
Task Provisioning in Unreliable Edge Networks:
Inferring Utility

Ibrahim M. Amer∗, Sharief M. A. Oteafy∗†, Sara A. Elsayed∗, and Hossam S. Hassanein∗
∗School of Computing, Queen’s University, Kingston, ON, Canada
†School of Computing, DePaul University, Chicago, Illinois, USA

ibrahim.amer@queensu.ca, soteafy@depaul.edu, {selsayed, hossam}@cs.queensu.ca

Abstract—Edge computing can satisfy the requirements of
latency-critical and data-intensive applications by exploiting com-
putational resources of end devices. However, such devices inher-
ently suffer from dynamic user behavior, cyclic task-switching,
varying link qualities which often impact their reliability. In
addition, in incentivized systems, they may often over-estimate
their advertised capabilities and consequently fail on delivering. In
this paper, we propose the Reputation-based Task Assignment and
Replication (RTAR) scheme. RTAR is the first scheme that uses a
black box approach to perform cost-efficient task replication that
accounts for workers’ reliability and preserves workers’ privacy
by not requiring or soliciting any information about their devices.
RTAR incorporates a reputation model using beta distribution to
estimate the worker’s reputation based on past performance. We
formulate the problem as an Integer Linear Program (ILP) that
strives to maximize the overall reputation of recruited workers,
while abiding by a certain budget limit for each task. We also
propose the RTAR-Heuristic (RTAR-H) scheme. RTAR-H uses
matching theory to solve the optimization problem in a time-
efficient manner. Extensive evaluations show that RTAR yields
63% and 68% reduction in recruitment cost and number of
replicas, respectively, compared to a baseline scheme that blindly
maximizes the number of replicas. Moreover, RTAR-H closely
approaches the optimal solution, rendering a small gap of up to
1% and 1.2% in terms of task drop rate and recruitment cost,
respectively.

Index Terms—Edge Computing, Resources Provisioning, Task
Replication, Matching Theory, Reliability

I. INTRODUCTION

With the projected adoption of the Internet of Things (IoT),
it is estimated that there will be 41.6 billion IoT devices
connected to the Internet by 2025 [1]. Moreover, the global Ar-
tificial Intelligence (AI) market is expected to reach $1,811.75
billion by 2030 [2], while the natural language processing
market is forecasted to grow to $49.4 billion by 2027 [3]. This
massive proliferation is expected to trigger significant demands
on computing resources to meet the strict Quality of Service
(QoS) requirements of latency-critical and data-intensive ap-
plications, such as ChatGPT, Tactile Internet, metaverse, smart
cities, and autonomous vehicles [4]–[7]. Cloud computing fails
to satisfy such requirements, due to the transmission of large
amounts of data to distant data centers, which can increase
latency and create massive traffic influx at backhaul links [8].

Edge Computing (EC) has emerged as a propitious com-
puting paradigm that can alleviate the aforementioned issues

by harnessing the copious yet underutilized computational
resources of end devices, such as smartphones, laptops, and
connected vehicles. EC facilitates data processing much closer
to end users, which can drastically diminish latency [9].
Moreover, in contrast to infrastructure-based edge computing
paradigms that are solely governed by cloud service providers
and/or network operators, EC paradigms that leverage the
computational resources of end devices avoid such a monopoly
and open a new tech market that permits more players to create
and administer their own edge cloud [10].

Despite the promising prospects of device-based EC
paradigms, their full potential can be impeded by the fact
that end devices are user-owned, thus exposing them to a
dynamic user access behavior, which can profoundly impact
their reliability. For instance, at any given time, users may use
their devices to stream a video or run any computationally
intensive application. This can create a deficiency in their
available computation and communication resources or cause
the users to drop the execution of offloaded tasks in order
to preserve their own convenience. Such factors can trigger
significant fluctuations in the availability of end devices, which
can lead to increased task drop rate and execution time. Thus,
it is imperative for task allocation schemes to account for the
intermittent availability and unreliability of workers.

Most existing resource allocation schemes fail to account
for the reliability of workers. Some schemes resort to task
migration to deal with service interruption after it occurs [11].
However, such schemes can trigger an additional delay, due to
the need to transmit the service from one worker to another. In
addition, poor network connectivity between unreliable workers
can lead to increased task failure.

