SandBoxer: A Self-Contained Sensor Architecture
for Sandboxing the Industrial Internet of Things

Galal Hassan, Abdulmonem M. Rashwan, Hossam S. Hassanein
School of Computing
Queen’s University, Kingston, ON, Canada
Email: {ghassan, arashwan, hossam} @cs.queensu.ca

Abstract—The Industrial Internet-of-Things (IIoT) has gained
significant interest from both the research and industry com-
munities. Such interest came with a vision towards enabling
automation and intelligence for futuristic versions of our day
to day devices. However, such a vision demands the need for
accelerated research and development of IIoT systems, in which
sensor integration, due to their diversity, impose a significant
roadblock. Such roadblocks are embodied in both the cost
and time to develop an IIoT platform, imposing limits on the
innovation of sensor manufacturers, as a result of the demand
to maintain interface compatibility for seamless integration and
low development costs. In this paper, we propose an IIoT system
architecture (SandBoxer) tailored for sensor integration, that
utilizes a collaborative set of efforts from various technolo-
gies and research fields. The paper introduces the concept of
”development-sandboxing” as a viable choice towards building
the foundation for enabling true-plug-and-play IloT. We start by
outlining the key characteristics desired to create an architecture
that catalyzes IIoT research and development. We then present
our vision of the architecture through the use of a sensor-hosted
EEPROM and scripting to ”’sandbox’ the sensors, which in
turn accelerates sensor integration for developers and creates
a broader innovation path for sensor manufacturers. We also
discuss multiple design alternative, challenges, and use cases in
both the research and industry.

Index Terms—sandboxing; IIoT; PnP; virtual sensor; sen-
sor integration; embedded scripting; cross-platform sensing;
development-sandboxing

I. INTRODUCTION

Towards realizing the vision of Industry 4.0 (I4.0), a need
for accelerated research and development in each of its nine
pillars is mandatory [1]. One such pillar is the Industrial Inter-
net of Things (IIoT). One of the main challenges throttling the
research and development of IIoT is the process of interfacing
sensors and transducers with an IIoT system.

The current status quo requires the developer to write
lengthy drivers for each transducer from each manufacturer. In
order to simplify and modularize the development, system ar-
chitects usually use a dedicated MicroController Unit (MCU)
for each transducer that is specifically programmed to collect
the transducer readings and communicate it to the main MCU
on the central data collection device. Such method complicates
the development of a new IoT system and radically reduces the
flexibility of using different sensors post-production because
the developer is required to reprogram the MCUs every time
a different sensor is required [2]. Therefore, having the ability
to plug and unplug a transducer seamlessly and without a

978-1-7281-2373-8/19/$31.00 ©2019 IEEE

dedicated MCU would reduce the development time and risk
significantly, while allowing a simpler prototyping mechanism
for researchers, which in turn will accelerate research and
development of IoT.

Moreover, each sensor element is diverse by nature as it
comes with a set of requirements and interfacing instructions
set by the manufacturer. Such heterogeneity makes it increas-
ingly challenging to integrate different sensors into an IloT
system. Even though plug-and-play (PnP) is no longer a novel
concept, multiple efforts have been made towards achieving
the complete vision of the IIoT paradigm [3], each focusing
on a different layer rendering each with its limitations, ranging
from development complexity to cost. SPROUTS, for instance,
is a Wireless Sensor Network (WSN) platform architecture
designed to achieve the vision of IIoT. Among the features of
SPROUTS was an attempt at PnP functionality [4]. However,
the implementation required a separate sensor board with a
dedicated MCU, rendering Sprouts PnP impractical for the
IIoT paradigm.

Our research introduces a scripting-based IloT architecture
(dubbed SandBoxer) that isolates sensors into a sandboxed en-
vironment using an Electrically Erasable Programmable Read-
Only Memory (EEPROM), thus, facilitating PnP functionality
and eliminating the need for an extra MCU for each transducer.
SandBoxer acts as an enabler to key technological devel-
opments in the IoT paradigm, such as virtual sensors, PnP,
sensor sandboxing, and platform independence. By enabling
such technologies, the proposed research simplifies sensor and
transducer integration, therefore, accelerating the progression
of IoT research and development. Our architecture involves
four main contributions, a sandboxed sensor IIoT system
architecture, a light-weight kernel architecture optimized for
resource-constrained embedded systems, a sensor/transducer
system architecture for self-containment, and a low-footprint
scripting language description.

