until the termination condition is satisfied

allocation is known as a gene. The number of offloading solutions in each generation represents the population size (Psize) and remains
constant throughout the generations. In the following, we explain the steps involved in our proposed algorithm. Algorithm 1 shows its
pseudocode.
11

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
5.1. Initialization of offloading solutions

QoS-SLA-AGA begins with a set random set of offloading solutions. In this step, a set, Q, of initial offloading solutions, for the first
generation, is randomly developed to begin the exploration process in the search space. The number of solutions in the set is equal to Psize .
The value of Psize should be carefully selected as it impacts the convergence of the algorithm. A small value improves the computational
performance of the algorithm, however, may restrict the search space leading to local optima instead of global. On the other hand, a large
value allows the algorithm to explore a larger search space that might lead to global optima. However, this increases the computational
time.

5.2. Evaluation of the offloading solutions

In this step, each offloading solution generated in the previous step is evaluated, in terms of fitness, to determine how close it is to the
optimal offloading solution. The closer a solution is to the optimal solution, the higher its fitness. Consequently, based on our optimization
objective function stated in (20), an offloading solution having the least total execution time for all requests with no SLA violations for each
request will have the highest fitness value. The offloading solutions that violate SLA requirements are referred to as infeasible solutions.
To incorporate the SLA constraints in fitness computation, we implement an adaptive penalty function [38] that reduces the fitness value
of an infeasible solution. To evaluate the fitness with an adaptive penalty, we first compute the non-penalized fitness value as stated in
(22) and SLA violations, in terms of latency, processing time, deadline, CPU utilization, and memory resource, for each solution as stated
in (23)–(27).

F̈q =
∑
∀i∈I

Tri(sz), sz ∈ {
e j, ck

}
, ∀q ∈ Q (22)

Plat
q =

∑
∀T com

ri (sz)
>Lmax

ri

T com
ri(sz)

− Lmax
ri

(23)

P proc
q =

∑
∀T proc

ri (sz)
>Pmax

ri

T proc
ri(sz)

− Pmax
ri

(24)

P deadline
q =

∑
∀Tri (sz)>Dmax

ri

Tri(sz) − Dmax
ri

(25)

P cpu
q =

∑
∀ri∈sz

I(ϕri >ϕmax
sz

), ∀z ∈ Z (26)

Pmem
q =

∑
∀ri∈sz

I(σri >θsz

), ∀z ∈ Z (27)

The non-penalized fitness and the constraints violations are normalized using (28) and (29) respectively. The adaptive penalized fitness
is then calculated as stated in (30).

∼
F̈ q =

F̈q − min∀q∈Q
(

F̈q
)

max∀q∈Q
(

F̈q
)− min∀q∈Q

(
F̈q
) (28)

∼
P q = 1

5

⎛
⎜⎝ Plat

q

max∀q∈Q
(

Plat
q
) + P proc

q

max∀q∈Q
(

P proc
q

) + P deadline
q

max∀q∈Q
(

P deadline
q

) + P cpu
q

max∀q∈Q
(

P cpu
q

) + Pmem
q

max∀q∈Q
(

Pmem
q

)
⎞
⎟⎠ (29)

F q =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∼
P q; n f = 0
∼
F̈ q;

∼
P q = 0√(∼

F̈ q

)2

+
(∼

P q

)2

+
[
(1 − γ)

∼
P q + (γ)

∼
F̈ q

]
; otherwise

(30)

The fitness score for each solution is then computed by taking the reciprocal of adaptive penalized fitness as stated in (31). This is to
assign the highest fitness value to the offloading solution having the least execution time and QoS violations.

Fq = 1

F q + 1
(31)

5.3. Selection of offloading solutions to reproduce solutions for next generation

In this step, offloading solutions from the population are selected based on their fitness value to reproduce offspring offloading solutions
for the next generation. In this paper, we use the fitness proportionate Roulette Wheel Selection (RWS) [39] method that constructs
a roulette wheel based on the cumulative fitness probabilities of the offloading solutions. The fittest a solution is, the larger the area
12

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
Table 3
Computational complexity of the proposed algorithm.

Algorithm step Computational complexity

Initialization of offloading solutions O (Psize × I)

Evaluation of the offloading solutions O
(

G × Psize ×
(

I + Zn2
ri (sz)

))
Selection of offloading solutions to reproduce solutions for next generation O (G × Psize)

Crossover to develop solutions for next generation O
(
G × (

Psize + Znri (sz) + (I × λc)
))

Mutation to diversify offloading solutions in a generation O (G × Psize × I × λm)

Total O
(
G × ((

Psize × Znri

)+ (I × λc) + (Psize × I × λm)
))

Note: Z = K + 1.

occupied by that solution on the roulette wheel. The cumulative probability for each offloading solution can be computed using (32).
Offloading solutions are then selected based on the position of randomly generated numbers on the roulette wheel.

Cumu (q) =
q∑

l=1

Prob(l) (32)

Where Prob (q) represents the fitness probability of offloading solution q (q ∈Q) and can be computed using (33).

Prob(q) = Fq∑
∀q∈Q Fq

(33)

5.4. Crossover to develop offloading solutions for next generation

In this step, the selected fit offloading solutions are used to produce offspring solutions by swapping the request-server allocations
for two offloading solutions, known as parent solutions. Crossover operation produces fitter offspring offloading solutions from fit parent
solutions leading to convergence of the algorithm towards the optimal solution. The number of parent solutions selected for crossover
depends on the crossover rate λc . We use a single-point crossover where a cutoff point for crossover is generated randomly and all the
server allocations for the requests after the cutoff point from the parents are swapped resulting in two offspring solutions. Parent solutions
in the generation are then replaced by the two fittest solutions among the parent and offspring solutions.