Recently, task replication has been explored to deal with
service interruptions in device-based EC paradigms [12], [13].
By enabling multiple workers to execute the same task, the
system can tolerate failures or unexpected events associated
with individual workers. If one worker fails or drops out,
redundant workers can continue the task without disruption,
reducing the chances of task failure and minimizing the impact
on task execution. However, existing task replication schemes
tend to either blindly maximize the number of replicas [12],
or use a random threshold to specify its upper bound [13].
Thus, such schemes fail to adequately control the number of

2023 IEEE Global Communications Conference: Next-Generation Networking and Internet

3015

GL
O

BE
CO

M
 2

02
3

- 2
02

3
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

9-
8-

35
03

-1
09

0-
0/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
54

14
0.

20
23

.1
04

37
91

8

Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:12:35 UTC from IEEE Xplore. Restrictions apply.

replicas, which can lead to excessive recruitment costs and
wasted resources. Furthermore, existing schemes assume that
the decision maker has information about the workers, such as
their computational resources, location, network connectivity,
data rates, and available power [12]–[14]. However, possessing
such information can raise privacy concerns that make users
reluctant to endow their computational resources to the service,
since it can be used to monitor user behavior or even identify
devices.

In this paper, we propose the Reputation-based Task As-
signment and Replication (RTAR) scheme. RTAR uses a black
box approach that fosters cost-efficient task replication without
requiring or relying on any prior information about the workers.
Instead, RTAR leverages the reputation of workers based on
their performance to make informed decisions and account
for their reliability. RTAR relies on the fact that poor or
inconsistent performance of a worker is bound to lead to
reduced trust and credibility in the worker, affecting their
future task assignments and potential earnings, as well as task
replication decisions. The higher the reputation of a worker, the
lower the number of replicas needed for the task assigned to it.
We formulate the task replication problem as an Integer Linear
Program (ILP) and solve it using the Gurobi solver [15]. Our
contributions can be summarized as follows:

1) We account for the reliability of workers by making
informed and cost-efficient task replication decisions that
strive to maximize the total reputation of recruited workers
while adhering to a certain budget limit specified for each
task.

2) We preserve workers’ privacy and encourage their partic-
ipation in the service by using a black-box approach that
does not require any information about their devices. In
this approach, we devise a reputation model for workers
using beta distribution to assess their performance and
reliability by incorporating reputation scores that are con-
tinuously updated.

3) We propose the RTAR-Heuristic (RTAR-H) scheme to
solve the replication problem in a time-efficient manner.
We utilize a variation of the Gale-Shapley algorithm [16],
a prominent matching theory algorithm that relies on
bipartite graph matching.

The remainder of the paper is organized as follows. Section
II highlights some of the recent related works. Section III
presents the proposed RTAR and RTAR-H schemes. Section
IV discusses the performance evaluation and the simulation
results. Section V concludes the paper’s future directions.

II. RELATED WORK AND MOTIVATION

Several schemes have been proposed to alleviate the effect
of sporadic availability and unreliability of workers in edge
computing. Such schemes involve the use of task migration
and task replication techniques.

In task migration, tasks tend to be transferred from one edge
node to another to deal with service interruptions and failure.

Task migration can be classified into reactive and proactive
migration [17]. In reactive migration, the migration process is
triggered after a failure occurs or a need manifests and the goal
is to resolve the problem or address the situation as quickly
as possible [18], [19], whereas it is performed in advance in
proactive migration [17]. In [18], Zhang and Zheng propose a
reactive migration scheme that accounts for users’ mobility and
the risk that users may move too far away from the edge node
executing the offloaded task, which can cause increased task
failures or prolonged delays. In [19], Saleh and Shastry apply a
migration scheme in peer-to-peer networks where workers may
leave and join at any time. They reactively move the tasks from
a departing worker to another one in the network. However,
such migration schemes can trigger excessive latency, overhead,
and energy consumption due to task and data transmission from
one edge node to another [18], [19]. In addition, they deal with
workers’ unavailability after a failure already occurs.

Other methods explore the use of task replication in device-
based EC to alleviate the effect of workers’ unreliability.
Amer et al. [12] propose a task replication scheme that strives
to maximize the number of replicas assigned for each task.
Note that maximizing the number of replicas helps increase
the chances of successful task execution in such dynamic
computing environments. However, it leads to significantly high
recruitment costs and increased wasted resources.

In [13], Amer et al. propose a task replication scheme that
minimizes the CPU gap between tasks and target workers. In
this scheme, the number of replicas assigned for each task is
controlled using a threshold parameter. However, this parameter
is randomly specified and the scheme fails to consider the
recruitment cost or the reputation of workers. The existing
replication schemes also tend to assume some prior knowledge
about the workers, thus overlooking their privacy and discour-
aging them from contributing their resources.