The remainder of this paper starts with a discussion on
some of the background and inspirational efforts in section
II. Followed by an outline of the desired characteristics of
the IIoT architecture in section III. We then propose our
SandBoxer architecture in section IV and converse on the
challenges and design alternatives in section V. We identify
some use-cases for our architecture in section VI, then finally
conclude the paper and identify the future directions in section
VIIL.

Authorized licensed use limited to: Queen's University. Downloaded on June 11,2020 at 17:36:21 UTC from IEEE Xplore. Restrictions apply.

II. BACKGROUND & INSPIRATIONS

Over the past decade, multiple efforts have been employed
towards rapid IIoT research and development. PnP, and plat-
form independence are only two of the enablers in the IIoT
roadmap [3]. However, research on the use of embedded script-
ing to achieve such features has received minimal attention.
In this section, we review some of the influential efforts that
were the seeds of our proposed architecture.

A. Plug-and-Play (PnP)

The lack of customization is an integral aspect that is
throttling the advancement of IIoT, due to the need to redesign
a platform in order to re-use it in a different application.
Such redesign leads to a longer time-to-market and costly
development and testing procedures [4]. When combined with
the IoT paradigm, the concept of PnP enables a customizable
platform that can adapt to different applications without the
need for redevelopment. Despite the added simplicity and
flexibility, PnP presents some substantial challenges in order
to be considered feasible for the IoT paradigm. One such
challenge is the fact that sensor drivers are still required to be
ported and tested by the IoT platform developers, as is the case
with SPROUTS [4]. Moreover, the security risks presented
with architectures such as UPnP (although mitigable) pose
a significant threat when integrated with IIoT industry [5].
Therefore, an IIoT applicable PnP architecture is necessary
for the advancement of 14.0 [3].

B. IEEE 21451

The IEEE registered a series of 21451 standards with the
aim to add plug-and-play capabilities to sensors and trans-
ducers. The standard provides said sensors and transducers
with capabilities such as self-identification, self-description,
self-calibration, and standard data formats [6]. In order to
implement such features, the standard specifies the use of
an EEPROM loaded with a Transducer Electronic Data Sheet
(TEDS). As with traditional datasheets, TEDS contains infor-
mation about the manufacturer, the type of transducer, serial
number, accuracy, measurement range, calibration data, and
the supported data formats. By design, the standard is more
inclined towards analogue sensors than digital ones, hence,
lacking the support of critical features such as interfacing
protocol and sensor register descriptions [7]. In order to use
the standard with a digital sensor, system developers are still
required to write an interfacing driver program, as well as
use a dedicated MCU with the sensor [2]. Therefore, in order
to render the standard more accessible for different types of
sensors and transducers and enabling true PnP functionality,
it is essential to reduce the burden on system developers
and move the driver program from the system side to the
sensor/transducer side, as well as remove the dedicated MCU
on the sensor side.

C. Sandboxing

The term sandboxing is widely used to describe the concept
of isolating the execution of software programs in separate

restricted environments. Thus, safeguarding parallel and un-
derlying software systems from unauthorized software access
[8]. Research on different sandboxing mechanisms has been
on the rise for the past decade [9]; for instance, fog computing
uses virtualization in order to enable sandboxing [10]. Apple
uses sandboxing in its iOS operating system in order to isolate
each application and limit access to the file system, network,
and the underlying hardware [11]. Googles Android, on the
other hand, uses a sandboxing architecture based on the Linux
kernel [12]. The sandboxing concept has been adopted in the
WSN paradigm in order to create a live forensics framework
[13] and enable software-based memory protection [14] for
wireless sensor nodes. However, sandboxing adoption in the
field of IIoT has been very limited. Moreover, there remains
a massive gap in using the concept in other layers in the IIoT
architecture aside from the application layer.