5.5. Mutation to diversify the offloading solutions in a generation

In this step, the offloading decisions for some requests in the population are changed to diversify the offloading solutions and larger
the search space. Without mutation, the algorithm may converge prematurely, i.e., on the local optima, as the search space would be
restricted around the non-optimal fit solutions in the population. The number of requests for which the offloading decisions are changed
depends on the mutation rate parameter and can be calculated using (34).

nmut = I × Psize × λm (34)

5.6. Termination of the algorithm

In this step, the algorithm is terminated if the maximum number of user-defined generations is reached, or the optimal offloading
solution is obtained. The evaluation, selection, crossover, and mutation steps are iterated until termination.

5.7. Complexity and convergence analysis

Table 3 presents the computational complexity of the proposed QoS-SLA-AGA. It shows that the complexity mainly depends on the
population size, the number of generations till convergence, and the number of servers in edge and cloud data centers. The number of
requests is an adding factor to the complexity, and it depends on the traffic flow.

In summary, the search space of offloading solutions increases with growing edge and cloud data centers sizes and traffic flow. However,
the proposed algorithm converges to an optimal offloading solution as it satisfies the accessibility and absorption properties mentioned
below.

Property 1. For any generation g, i f Pop(g) ∈ S Psize
opt , then Pops (g + 1) ∈ S Psize

opt . This property is called the absorption strategy because the offloading
solution with the highest fitness value is always kept during evolution. Where, Pop(g) is the population state, i.e., set of offloading solutions, at the gth

generation (g = 1, 2, . . . , G), S Psize
opt is the global optimal set of offloading solutions as presented in Equation (35), and Pops (g + 1) is the population

state after the selection of offloading solutions at g + 1th generation.

SPsize
opt = {

Q; ∃q ∈ Q, q ∈ Sopt
}

(35)

where Sopt is the optimal offloading solution as stated in Equation (36).

Sopt = {
q,q ∈ Q, Fq = Fmax

}
(36)

where Fmax is the theoretical optimal fitness value.
13

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
Property 2. For any generation g, i f Pops(g) ∈ S Psize
opt , then Popc (g + 1) ∈ S Psize

opt , where Popc (g) is the population state after performing crossover at
g + 1th generation.

Property 3. For any generation g, if Popc(g) ∈ S Psize
opt , then Popm (g + 1) ∈ S Psize

opt , where Popm (g) is the population state after performing mutation at
g + 1th generation.

Property 4. There exists some generation g0, for any initial population Pop (1) = Q, any measurable subset A ⊆ QPsize and some δ (Q) > 0, the
transition probability function satisfies P (1, g0; Q, A) ≥ δ(Q)φ(A). φ (.) is a measure in a set of offloading solutions Q and QPsize = Q ×Q ×Q ×
· · ·×Q is the product space, i.e., population space, that contains all possible offloading solutions for a given optimization problem, i.e., the entire search
space which constitutes all the generations. This property is called the accessibility strategy because starting from any initial set of offloading solution
Q, the global optimal set is accessible after finite probability transitions. Q = {1, 2, . . . , q, . . . , Psize} is a measurable space of offloading solutions
in a generation, i.e., population. This space is assumed to be bounded and compact.

In the following, we prove the convergence of QoS-SLA-AGA using the Markov chain theory and the above properties [40], [41]. Based
on Equation (31), our objective is to maximize the fitness function

(
Fq;q ∈Q

)
of an offloading solution q. The fitness function for a set of

offloading solutions in a generation can be defined as stated in Equation (37).

F (Q) = max
{

Fq; q ∈ Q
}

(37)

Let us consider that Pop (g) , Pops (g) , Popc (g) , Popm (g), and Pop (g + 1) are all random variables in the population space QPsize . The
evolution of population states in QoS-SLA-AGA can thus be represented as stated in Equation (38).

Pop (g) → Pops (g) → Popc (g) → Popm(g) → Pop(g + 1) (38)

In QoS-SLA-AGA, the selection, crossover, and mutation operators are time-invariant. Consequently, the transition probability functions
for these operators are time-invariant. The transition probability functions for selection, crossover, and mutation are presented in Equations
(39)–(41) respectively.

P s (Q, A) = P s
(
Pops (g) ∈ A | Pop (g) = Q

)
(39)

Pc (Q, A) = Pc
(
Popc (g) ∈ A | Pops (g) = Q

)
(40)

Pm (Q, A) = Pm
(
Popm (g) ∈ A | Popc (g) = Q

)
(41)

where A ⊆QPsize

The proposed QoS-SLA-AGA can be modeled by a stationary Markov chain
{

Pop (g) ; g ∈ Z+} on the state space QPsize , whose transition
probability is given by the Kolmogorov-Chapman equation as stated in Equation (42).

P (Q, A) =
¨

Pops (Q,dy)Popc (y,dz)Popm (z, A) (42)

Based on this modeling, our proposed algorithm converges to the global optimal as indicated by Theorem 2.

Theorem 2. Assume that QPsize is a measurable space that is bounded and compact, and
{

Pop (g) ; g ∈ Z+} is the Markov chain given by Equation
(42). If the Markov chain satisfies Properties 1, 2, 3, and 4, then it converges to the global optimal set.

Proof. From Lemma 1 in [42], it is proved that the Markov chain satisfies Doeblin’s condition which states that there is a probabil-
ity measure ∂ (.) on the space QPsize and some generation g0 > 0 and some positive δ > 0, such that, for any set A ⊆ QPsize , it holds

P (1, g0; Q, A) ≥ δ∂(A). Consequently, the Markov chain
{

Pop (g) ; g ∈ Z+} converges in the rate
∣∣∣∣μg − π

∣∣∣∣ ≤ (1 − δ)

[
g

g0

]
−1

. Here, μg

denotes the probability distribution of Pop (g) and π is the probability distribution on QPsize .