In contrast to existing schemes, we propose a cost-efficient
task replication scheme that accounts for workers’ reliability
and eliminates their privacy concerns by making all decisions
without relying on any information about their devices, includ-
ing their capabilities and network parameters. Towards that end,
we determine the reliability of each worker using a reputation
score that is continuously updated based on past performances.
We use such reputation scores to allocate enough number of
workers for each task without exceeding the budget limit.

III. REPUTATON-BASED TASK ASSIGNMENT AND
REPLICATION (RTAR)

In this section, we present the system model of RTAR,
the underlying problem formulation, and the heuristic scheme
RTAR-H.

A. System Model and Overview

In RTAR, the system is comprised of three key components:
workers, requesters, and an orchestrator. Workers, which are
user-owned EEDs, endow their resources to the system in

2023 IEEE Global Communications Conference: Next-Generation Networking and Internet

3016
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:12:35 UTC from IEEE Xplore. Restrictions apply.

exchange for incentives granted by the orchestrator. Requesters
deploy tasks that need to be offloaded to the orchestrator. The
latter is a central entity that is responsible for replicating and
allocating incoming tasks to workers while adhering to certain
budget constraints. It is worth noting that the orchestrator
performs task replication without any prior knowledge about
the workers, including their computation capabilities, commu-
nication capabilities, and battery levels.

Consider a set of M tasks denoted Γ = {γ1, · · · , γM} and
a set of N workers denoted W = {w1, · · · , wN}. Each task
γj ∈ Γ is associated with a data size γdata

j in bits, processing
density γdensity

j in CPU cycles/bit, i.e., the number of CPU
cycles required to process a single bit of task’s data, a certain
computation delay deadline γdeadline

j , which is the maximum
acceptable computation delay that the task can tolerate, and a
certain budget limit γbudget

j . We want to assign and replicate
each task γj to workers from the set W if possible.

Each worker wi ∈ W can execute a maximum number
of parallel tasks at a time, denoted wtasks

i . Task replication
decisions are made by the orchestrator based on the reputation
scores of workers. Each worker has a reputation score, denoted
wrep

i . The orchestrator assigns a pay value, denoted wpay
i ,

to each worker based on their reputation score in order to
incentivize them to improve their reputation. Intuitively, the
worker’s reputation score and the payment value assigned
by the orchestrator are proportional. Reputation scores are
dynamically acquired by the orchestrator based on the workers’
past performances observed over time, thus eliminating the risk
of fraudulent assessments or fake ratings provided by users.

We use the Beta distribution as a statistical model to estimate
and update the reputation scores of workers. The Beta distribu-
tion is a flexible and widely used probability distribution that
is well-suited for modeling uncertain and bounded variables,
such as reputation scores [20]. The Beta distribution can be
used to represent uncertainty and variability associated with
reputation scores since it allows for the modeling of both the
mean and variance of the scores. The Beta distribution can also
be employed to update reputation scores in an iterative manner,
incorporating new information as it becomes available, making
it a valuable tool for dynamic and adaptive reputation systems.

As mentioned earlier, the reputation of the workers follows a
probability distribution, specifically the Beta distribution. The
reputation model constructs the reputations of workers based on
historical ratings, which are initially set by the orchestrator, and
continuously updated according to the results of tasks returned
by workers. First, the orchestrator c initializes the reputation
scores of each worker wrep

i ∈ W to 50%. Then, if a worker
wi succeeds or fails to meet the task’s deadline requirements,
the worker’s reputation is positively or negatively updated
accordingly. Note that the allocation process is performed
iteratively over rounds of operation, with updates made at each
round based on the worker’s performance in the previous round.
The workers’ reputation scores follow a Beta distribution. The
random variable of the Beta distribution is denoted p, where
p ∼ Beta(α, β). The Probability Density Function (PDF) of
the Beta distribution, denoted f(p|α, β), is given by (1) and

can be expressed by the gamma function Γ.

f(p | α, β) = Γ(α+ β)

Γ(α)Γ(β)
pα−1(1− p)β−1 (1)

The feedback reported by the orchestrator regarding the out-
come of task γj executed on worker wi determines the rep-
utation score update. The feedback can either be positive or
negative and is denoted by y or ȳ, respectively. We denote
the observed occurrences of outcome y as r and the observed
occurrences of outcome ȳ as s. The PDF of observing outcome
y can be expressed as a function of the worker’s history or past
observations. The parameter αi is updated by incrementing
it by 1 whenever the orchestrator receives positive feedback
about worker wi. In particular, αi is updated using the formula
αi = ri + 1. A positive feedback about some worker wi is
reported when the worker executes a task γj successfully within
the task’s deadline γdeadline

j . On the other hand, the parameter βi

is updated by incrementing it by 1 whenever the orchestrator
receives a negative feedback about worker wi indicating the
worker’s failure to complete the assigned task before the task’s
deadline γdeadline

j .In particular, βi is updated using the formula
β = si + 1. Consequently, the reputation score wrep

i of worker
wi represents the expected value of the reputation model and
is thus updated as given by equation (2).