D. Embedded Scripting

Another source of inspiration for our research is the concept
of script programming. Scripting is a programming language
that is at a higher-level than system programming languages
(often referred to as high-level languages) such as C, C++,
and Java. Instead of compiling a program ahead of time to
generate machine code (as is the case with system program-
ming), an interpreter runs script commands during runtime
[15]. Among the many advantages of scripting and most
relevant to our research are platform independence, rapid
development and runtime execution. Unfortunately, running
a traditional scripting engine on an embedded system is not
trivial, which motivated researchers to develop stripped-down
versions of Lua and Python, eLua [16] and MicroPython [17]
respectively. Another example of optimizing scripting engines
for embedded systems is TinyScript, an open source scripting
engine designed from scratch for memory-constrained micro-
controllers [18]; and Tapper, a lightweight scripting engine
designed for resource-constrained wireless sensor networks
[19]. Alternatively, projects such as TinyOS [20] focused
on enabling runtime system support on resource-constrained
embedded systems through a low-footprint Operating System
(OS), aiming to support programming abstractions and con-
figurations. However, due to the extensive generic features
included with TinyOS (and similar embedded OS), only a
handful of platforms are capable of running the OS [20].

E. IoT Sensor Platforms

Other Efforts such as Arduino and its shields [21], Cloudbit
and LittleBit [22], Particle Photon [22], SPROUTS [4], and
Raspberry Pi [23] have created separate sensing units that
provide a simple way to interface with the host device.
However, such sensing units require an additional onboard
MCU and remain dependent on the platform of the host device
where the driver implementation remains. Additionally, only
some such efforts provide the flexibility of hot-plugging a
sensing unit.

Using runtime execution on the host for the sensor has
received minimal attention in the efforts mentioned earlier as

Authorized licensed use limited to: Queen's University. Downloaded on June 11,2020 at 17:36:21 UTC from IEEE Xplore. Restrictions apply.

well as many others in the literature. Having the ability to
execute remote code during runtime for hot-pluggable sensors
will enable PnP functionality. Another advantage would be
the ability to relocate the sensor driver implementation from
the host side to the sensing unit side, hence, reducing the
storage used by the firmware on the host as well as sandboxing
the sensing unit. While using an embedded scripting engine
would enable shifting the driver implementation to the sensing
unit, the current state-of-the-art languages lack the capabilities
to make it possible. Finally, an IIoT system architecture that
involves such capabilities is needed to act as a catalyst for
the advancement of 14.0. In the next section, we discuss the
desired characteristics of such architecture.

III. DESIRED CHARACTERISTICS

A catalyst for IIoT research and development is necessary
in order to achieve the vision of 14.0 [1]. However, in order
to act as a catalyst, an IIoT system architecture must be
able to simplify sensor integration by enabling development-
sandboxing, platform-independence, and True-PnP sensors, as
well as being optimized for IIoT operation.

A. Enable Development-Sandboxing

The most common adoption of the sandboxing concept is in
isolating the software applications. Nevertheless, sandboxing
need not only be implemented for execution isolation but also
has a more substantial potential in the development of an entire
IIoT system. Thus, we use the sandboxing analogy in order
to present the concept of development-sandboxing. In order
to differentiate between both sandboxing concepts, we use
the term execution-sandboxing for the traditional sandboxing
technique mentioned earlier and development-sandboxing for
the latter.

Contrary to its counterpart, development-sandboxing is con-
cerned with the isolation of the development of a particular
aspect of a system, including hardware and software. Isolating
the different development responsibilities in an IIoT system
enables the separation of concerns (SoC) paradigm and creates
a modular IIoT platform. Thus, reducing the development
burden and complexity on IoT system developers. To achieve
a high level of system modularity, the IIoT catalyst should be
able to provide an encapsulated self-contained sensor sandbox
architecture, that effectively shifts the driver development re-
sponsibility from the IoT developer to the sensor manufacturer.
Such SoC ensures the most efficient driver implementation
while reducing the coding efforts on IoT developers and
enabling development-sandboxing.