Furthermore, from Lemma 2 in [42], it is proved that for any invariant probability distribution π on QPsize , π
(

SPsize
opt

)
= 1. From

Lemma 1 and Lemma 2, it is proved that
{

Pop (g) ; g ∈ Z+} converges to the global optimal set SPsize
opt .

6. Performance evaluation

We analyze the impact of different λc , λm , and Psize on the convergence of our proposed algorithm and compare its performance with
baseline approaches in terms of total execution time (seconds) and the number of requests violating SLA constraints.

6.1. Experimental environment

We created a heterogeneous integrated edge-cloud computing system for IoV. 10 edge servers and 20 cloud servers were simulated
using the different types of edge and cloud servers listed in Table 4. Servers 1 and 2 originate from the Intelligent Distributed Computing
and Systems (INDUCE) Research Laboratory, College of Information Technology, United Arab Emirates University. The specifications of the
remaining servers, 3 – 6 are taken from the SPEC Power benchmark such that they belong to the same family of servers in our laboratory
but with different capabilities. We implemented the network using MATLAB 2020a.
14

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
Table 4
Specifications of the servers used in the experiments.

Server Location Specification Memory

1 Edge AMD Opteron 252, 2.59 GHz, 2-Cores 2 GB
2 Cloud Intel Xeon, 2.80 GHz, 2-Cores 4 GB
3 Edge AMD Opteron 6276, 2.30 GHz, 16-Cores [45] 32 GB
4 Cloud Intel Xeon E3-1204L v5, 2.10 GHz, -Cores [46] 16 GB
5 Cloud Intel Xeon E-2176G, 3.7 GHz, 6-Cores [47] 16 GB
6 Cloud AMD Opteron 6238, 2.60 GHz, 12-Core [48] 64 GB

Table 5
Network and application characteristics used in the experiments.

Parameter Value(s)

Number of requests (I) 20, 25, 30, 35, 40, 45, 50
Vehicle – RSU bandwidth (Gbps)

(
ωvh ,e j , ∀z ∈ Z, ∀h ∈ H

)
1

RSU – cloud bandwidth (Gbps)
(
ωe j ,ck , ∀z ∈ Z, ∀h ∈ H

)
U(1, 2)

Time required for data swapping operation (seconds)
(
ξsz ,∀sz ∈ {

e j , ck
})

0.05
Server’s CPU utilization threshold

(
ϕmax

sz
,∀sz ∈ {

e j , ck
})

90
Requests’ CPU utilization (%)

(
ϕri , ∀i ∈ I

)
N(20, 5)

Requests’ length (Million Instructions) (ψri , ∀i ∈ I) 9000 − 15000 [23], [44]
Requests’ size (KB)

(
σri , ∀i ∈ I

)
1000 – 5000 [23]

Requests’ latency requirements (seconds)
(
Lmax

ri
, ∀i ∈ I

)
0.1, 0.3, 0.5, 0.7, 0.9, 1.1

Requests’ processing time requirements (seconds)
(

P max
ri

, ∀i ∈ I
)

0.9, 1.1, 1.3, 1.5, 1.7, 1.9
Requests’ deadline requirements (seconds)

(
Dmax

ri
, ∀i ∈ I

)
1, 1.2, 1.4, 1.6, 1.8, 2

U denotes uniform distribution; N denotes a standard normal distribution.

Table 6
Genetic algorithm parameters used for convergence analysis.

Parameter Value(s)

Crossover rate (λc) 0.50, 0.55, 0.60, 0.65, 0.70, 0.75, 0.80, 0.85, 0.90, 0.95
Mutation rate (λm) 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1
Population size (Psize) 2 × requests, 4 × requests, 6 × requests, 8 × requests, 10 × requests
Termination condition 1000 iterations (generations)

In our simulated network, we use the Vehicle-Crowd Interaction (VCI) – DUT dataset [43] for vehicles’ positioning. In particular, we
used the x_est and y_est columns of the dataset for the source and destination locations of vehicles in our experiments. Regarding the
characteristics of the vehicular requests, we used three different ITS applications; facial recognition for autonomous driving, augmented
reality, and infotainment [23], [44]. The network and application characteristics used in the experiments are listed in Table 5. Table 6
shows the values used for convergence analysis of the proposed QoS-SLA-AGA.

6.2. Experiments

This section explains the experiments performed for convergence analysis of QoS-SLA-AGA and compares its performance with baseline
approaches in terms of total execution time (seconds) and the number of requests violating SLA constraints.

To analyze the convergence of the proposed algorithm we executed the algorithm with different values of λc , λm , and Psize (listed in
Table 6).

1. We first run the algorithm with varying values of λc and keep the values of λm and Psize constant at 0.01 and 2 ×requests respectively.
2. We then select the value of λc that has the fastest convergence as the optimal crossover rate.
3. Next, we run the proposed algorithm with varying values of λm and the values of λc and P _size constant at optimal crossover rate

and 2 × requests respectively.
4. We select the value of λm resulting in the fastest convergence as the optimal mutation rate.
5. Lastly, we vary the values of Psize with λc and λm constant at their optimal values.
6. We then select the value with the least convergence time as the optimal value for Psize .