E[Γ] = α

α+ β
(2)

B. Problem Formulation

In RTAR, the main objective is to maximize the total sum of
the reputation scores of all recruited workers for all replicas.
We formulate the problem as an Integer Linear Program (ILP),
where the binary decision variable λij is set to 1 if a replica of
task γj is assigned to worker wi, and 0 otherwise. The problem
formulation is given by (3).

max
λij

N∑
i=1

M∑
j=1

wrep
i λij (3a)

s.t.

N∑
i=1

λijw
pay
i ≤ γbudget

j ∀γj ∈ Γ (3b)

M∑
j

λij ≤ wtasks
i ∀wi ∈ W (3c)

λij ∈ {0, 1} ∀wi ∈ W,
∀γj ∈ Γ

(3d)

The objective given by equation 3a is subject to constraints
3b–3d. Constraint 3b ensures that the total recruitment cost
paid to all the workers assigned to task γj does not exceed
the task’s budget limit γbudget

j . This is to guarantee that the
replicas associated with task γj do not incur more than the
budget specified for that. To incentivize the workers to enhance
their reputation, the central controller c assigns a pay value
wpay

i to each worker based on their reputation score. Clearly, the
relation between the worker’s reputation score and the payment
value assigned by the controller is proportional. Constraint (3c)
ensures that each worker is assigned no more than wtasks

i tasks
to be executed at a time. To avoid overloading workers, in our
simulation, we set the value of wtasks

i to 1. Constraints (3d)

2023 IEEE Global Communications Conference: Next-Generation Networking and Internet

3017
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:12:35 UTC from IEEE Xplore. Restrictions apply.

represent the integrality constraints associated with the binary
decision variables vector λ.

The aforementioned problem is an ILP problem, and thus
cannot be optimally solved in polynomial time, since ILP
problems are generally NP-hard [21]. Thus, we solve it using
the Gurobi solver [15]. We also propose the RTAR-H scheme
to solve the problem in polynomial time.

C. RTAR-Heuristic (RTAR-H)

Although constrained optimization is a powerful mathemati-
cal tool for solving optimization problems optimally, it may not
always be practical, especially when dealing with large problem
spaces where the dimensionality of the decision variables is
high. That is why heuristic approaches are often more practical,
as there are many algorithms that can solve a wide range of
problems in polynomial time, unlike constrained optimization,
which can have exponential complexity.

In RTAR-H, we solve the problem formulated in equation
(3) using a prominent algorithm in matching theory, which is
based on bipartite graph matching with one-sided preference.
Towards that end, we use a modification of the Gale-Shapley
algorithm [16]. Note that the Gale-Shapley algorithm was
originally developed to solve one-to-one problems. However,
some variants of the algorithm are used to solve many-to-one
or even many-to-many matching problems.

The steps we use to replicate and allocate the set of tasks Γ
to the set of workers W are illustrated in Algorithm 1. We first
sort the workers’ reputations in descending order at line (2).
The sorted reputations are then used to build preferences matrix
P of the tasks in lines (4–6), where each row in P represents
a task’s preferences (i.e., sorted workers’ reputations). Note
that we assume that all tasks have the same preferences,
since each task needs to be assigned to the best available
workers, and there are no priority considerations among the
tasks. In addition, workers do not have any preferences over
the tasks, and the only way for them to be considered in the
assignment process is to compel the orchestrator to update their
reputations positively. We initialize the set ŵ that is used to
keep track of all workers that are yet to be recruited (line
3). The task assignment and replication process is performed
iteratively until the stopping criterion is satisfied (lines 7–20).
The stopping condition is given by the function ASSIGNABLE
at line (7) and is defined by equation (4).