B. Enable Platform-Independence

Given the diversity of IlIoT platforms available in the market,
as well as the heterogeneous IloT infrastructure components,
the complexity of developing inter-connected IIoT devices
rises exponentially. Therefore, an IIoT architecture that en-
ables platform independence will serve as one of the main
ingredients in the catalyst for IloT research and development.

C. Enable True-PnP Sensors

One of the key enablers in the IoT roadmap is PnP [3].
However, in order to achieve True-Plug-and-Play (T-PnP)
sensors, the IIoT catalyst must be able to detect connec-
tion/disconnection, identify, and load and run the correct driver
for the connected sensor. All with zero-configuration from the
IoT developers end.

D. IloT Optimized Operation

IIoT platforms usually use a resource-constrained archi-
tecture, and with simplicity and adaptability comes chal-
lenges for such platforms. Therefore, the catalyst should be
compatible with a wide range of platforms by having ex-
tremely low minimum-operation-requirements. The lower the
requirements, the highly adaptable the architecture becomes,
increasing its effectivity as a catalyst.

Different concepts have been proposed to fulfill such charac-
teristics individually. However, an architecture that combines
all characteristics into a single system is missing from the liter-
ature. In the following section, we discuss our proposed IIoT
system architecture, SandBoxer, that is capable of fulfilling
each one of the characteristics discussed earlier.

IV. THE SANDBOXER APPROACH

SandBoxer is an IloT system architecture that isolates sen-
sor development from embedded system development, without
the need for an additional MCU. Thus, creating a low-power
hot-pluggable self-contained (sandboxed) sensor architecture
optimized for the IloT. Fig. 1.a illustrates a traditional system
architecture of an IIoT sensor node, while Fig. 1.b illustrates
the proposed SandBoxer architecture.

Traditional sensor drivers are either coded by an IoT system
developer from scratch or ported from the manufacturers
provided driver library (if available). Due to the locality of
such drivers being part of an IIoT sensor node architecture, the
IoT system developer is required to rewrite parts of the library
in order to use it on a different platform. SandBoxer proposes
a different approach, the use of an EEPROM integrated with
the sensing unit, similar to the IEEE 21451 standard. Contrary
to the standard, we suggest the manufacturer implements the
driver on the EEPROM in a platform-independent scripting
language, dubbed SandScript. Thus, instead of containing a
TEDS, the EEPROM shall be populated with what we call
a Transducer Electronic Instruction Set (TEIS). This shift in
responsibility enables platform independence by allowing a
system developer to load the platform-independent TEIS from
a sensors EEPROM instead of coding a platform-dependent
driver. Development-sandboxing is also enabled on the sensors
by isolating all sensor-specific elements (sensing element and
driver) into a single unit. Finally, the implementation of the
sensor driver in the form of a TEIS includes an operation
implementation, thus enabling T-PnP by allowing an IoT
system developer to simply run the TEIS without the need
for coding an operation procedure.

The SandBoxer architecture consists of an IloT sensor
node system architecture and a sandboxed sensor architecture,

Authorized licensed use limited to: Queen's University. Downloaded on June 11,2020 at 17:36:21 UTC from IEEE Xplore. Restrictions apply.

SandBoxer-Node

Application

Traditional lloT System Architecture
Application

SandBoxer Kernel

Network Stack Network Stack
HAL HAL
Sensor | Driver Sensor | Driver Sensor| Driver
SandBoxed | SandBoxed J SandBoxed
Sensor Sensor Sensor

Fig. 1. Comparison between (a) a traditional IIoT system architecture and
(b) a SandBoxer IIoT system Architecture

dubbed SandBoxer-Node, and SandBoxed-Sensor respectively.
A SandBoxer system consists of multiple SandBoxed-Sensors
that are connected to a SandBoxer-Node. Each SandBoxed-
Sensor is loaded with a TEIS written in the SandScript
language and built using the TEIS build toolchain.