We evaluate the offloading performance of the proposed algorithm with varying values of latency, processing time, deadline require-
ments, and the number of requests (Table 5). We vary one of those four parameters while keeping the remaining three constants at their
corresponding minimum values. The value for deadline requirement is varied while varying the latency and processing time requirements
because the deadline is the summation of latency and processing times. For each run, we use the optimal values of λc , λm , and Psize .
We measure the algorithm’s performance in terms of the total execution time of the requests and the number of requests violating SLA
requirements. For latency, processing time, and deadline violations, we calculate the number of requests for which the value of commu-
nication time, processing time, and total execution time is greater than the requests’ requirements. To determine the number of requests
violating CPU requirements, we consider the number of requests scheduled on a server where the total CPU utilization of all requests
scheduled on that server exceeds the server’s CPU utilization threshold.

To demonstrate the performance of the proposed QoS-SLA-AGA, we compare it with the following baseline approaches:
15

Fig. 5. Fitness score distribution over iterations for the requests’ offloading solution using QoS-SLA-AGA versus crossover rate λc .

Table 7
Optimal values of genetic algorithm parameters.

Parameter Value(s)

Crossover rate (λc) 0.95
Mutation rate (λm) 0.01
Population size (Psize) 2 × requests

1) QoS-Aware Genetic Algorithm (QoS-GA): An offloading scheme using a genetic algorithm whose objective is to minimize the total
execution time of all the requests without considering the SLA constraints.

2) QoS-Aware Particle Swarm Optimization (QoS-PSO): An offloading scheme using a PSO algorithm whose objective is to minimize the
total execution time of all the requests without considering the SLA constraints. PSO is selected as a baseline approach as it is a
widely used meta-heuristic approach for offloading in literature [14], [15], [27].

3) Random Offloading: An offloading scheme where each request is randomly scheduled at the edge or cloud server without considering
the QoS and SLA.

4) All Edge Computing (AEC): An approach where each request is executed by the edge server to which it has been submitted.
5) All Cloud Computing (ACC): An approach where each request is executed by one of the cloud servers in a way that minimizes the

total execution time of all the requests while considering the SLA constraints.

We repeat the experiments for QoS-GA, QoS-PSO, random offloading, AEC, and ACC with varying SLA requirements and the number of
requests.

6.3. Experimental results analysis

This section presents the analysis of the results obtained from our experiments. In particular, we analyze the convergence results of
our proposed algorithm and compare our algorithm with baseline approaches.

6.3.1. Convergence analysis
Fig. 5 shows the convergence of QoS-SLA-AGA in terms of penalized fitness score distribution over iterations with varying values of λc .

As shown, for all values of λc , the distributions over iterations are left-skewed. However, λc = 0.95, has the highest mean fitness score of
0.997. Consequently, value λc = 0.95 converges the algorithm in the number of iterations. This is because a higher crossover rate diversifies
the population by selecting more offloading solutions to perform the crossover operation. On the other hand, the offloading solutions are
not as diverse when the crossover rate is low. Fig. 6 shows the distribution of the total execution time of the requests over iterations
with varying values of λc . As shown in the figure, λc = 0.85 which results in the fastest convergence with the shortest total execution
time. Although, λc = 0.85 optimizes the total execution time, it does not provide the best convergence of the algorithm in terms of fitness
(Fig. 5). This is because the fitness score in Fig. 5 considers both the optimization of total execution time and SLA violations, whereas
Fig. 6 only considers the optimization of total execution time. Consequently, λc = 0.85 optimizes the time but violates SLA constraints. On
the other hand, λc = 0.95 converges to an offloading solution with a minimum execution time that respects SLA constraints. Consequently,
we use λc = 0.95 in the remaining experiments.

Fig. 7 shows the fitness convergence of QoS-SLA-AGA with varying values of λm . As depicted in the figure, only λm = 0.01 converges
the algorithm to an optimal fitness value of 1. This is because a higher mutation rate hinders the convergence as fitter offloading solutions
are lost. Fig. 8 depicts the distribution of total execution time over iterations with varying values of λm . As shown in the figure, only
λm = 0.01 converges the algorithm to the minimum execution time. Consequently, we use λm = 0.01 in the offloading experiments.

Fig. 9 shows the fitness convergence of QoS-SLA-AGA with a varying value of Psize . As shown, the algorithm converges to the optimal
fitness score of 1 with the highest mean when the population size is set to twice the number of requests. As shown in Fig. 10, the total
execution time of the requests converges to the minimum quickly when Psize = 2 × requests. Consequently, we use Psize = 2 × requests
in the experiments. Table 7 shows the optimal genetic parameters used to evaluate the performance of the proposed QoS-SLA-AGA and
baseline QoS-GA algorithms.
H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
16

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654

Fig. 6. Total execution time distribution over iterations for the requests’ offloading solution using QoS-SLA-AGA versus crossover rate λc .

Fig. 7. Fitness score distribution over iterations for the requests’ offloading solution using QoS-SLA-AGA versus mutation rate λm .

Fig. 8. Total execution time distribution over iterations for the requests’ offloading solution using QoS-SLA-AGA versus mutation rate λm .

Fig. 9. Fitness score distribution over iterations for the requests’ offloading solution using QoS-SLA-AGA versus population size Psize .
17

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
Fig. 10. Total execution time distribution over iterations for the requests’ offloading solution using QoS-SLA-AGA versus population size Psize .

Fig. 11. Total execution time using QoS-SLA-AGA and baseline approaches versus latency requirements.

Fig. 12. Number of requests violating SLA requirements using QoS-SLA-AGA and baseline approaches versus latency requirements.