A. SandBoxer-Node

The SandBoxer-Node must be able to load and execute a
sensors TEIS while using the concept of execution-sandboxing
in order to isolate and protect user processes from external
threats. The architecture should also have the ability to co-
ordinate and handle the use of multiple sensors concurrently.
Finally, integrating such features into an IIoT platform must
not disrupt the current architecture used. We recommend the
layered system architecture approach in order to encapsulate
each system and separate the concerns during development.
Thus the proposed SandBoxer-Node consists of two parallel
layers on top of the Hardware Abstraction Layer (HAL),
namely, IoT and SandBoxer Kernel layers. The IoT layer
consists of the traditional IoT sub-layers, such as a network
layer, and an application layer.

The SandBoxer Kernel layer is the main scripting engine
running on an IIoT sensor node, and the only component
required to be used by the IloT system developer. It is
responsible for managing the connection and disconnection of
supported sensors, scheduling the sensor program execution,
and exposing the sensor information to the application layer.
The kernel is to be provided as a light-weight platform-
independent library with a transparent application program-
ming interface (API) to simplify the integration of SandBoxer
into existing IIoT systems. The integration process should
involve importing the library, and ensuring that the system
APIs are compatible with the kernel APIs. The proposed
kernel consists of four main components, the exposer, the
interpreter, the separator, and the scheduler. Fig. 2 illustrates
the architecture of the kernel.

The exposer is responsible for communicating between the
nodes application layer, and the SandBoxer kernel. It should
also hold intermediate data such as a sensors reading for later
retrieval by the application, while the interpreter is responsible
for parsing a SandScript and invoking the corresponding
system level functions in the HAL through the exposed APIL.
The separator is responsible for receiving different parts of the
sensors TEIS, then separating and forwarding the information
to the correct component. The scheduler is responsible for
initiating and coordinating the SandBoxer operation once the

Scheduler

Sensor
meta-data

SandBoxer Completion
APl Signal

Fig. 2. SandBoxer Kernel Software Architecture

Operational
operate.Sand

node layer initializes it. It should also schedule the execution
of multiple connected SandBoxed-Sensors.

Descriptor Module Specific

Descriptor

Manufacturer init.Sand

read.Sand

Module Type

Module Specific write.Sand

Interface Type

Default Register Values calibrate.Sand

Operational

Fig. 3. The sensor SandBox memory map.

B. SandBoxed-Sensor

The SandBoxed-Sensor must have an integrated EEPROM
to be consumed by a TEIS that is developed by the sensors
manufacturer. The EEPROM image should be flashed by the
manufacturer using a TEIS build toolchain that generates
and signs the EEPROM image with the manufacturers digital
signature. Thus simplifying the integration of the sensor as
well as providing the IoT system developer with a method
to authenticate the TEIS. The TEIS build toolchain can also
be used by the IoT system developer to update the TEIS
and alter the operation procedure of the sensor; however, the
updated TEIS would no longer be signed by the manufacturer.
Such concept enables a highly flexible sandboxed sensor
architecture that allows system developers to customize the
implementation of the sensor. Since the TEIS language must
be platform-independent, it is essential that it be based on
the concept of scripting. The use of a scripting language
enables platform-independence and T-PnP by allowing an IoT
system developer to run the TEIS SandScripts on any platform
and with minimal involvement. A TEIS should consume the
entirety of the EEPROM and consists of a Descriptor, module-
specific, and an operational area. Fig. 3 Illustrates the Sensor
SandBox memory map.

The descriptor area should contain key-information on the
module, such as the manufacturer ID, sensor module type,
communications interface, and so on. The module-specific
area should contain multiple SandScripts that perform module
specific operations, such as initialization, calibration, sensor
reading, and so on. This section of the TEIS can be considered
as the sensor driver implementation. The Operational area
should contain a single SandScript that performs the sensor
module operation loop. This area can be considered as the
sensor application layer.

Authorized licensed use limited to: Queen's University. Downloaded on June 11,2020 at 17:36:21 UTC from IEEE Xplore. Restrictions apply.

V. DESIGN CHALLENGES AND ALTERNATIVES

The implementation of SandBoxer imposes multiple chal-
lenges; however, the SandBoxer design provides a flexible
architecture that allows the developers to trade off speed,
energy-efficiency, and memory-usage according to the desired
application.