6.3.2. Comparative performance analysis
Figs. 11 and 12 show the total execution time and the number of requests violating SLA requirements respectively, for QoS-SLA-

AGA, QoS-GA, PSO, random offloading, ACC, and AEC solutions with increasing latency requirements. As shown in Fig. 11, AEC has the
longest execution time, as all the requests are processed on edge servers having lower computing capabilities compared to the cloud
servers. The proposed QoS-SLA-AGA outperforms PSO, random, and AEC approaches providing lower execution time. While QoS-GA and
ACC have better performance than the proposed QoS-SLA-AGA (Fig. 11), they have more SLA violations (Fig. 12) compared to the proposed
algorithm. This is because QoS-GA minimizes the total execution time without considering the SLA constraints and ACC process everything
on cloud servers, without considering edges, leading to higher communication time. On the other hand, QoS-SLA-AGA uses both edge
and cloud servers to process requests in a way that minimizes the total execution time while considering the constraints. In summary,
the average total execution times with increasing latency requirements for QoS-SLA-AGA, QoS-GA, PSO, random, ACC, and AEC algorithms
are 13.97 seconds, 13.52 seconds, 15.77 seconds, 19.57 seconds, 13.99 seconds, and 140.59 seconds respectively. The average number of
requests violating SLA constraints using QoS-SLA-AGA, QoS-GA, PSO, random, ACC, and AEC algorithms are 0.33, 1.33, 4.83, 10.33, 0.5,
and 20 respectively. On average, with increasing latency requirements, 1.66%, 6.66%, 24.16%, 51.66%, 2.5%, and 100% requests violate SLA
constraints using QoS-SLA-AGA, QoS-GA, PSO, random, ACC, and AEC approaches respectively.

Figs. 13 and 14 show the total execution time and the number of requests violating SLAs, respectively, for QoS-SLA-AGA, QoS-GA, PSO,
random offloading, ACC, and AEC algorithms with increasing processing time requirements. As shown in Fig. 13, the AEC approach has
the longest execution time with increasing processing time requirements. Compared to QoS-GA, QoS-SLA-AGA results in a higher total
execution time. This is because of the SLA constraints consideration in the proposed algorithm in addition to the objective of minimizing
the total execution time. As shown in Fig. 14, QoS-SLA-AGA has the least SLA violations. However, QoS-GA violates more requests compared
to QoS-SLA-AGA. AEC violates the maximum number of requests as the edge servers become bottlenecks leading to higher processing time.
18

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
Fig. 13. Total execution time using QoS-SLA-AGA and baseline approaches versus processing time requirements.

Fig. 14. Number of requests violating SLA requirements using QoS-SLA-AGA and baseline approaches versus processing time requirements.

Fig. 15. Total execution time using QoS-SLA-AGA and baseline approaches versus the number of requests.

Fig. 16. Number of requests violating SLA requirements using QoS-SLA-AGA and baseline approaches versus the number of requests.

In summary, the average total execution times with increasing processing time requirements for QoS-SLA-AGA, QoS-GA, PSO, random, ACC,
and AEC algorithms are 16.33 seconds, 13.49 seconds, 15.88 seconds, 19.21 seconds, 16.25 seconds, and 140.59 seconds respectively. The
average number of requests violating SLA constraints using QoS-SLA-AGA, QoS-GA, PSO, random, ACC, and AEC algorithms are 0.33, 1.33,
3.83, 3.83, 0.66, and 20 respectively. On average, with increasing processing requirements, 1.66%, 6.66%, 19.16%, 19.16%, 3.33%, and 100% of
requests violate SLA constraints using QoS-SLA-AGA, QoS-GA, PSO, random, ACC, and AEC approaches respectively.

Figs. 15 and 16 show the total execution time and the number of requests violating SLAs, respectively, for QoS-SLA-AGA, QoS-GA, PSO,
random offloading, ACC, and ACC algorithms with an increasing number of requests. As shown in Fig. 15, AEC has the longest execution
time with an increasing number of requests. QoS-GA outperforms the proposed approach with an increasing number of requests, whereas
PSO outperforms the proposed algorithm for 45 requests. However, the proposed algorithm has the least SLA violations (Fig. 16). As shown
in Fig. 16, all algorithms violate the SLA requirements with AEC having the highest violations. The SLA violations increase with the number
of requests for all the algorithms. This is because the processing power of the servers is divided among requests with increasing requests
19

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
while keeping the number of servers constant. Consequently, the processing time of requests increases leading to increased total execution
time. In summary, the average total execution times with an increasing number of requests using QoS-SLA-AGA, QoS-GA, PSO, random,
ACC, and AEC algorithms are 43.63 seconds, 37.75 seconds, 45.85 seconds, 52.22 seconds, 47.68 seconds, and 414.68 seconds respectively.
The average number of requests violating SLA requirements using QoS-SLA-AGA, QoS-GA, PSO, random, ACC, and AEC algorithms are 22.2,
24, 27.85, 28.57, 25.71, and 35 respectively. On average, with increasing requests, 55.40%, 59.52%, 73.18%, 77.34%, 64.31%, and 100% of
requests violate SLA constraints using QoS-SLA-AGA, QoS-AGA, PSO, random, ACC, and AEC approaches respectively.

7. Conclusion

Computation offloading is essential in an integrated edge-cloud system for IoV to enhance the QoS and respect the SLA requirements of
both compute-intensive and time-critical applications. In this paper, we propose QoS-SLA-AGA to offload vehicular applications’ requests
on an edge/cloud server such that the total execution time of the requests is minimized. Furthermore, our proposed optimization algorithm
is constrained by the requests’ SLA requirements in terms of latency, processing time, deadline, CPU, and memory. The proposed algorithm
considers the overlapping of requests execution in the offloading decision. To the best of our knowledge, we are the first to propose a
QoS-SLA-aware offloading algorithm using AGA in IoV that considers the overlapping of multi-request execution and dynamic speed of
the vehicle for execution time minimization while adhering to the performance and resource SLA constraints. Numerical experiments and
comparative analysis revealed that the proposed algorithm outperforms the random offloading, PSO, ACC, and AEC approaches in total
execution time. In the context of SLA constraints, the proposed algorithm outperforms all the baseline approaches. In future research, we
propose to investigate QoS-SLA-aware priority-based partial offloading solutions with inter-dependency among requests while making the
offloading decision. Furthermore, we aim to reduce the time for obtaining the optimal solution (i.e., convergence time) and to compare a
large spectrum of offloading algorithms including the ones based on deep reinforcement learning.

Funding

This research was funded by the National Water and Energy Center of the United Arab Emirates University (Grant 12R126).

Declaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests:
Leila Ismail reports financial support was provided by United Arab Emirates University.

Data availability

Data will be made available on request.

References

[1] S. Kumar, J. Singh, Internet of vehicles over Vanets: smart and secure communication using IoT, Scalable Comp. Pract. Exp. 21 (3) (2020) 425–440.
[2] K. Guan, et al., 5-GHz obstructed vehicle-to-vehicle channel characterization for Internet of intelligent vehicles, IEEE Int. Things J. 6 (1) (2018) 100–110.
[3] J. Contreras-Castillo, S. Zeadally, J.A. Guerrero-Ibanez, Internet of vehicles: architecture, protocols, and security, IEEE Int. Things J. 5 (5) (2017) 3701–3709.
[4] J.A. Guerrero-Ibanez, S. Zeadally, J. Contreras-Castillo, Integration challenges of intelligent transportation systems with connected vehicle, cloud computing, and Internet

of things technologies, IEEE Wirel. Commun. 22 (6) (2015) 122–128.
[5] C.-C. Lin, D.-J. Deng, C.-C. Yao, Resource allocation in vehicular cloud computing systems with heterogeneous vehicles and roadside units, IEEE Int. Things J. 5 (5) (2017)

3692–3700.
[6] L. Ismail, R. Barua, Implementation and performance evaluation of a distributed conjugate gradient method in a cloud computing environment, Softw. Pract. Exp. (2012).
[7] S. Raza, S. Wang, M. Ahmed, M.R. Anwar, A survey on vehicular edge computing: architecture, applications, technical issues, and future directions, Wirel. Commun. Mob.

Comput. 2019 (2019).
[8] L. Ismail, H. Materwala, IoT-Edge-cloud computing framework for QoS-aware computation offloading in autonomous mobile agents: modeling and simulation, in: Inter-

national Conference on Mobile, Secure, and Programmable Networking, 2020, pp. 161–176.
[9] Q.-V. Pham, H.T. Nguyen, Z. Han, W.-J. Hwang, Coalitional games for computation offloading in NOMA-enabled multi-access edge computing, IEEE Trans. Veh. Technol.

69 (2) (2019) 1982–1993.
[10] X. Xu, X. Zhang, X. Liu, J. Jiang, L. Qi, M.Z.A. Bhuiyan, Adaptive computation offloading with edge for 5G-envisioned Internet of connected vehicles, IEEE Trans. Intell.

Transp. Syst. 22 (8) (2021) 5213–5222.
[11] M. Khayyat, I.A. Elgendy, A. Muthanna, A.S. Alshahrani, S. Alharbi, A. Koucheryavy, Advanced deep learning-based computational offloading for multilevel vehicular

edge-cloud computing networks, IEEE Access 8 (2020) 137052–137062.
[12] M. Ibrar, et al., ARTNet: AI-based resource allocation and task offloading in a reconfigurable Internet of vehicular networks, IEEE Trans. Netw. Sci. Eng. 9 (1) (Jan. 2022)

67–77, https://doi .org /10 .1109 /TNSE .2020 .3047454.
[13] X. Xu, et al., A computation offloading method over big data for IoT-enabled cloud-edge computing, Future Gener. Comput. Syst. 95 (2019) 522–533.
[14] S.A. Zakaryia, S.A. Ahmed, M.K. Hussein, Evolutionary offloading in an edge environment, Egypt. Inform. J. 22 (3) (Sep. 2021) 257–267, https://doi .org /10 .1016 /j .eij .2020 .

09 .003.
[15] Z. Zhao, et al., A novel framework of three-hierarchical offloading optimization for MEC in industrial IoT networks, IEEE Trans. Ind. Inform. 16 (8) (Aug. 2020) 5424–5434,

https://doi .org /10 .1109 /TII .2019 .2949348.
[16] I. Sorkhoh, D. Ebrahimi, R. Atallah, C. Assi, Workload scheduling in vehicular networks with edge cloud capabilities, IEEE Trans. Veh. Technol. 68 (9) (2019) 8472–8486.
[17] H. Yuan, M. Zhou, Profit-maximized collaborative computation offloading and resource allocation in distributed cloud and edge computing systems, IEEE Trans. Autom.