A. SandBoxer Kernel

Multiple challenges are inherent with interpreter implemen-
tations and usually embodied in energy consumption, process-
ing overhead, and memory footprint. The implementation of
the scheduler is possible using three main approaches, greedy,
cached, and the read then delete.

1) The Read then Delete Approach: only stores the descrip-
tor part of the TEIS for each sensor upon connection. The
SandScripts are dynamically read from the sensors EEPROM
to the nodes memory when needed, then immediately deleted
from the nodes memory once the SandScript is processed.
Using this approach compromises the kernel iteration time
by increasing the execution time of each task; in return,
it uses only the required minimum of the nodes memory.
This approach is suitable for applications in which the time
response is not constrained, but the IIoT nodes are resource-
constrained.

2) The Greedy Approach: stores the full contents of each
sensors EEPROM upon connection, therefore compromising
the run-time memory of the node in favour of gaining an
increased processing speed. Such improvement is due to the
elimination of communicating with the sensors EEPROM on
every iteration of the kernel. Using this approach would be
suitable for applications in which memory resources are not
constrained; however, the time response is critical.

3) The Cached Approach: uses a caching mechanism that
only stores the frequently used SandScripts, therefore reducing
the nodes memory usage while utilizing the communication
with the sensors EEPROM. Such an approach would increase
the complexity of the kernel implementation while optimizing
energy and memory resource usage.

B. Build Toolchain

Multiple challenges are inherent with the design of In-
tegrated Development Environment (IDE) implementations,
usually embodied in ease-of-use, generated code size, and
the level of debugging support. The implementer can choose
to trade off ease-of-use for a higher level of debugging or
choose to use a simpler compression algorithm but with a
larger generated code size. The choice of generating bytecode
will effectively reduce the generated code size while increasing
the complexity of development. Finally, the choice of the code
signing algorithm will directly affect the kernel implementa-
tion complexity and response-time.

C. SandScript Language

There are a few scripting language candidates that can be
used as a foundation for the development of the SandScript
language. However, the language flexibility and readability

play a massive role in the adoption of the language. Flexible
scripting languages such as uPython and eLua [16], [17]
are bloated with features that are unnecessary in the IIoT
paradigm. Such features increase the energy and memory foot-
print of the language interpreter. Languages such as TinyScript
[18] are designed for resource-constrained embedded systems;
however, lack the flexibility available in other languages.

VI. USE-CASES

SandBoxer is designed to act as a catalyst for the research
and development of IIoT. However, to validate the value of
our architecture, we outline several use-cases of SandBoxer in
different sectors of the IIoT industry.

1) The Sensor Manufacturing Sector: Sensor Manufac-
turers are continually struggling to balance innovation with
seamless integration, mainly due to the lack of standardization
of interfaces. A manufacturer that creates a new type of
accelerometer is forced to create different versions of the
module for the different interfacing standards. Followed by
the development of a driver library on a single platform that
is to be ported by IoT system developers to different platforms.
Finally, the manufacturer writes a datasheet that describes
how the module is to be integrated, initialized, programmed,
calibrated, and used. The porting process of the driver library
by the IoT system developer might affect the performance of
the sensor, resulting in possible inaccurate sensor readings and
unpredicted behaviour. If the manufacturer uses SandBoxer to
design the module as a SandBoxed-Sensor, the process would
involve creating the modules with an EEPROM, developing
the driver library using the platform-independent SandScript,
and flashing the EEPROM with the generated TEIS. The
datasheet, in this case, would be much simpler, as it would
only describe how to use the driver. Thus, the manufacturer
is confident that the driver implementation reflects the quality
of the new accelerometer, achieves a broader adoption for the
module, and is no longer hindered by balancing innovation
with seamless integration.

2) The IloT System Development Sector: Multiple compa-
nies offer IIoT system development services for clients that are
application specific; however, only a handful of companies de-
velop modular IIoT platforms due to its inherent development
complexity. A company that is tasked with the development
of an IIoT system for monitoring a manufacturing pipeline is
forced to redesign its asset-tracking IIoT platform in order to
incorporate the requirements of the new application. Such re-
design involves the choice, development and testing of drivers,
and the operation development of each of the new sensors.
If the company uses SandBoxer, the redesign process would
merely involve modifying the operation of the new sensors
to link with the current platform. Using SandBoxer enables
post-deployment flexibility that transforms the asset-tracking
IIoT platform into a manufacturing pipeline monitoring IIoT
platform, resulting in a cost-effective implementation and a
faster time to market.