Sci. Eng. 18 (3) (2021) 1277–1287.
[18] H. Zhou, K. Jiang, X. Liu, X. Li, V.C. Leung, Deep reinforcement learning for energy-efficient computation offloading in mobile edge computing, IEEE Int. Things J. (2021).
[19] Z. Xu, W. Liang, M. Jia, M. Huang, G. Mao, Task offloading with network function requirements in a mobile edge-cloud network, IEEE Trans. Mob. Comput. 18 (11) (2018)

2672–2685.
[20] I. Kovacevic, E. Harjula, S. Glisic, B. Lorenzo, M. Ylianttila, Cloud and edge computation offloading for latency limited services, IEEE Access 9 (2021) 55764–55776.
[21] H. Wu, K. Wolter, P. Jiao, Y. Deng, Y. Zhao, M. Xu, EEDTO: an energy-efficient dynamic task offloading algorithm for blockchain-enabled IoT-edge-cloud orchestrated

computing, IEEE Int. Things J. 8 (4) (2020) 2163–2176.
[22] T. Wang, et al., An intelligent dynamic offloading from cloud to edge for smart IoT systems with big data, IEEE Trans. Netw. Sci. Eng. 7 (4) (2020) 2598–2607.
20

http://refhub.elsevier.com/S2214-2096(23)00084-0/bibC4CA4238A0B923820DCC509A6F75849Bs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibC81E728D9D4C2F636F067F89CC14862Cs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibECCBC87E4B5CE2FE28308FD9F2A7BAF3s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibA87FF679A2F3E71D9181A67B7542122Cs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibE4DA3B7FBBCE2345D7772B0674A318D5s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib1679091C5A880FAF6FB5E6087EB1B2DCs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib8F14E45FCEEA167A5A36DEDD4BEA2543s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibC9F0F895FB98AB9159F51FD0297E236Ds1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib45C48CCE2E2D7FBDEA1AFC51C7C6AD26s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibD3D9446802A44259755D38E6D163E820s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib6512BD43D9CAA6E02C990B0A82652DCAs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib6512BD43D9CAA6E02C990B0A82652DCAs1
https://doi.org/10.1109/TNSE.2020.3047454
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibC51CE410C124A10E0DB5E4B97FC2AF39s1
https://doi.org/10.1016/j.eij.2020.09.003
https://doi.org/10.1016/j.eij.2020.09.003
https://doi.org/10.1109/TII.2019.2949348
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibC74D97B01EAE257E44AA9D5BADE97BAFs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib70EFDF2EC9B086079795C442636B55FBs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib6F4922F45568161A8CDF4AD2299F6D23s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib1F0E3DAD99908345F7439F8FFABDFFC4s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib98F13708210194C475687BE6106A3B84s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib3C59DC048E8850243BE8079A5C74D079s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibB6D767D2F8ED5D21A44B0E5886680CB9s1

H. Materwala, L. Ismail and H.S. Hassanein Vehicular Communications 43 (2023) 100654
[23] J. Almutairi, M. Aldossary, A novel approach for IoT tasks offloading in edge-cloud environments, J. Cloud Comput. 10 (1) (2021) 1–19.
[24] Y. Wang, et al., A game-based computation offloading method in vehicular multiaccess edge computing networks, IEEE Int. Things J. 7 (6) (2020) 4987–4996.
[25] J. Zhao, Q. Li, Y. Gong, K. Zhang, Computation offloading and resource allocation for cloud assisted mobile edge computing in vehicular networks, IEEE Trans. Veh.

Technol. 68 (8) (2019) 7944–7956.
[26] Y. Dai, D. Xu, S. Maharjan, Y. Zhang, Joint load balancing and offloading in vehicular edge computing and networks, IEEE Int. Things J. 6 (3) (2018) 4377–4387.
[27] C. Zhu, et al., Folo: latency and quality optimized task allocation in vehicular fog computing, IEEE Int. Things J. 6 (3) (2018) 4150–4161.
[28] G. Peng, H. Wu, H. Wu, K. Wolter, Constrained multi-objective optimization for IoT-enabled computation offloading in collaborative edge and cloud computing, IEEE Int.

Things J. 8 (17) (2021) 13723–13736.
[29] H. Liao, et al., Learning-based intent-aware task offloading for air-ground integrated vehicular edge computing, IEEE Trans. Intell. Transp. Syst. 22 (8) (Aug. 2021)

5127–5139, https://doi .org /10 .1109 /TITS .2020 .3027437.
[30] L. Ismail, H. Materwala, ESCOVE: energy-SLA-aware edge-cloud computation offloading in vehicular networks, Sensors 21 (15) (2021) 5233.
[31] G. Zhang, T.Q.S. Quek, M. Kountouris, A. Huang, H. Shan, Fundamentals of heterogeneous backhaul design—analysis and optimization, IEEE Trans. Commun. 64 (2) (2016)

876–889.
[32] L. Hu, et al., Optimal route algorithm considering traffic light and energy consumption, IEEE Access 6 (2018) 59695–59704.
[33] L. Ismail, H. Materwala, EATSVM: energy-aware task scheduling on cloud virtual machines, Proc. Comput. Sci. 135 (2018) 248–258, https://doi .org /10 .1016 /j .procs .2018 .

08 .172.
[34] C. Chekuri, S. Khanna, A polynomial time approximation scheme for the multiple knapsack problem, SIAM J. Comput. 35 (3) (2005) 713–728.
[35] D. Pisinger, Where are the hard knapsack problems?, Comput. Oper. Res. 32 (9) (2005) 2271–2284.
[36] H. Materwala, L. Ismail, R.M. Shubair, R. Buyya, Energy-SLA-aware genetic algorithm for edge–cloud integrated computation offloading in vehicular networks, Future

Gener. Comput. Syst. 135 (2022) 205–222, https://doi .org /10 .1016 /j .future .2022 .04 .009.
[37] J.H. Holland, Adaptation in Natural and Artificial Systems: an Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence, MIT Press, 1992.
[38] B. Tessema, G.G. Yen, An adaptive penalty formulation for constrained evolutionary optimization, IEEE Trans. Syst. Man Cybern., Part A, Syst. Hum. 39 (3) (2009) 565–578.
[39] M. Akbari, H. Rashidi, S.H. Alizadeh, An enhanced genetic algorithm with new operators for task scheduling in heterogeneous computing systems, Eng. Appl. Artif. Intell.