Authorized licensed use limited to: Queen's University. Downloaded on June 11,2020 at 17:36:21 UTC from IEEE Xplore. Restrictions apply.

3) The Research Sector: An loT researcher spends count-
less hours developing and testing on IoT platforms. The major-
ity of those hours are usually spent integrating different sensors
and modules. A researcher that is designing a new network
protocol might need to test and compare the performance of
different radio modules on a specific IoT platform. Such com-
parison involves the development of a single application and
multiple drivers, one for each radio module. Using SandBoxer
in such application, the researcher can diminish the number of
hours spent on integrating the radio modules by simply using a
SandBoxed-Sensor radio module. Thus, eliminating the hours
spent on driver development and instantly test an unlimited
number of radio modules.

4) The Hobbyist Sector: Hobbyists are an integral part of
the research and development of IoT; however, they usually
have limited experience in complex system development.
Thus, the process of crafting a new idea for an IoT platform
becomes very challenging. A hobbyist that wants to connect a
CO2 sensor to their current smart home IoT platform is faced
with multiple challenges including, finding a sensor that can
be connected, finding or coding a driver for the sensor, finding
or coding the application implementation for the sensor, and
finally linking the operation of the new sensor with the
current sensors. The difficulty of each of these challenges
is inversely proportional to the development experience the
hobbyist has. If the hobbyist uses SandBoxer, the challenges
will be significantly reduced to finding a CO2 SandBoxed-
Sensor and linking the operation with the current sensors.
Therefore, creating a larger community of IoT hobbyists and
subsequently accelerating the development of IIoT.

VII. CONCLUSION

In this paper, we introduced the concept of development-
sandboxing as a viable catalyst for the development of IIoT.
We outlined the desired features and proposed SandBoxer, an
IIoT system architecture based on such a concept. We found
it evident that SandBoxer reduces the development efforts of
IoT system developers by shifting the driver development from
their scope to the sensors manufacturer. We conclude that the
implementation of SandBoxer presents multiple challenges and
tradeoffs which we discussed in section V. We also believe
that our concept is not only applicable to sensors but can
be also be used for other modules, such as radio transceiver
modules. We plan on implementing a prototype of SandBoxer
to evaluate and compare it against bare-metal implementation.
Afterwards, we plan on investigating a solution for the wide-
range of interface protocols used to connect sensors. Finally,
we plan on exploring the possibility of extending SandBoxer
beyond the realm of IIoT and into personal IoT and mobile
devices.

VIII. ACKNOWLEDGEMENT

This research is supported by a grant from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
under grant number: STPGP 479248.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]
(1]

[12]

[13]

[14]

[15]

[16]
[17]

(18]

[19]

[20]

[21]

[22]

[23]

REFERENCES

M. RiiBmann, M. Lorenz, P. Gerbert, M. Waldner, J. Justus, P. Engel,
and M. Harnisch, “Industry 4.0: The future of productivity and growth
in manufacturing industries,” Boston Consulting Group, vol. 9, 2015.
Q. Chi, H. Yan, C. Zhang, Z. Pang, and L. Da Xu, “A reconfigurable
smart sensor interface for industrial wsn in iot environment,” IEEE
transactions on industrial informatics, vol. 10, no. 2, pp. 1417-1425,
2014.

J. Gubbi, R. Buyya, S. Marusic, and M. Palaniswami, “Internet of things
(iot): A vision, architectural elements, and future directions,” Future
generation computer systems, vol. 29, no. 7, pp. 1645-1660, 2013.

A. El Kouche, H. S. Hassanein, and K. Obaia, “Wsn platform plug-
and-play (pnp) customization,” in Intelligent Sensors, Sensor Networks
and Information Processing (ISSNIP), 2014 IEEE Ninth International
Conference on. 1EEE, 2014, pp. 1-6.