61 (2017) 35–46.
[40] J.A. Lozano, P. Larrañaga, M. Graña, F.X. Albizuri, Genetic algorithms: bridging the convergence gap, Theor. Comput. Sci. 229 (1–2) (Nov. 1999) 11–22, https://doi .org /10 .

1016 /S0304 -3975(99)00090 -0.
[41] A.E. Eiben, E.H.L. Aarts, K.M. Van Hee, Global convergence of genetic algorithms: a Markov chain analysis, https://doi .org /10 .1007 /BFb0029725, 1991, pp. 3–12.
[42] J. He, L. Kang, On the convergence rates of genetic algorithms, Theor. Comput. Sci. 229 (1–2) (Nov. 1999) 23–39, https://doi .org /10 .1016 /S0304 -3975(99)00091 -2.
[43] D. Yang, L. Li, K. Redmill, Ü. Özgüner, Top-view trajectories: a pedestrian dataset of vehicle-crowd interaction from controlled experiments and crowded campus, in:

2019 IEEE Intelligent Vehicles Symposium (I V), 2019, pp. 899–904.
[44] X. Chen, L. Jiao, W. Li, X. Fu, Efficient multi-user computation offloading for mobile-edge cloud computing, IEEE/ACM Trans. Netw. 24 (5) (2015) 2795–2808.
[45] Edge Server 1, https://www.spec .org /power _ssj2008 /results /res2012q1 /power _ssj2008 -20120306 -00437.html, 2012. (Accessed 4 January 2022).
[46] SPECpower, Cloud Server 1, https://www.spec .org /power _ssj2008 /results /res2016q1 /power _ssj2008 -20151214 -00707.html, 2016. (Accessed 4 January 2022).
[47] SPECpower, Cloud Server 2, https://www.spec .org /power _ssj2008 /results /res2019q2 /power _ssj2008 -20190507 -00964 .html, 2018. (Accessed 4 January 2022).
[48] Cloud Server 3, https://www.spec .org /power _ssj2008 /results /res2012q1 /power _ssj2008 -20120213 -00420 .html, 2012. (Accessed 4 January 2022).
21

http://refhub.elsevier.com/S2214-2096(23)00084-0/bib37693CFC748049E45D87B8C7D8B9AACDs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib1FF1DE774005F8DA13F42943881C655Fs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib8E296A067A37563370DED05F5A3BF3ECs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib8E296A067A37563370DED05F5A3BF3ECs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib4E732CED3463D06DE0CA9A15B6153677s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib02E74F10E0327AD868D138F2B4FDD6F0s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib33E75FF09DD601BBE69F351039152189s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib33E75FF09DD601BBE69F351039152189s1
https://doi.org/10.1109/TITS.2020.3027437
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib34173CB38F07F89DDBEBC2AC9128303Fs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibC16A5320FA475530D9583C34FD356EF5s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibC16A5320FA475530D9583C34FD356EF5s1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib6364D3F0F495B6AB9DCF8D3B5C6E0B01s1
https://doi.org/10.1016/j.procs.2018.08.172
https://doi.org/10.1016/j.procs.2018.08.172
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibE369853DF766FA44E1ED0FF613F563BDs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib1C383CD30B7C298AB50293ADFECB7B18s1
https://doi.org/10.1016/j.future.2022.04.009
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibA5BFC9E07964F8DDDEB95FC584CD965Ds1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibA5771BCE93E200C36F7CD9DFD0E5DEAAs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibD67D8AB4F4C10BF22AA353E27879133Cs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibD67D8AB4F4C10BF22AA353E27879133Cs1
https://doi.org/10.1016/S0304-3975(99)00090-0
https://doi.org/10.1016/S0304-3975(99)00090-0
https://doi.org/10.1007/BFb0029725
https://doi.org/10.1016/S0304-3975(99)00091-2
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib17E62166FC8586DFA4D1BC0E1742C08Bs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bib17E62166FC8586DFA4D1BC0E1742C08Bs1
http://refhub.elsevier.com/S2214-2096(23)00084-0/bibF7177163C833DFF4B38FC8D2872F1EC6s1
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120306-00437.html
https://www.spec.org/power_ssj2008/results/res2016q1/power_ssj2008-20151214-00707.html
https://www.spec.org/power_ssj2008/results/res2019q2/power_ssj2008-20190507-00964.html
https://www.spec.org/power_ssj2008/results/res2012q1/power_ssj2008-20120213-00420.html

	QoS-SLA-aware adaptive genetic algorithm for multi-request offloading in integrated edge-cloud computing in Internet of veh...
	1 Introduction
	2 Related work
	3 System model
	3.1 Communication model
	3.2 Computation model
	3.2.1 Processing model
	3.2.2 I/O model

	4 Problem formulation
	5 Proposed QoS-SLA-aware adaptive genetic offloading algorithm
	5.1 Initialization of offloading solutions
	5.2 Evaluation of the offloading solutions
	5.3 Selection of offloading solutions to reproduce solutions for next generation
	5.4 Crossover to develop offloading solutions for next generation
	5.5 Mutation to diversify the offloading solutions in a generation
	5.6 Termination of the algorithm
	5.7 Complexity and convergence analysis

	6 Performance evaluation
	6.1 Experimental environment
	6.2 Experiments
	6.3 Experimental results analysis
	6.3.1 Convergence analysis
	6.3.2 Comparative performance analysis

	7 Conclusion
	Declaration of competing interest
	Data availability
	References