S. Agarwal, S. Majumdar, A. Maiti, and A. Nath, “Security and privacy
issues of internet of things: Challenges and threats,” International
Journal of Advanced Technology in Engineering and Science, vol. 3,
no. 11, pp. 89-98, 2015.

T. R. Licht, “The ieee 1451.4 proposed standard,” IEEE Instrumentation
& Measurement Magazine, vol. 4, no. 1, pp. 12-18, 2001.

M. Sudrez-Albela, P. Fraga-Lamas, T. M. Ferndndez-Caramés,
A. Dapena, and M. Gonzilez-Lépez, “Home automation system based
on intelligent transducer enablers,” Sensors, vol. 16, no. 10, p. 1595,
2016.

A. RADOVICI, C. RUSU, and R. ERBAN, “A survey of iot security
threats and solutions,” in 2018 17th RoEduNet Conference: Networking
in Education and Research (RoEduNet), Sep. 2018, pp. 1-5.

D. S. Peterson, M. Bishop, and R. Pandey, “A flexible containment mech-
anism for executing untrusted code.” in Usenix Security Symposium,
2002, pp. 207-225.

A. Rayes and S. Salam, “Fog computing,” in Internet of Things From
Hype to Reality. Springer, 2019, pp. 155-180.

C. Miller, D. Blazakis, D. DaiZovi, S. Esser, V. Iozzo, and R.-P.
Weinmann, iOS Hacker’s Handbook. John Wiley & Sons, 2012.

M. S. Ahmad, N. E. Musa, R. Nadarajah, R. Hassan, and N. E.
Othman, “Comparison between android and ios operating system in
terms of security,” in Information Technology in Asia (CITA), 2013 8th
International Conference on. 1EEE, 2013, pp. 1-4.

A. Zaharis, A. 1. Martini, L. Perlepes, G. Stamoulis, and P. Kikiras, “Live
forensics framework for wireless sensor nodes using sandboxing,” in
Proceedings of the 6th ACM workshop on QoS and security for wireless
and mobile networks. ACM, 2010, pp. 70-77.

R. Kumar, E. Kohler, and M. Srivastava, “Harbor: software-based mem-
ory protection for sensor nodes,” in Proceedings of the 6th international
conference on Information processing in sensor networks. ACM, 2007,
pp. 340-349.

J. K. Ousterhout, “Scripting: Higher level programming for the 21st
century,” Computer, vol. 31, no. 3, pp. 23-30, 1998.

elua project. [Online]. Available: http://www.eluaproject.net/

C. Bell, “Introducing micropython,” in MicroPython for the Internet of
Things. Springer, 2017, pp. 27-57.

P. A. Levis, D. E. Gay, and D. E. Culler, Bridging the gap: Programming
sensor networks with application specific virtual machines. Computer
Science Division, University of California, 2004.

Q. Xie, J. Liu, and P. H. Chou, “Tapper: a lightweight scripting engine
for highly constrained wireless sensor nodes,” in Proceedings of the 5th
international conference on Information processing in sensor networks.
ACM, 2006, pp. 342-349.

P. Levis, S. Madden, J. Polastre, R. Szewczyk, K. Whitehouse, A. Woo,
D. Gay, J. Hill, M. Welsh, E. Brewer et al., “Tinyos: An operating
system for sensor networks,” in Ambient intelligence. Springer, 2005,
pp. 115-148.

A. Nayyar and V. Puri, “A review of arduino board’s, lilypad’s &
arduino shields,” in Computing for Sustainable Global Development
(INDIACom), 2016 3rd International Conference on. IEEE, 2016, pp.
1485-1492.

K. J. Singh and D. S. Kapoor, “Create your own internet of things: A
survey of iot platforms.” IEEE Consumer Electronics Magazine, vol. 6,
no. 2, pp. 57-68, 2017.

V. Vujovi¢ and M. Maksimovié, “Raspberry pi as a sensor web node
for home automation,” Computers & Electrical Engineering, vol. 44, pp.
153-171, 2015.

Authorized licensed use limited to: Queen's University. Downloaded on June 11,2020 at 17:36:21 UTC from IEEE Xplore. Restrictions apply.