ASSIGNABLE(P,Γbudget, ŵ) =

True, ∃Γbudget

j ∈ Γbudget ∋ Γ
budget
j > 0

and ∃Pj ∈ P ∋ |Pj | ̸= 0

and |ŵ| > 0

False, otherwise
(4)

The function ASSIGNABLE will return true if there is exist at
least a task’s budget Γbudget

j > 0, a task with a non-empty
preference list, and at least a non-recruited worker.
The loop (lines 8–19) iterates over each row in X and does
the following: 1) Get the first preference of the task (line 9),
2) deletes the first preference of the task (line 10), 3) ensures

Algorithm 1 RTAR-H at the Orchestrator
Input:
N : number of workers
M : number of tasks
W rep: a vector of workers’ reputations
Γbudget: a vector of tasks’ budgets
Wpay: a vector of workers’ payment values
W tasks: a vector representing the maximum number of tasks each
worker can carry on
Output:
X: a matrix of assignments of tasks to workers, where the entry Xji

equals 0 or 1
1: function RTAR HEURISTIC(N ,M ,W rep,Γbudget,Wpay,W tasks)
2: s← SORT(W rep)
3: ŵ← {1, · · · , N} // In inverse order
4: for j ← 1 to M do
5: Pj ← s // Populate preference vector
6: end for
7: while ASSIGNABLE(P,Γbudget, ŵ) do
8: for each j ∈ X do
9: w ← Pj0

10: DELETE(Pj0)
11: if w ∈ ŵ and Γbudget

j ≥ Wpay
w then

12: Xjw ← 1
13: Γbudget

j ← Γbudget
j −Wpay

w

14: wtasks
j ← wtasks

j − 1
15: if wtasks

j = 0 then
16: DELETE(ŵw)
17: end if
18: end if
19: end for
20: end while
21: return X
22: end function

that the worker of choice is not recruited yet and its recruitment
payment is within the task’s budget limit γbudget

j (line 11),
4) assigns worker w to task i at the corresponding element
in X (line 12), 5) updates the task’s budget by subtracting the
worker’s payment value wpay

i (line 13) 6) updates the maximum
number of tasks that worker wj can carry on (line 14), and
7) checks if the number of tasks that the worker can carry on
is zero, then the worker should be marked unavailable hence
it will be deleted (line 16).

IV. PERFORMANCE EVALUATION

We evaluate the performance of RTAR compared to the
Replica Maximization at the Extreme Edge (RMEE) scheme
[12]. RMEE is a baseline scheme that blindly maximizes the
number of replicas without considering the workers’ reputation
or the task’s budget. We also assess the performance of RTAR-
H compared to the optimal solution rendered by RTAR. We
use the following performance metrics: 1) the task drop rate,
which is the ratio of the number of tasks that have not been
successfully completed due to workers’ failure to the total
number of tasks, 2) the total recruitment cost, which is the
total amount paid to workers in exchange for their resources,
3) the average number of replicas assigned per task.

2023 IEEE Global Communications Conference: Next-Generation Networking and Internet

3018
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:12:35 UTC from IEEE Xplore. Restrictions apply.

20 30 40 50

0.5

0.55

0.6

0.65

0.7

0.75

Number of Requests

Ta
sk

D
ro

p
R

at
e

RTAR
RTAR-H
RMEE

(a)

20 30 40 50

103

103.2

103.4

103.6

103.8

Number of Requests

To
ta

l
R

ec
ru

itm
en

t
C

os
t

RTAR
RTAR-H
RMEE

(b)

20 30 40 50

40

60

80

100

Number of Requests

A
ve

ra
ge

N
um

be
r

of
R

ep
lic

as

RTAR
RTAR-H
RMEE

(c)

Figure 1: Performance results of RTAR, RTAR-H, and RMEE over varying number of tasks (M).

A. Simulation Setup

We implement RTAR and RMEE schemes using MATLAB
and we use the Gurobi solver [15] to obtain the solution of the
underlying optimization problem. All the simulation parameters
are uniformly distributed. The number of workers is set to 100.
The budget allotted to tasks γbudget

j is in the range of [100,
300]. The data size of tasks is in the range of [1,20] bits.
The workload intensity of tasks γdensity

j is in the range of [1
– 5]×102 cycle/bit, and their deadline γdeadline

j is in the range
of [3 – 5] ms. The payments of the workers are determined
and updated at each round based on their reputation scores.
First, all reputation scores are normalized between 1 and 100
then the payment value is determined based on the reputation
score level. For instance, if the reputation score of the worker
is between 0 and 20, then the payment value will be 20. An
exponential probability of failure is set for each worker, which
is associated with the battery drainage of the device. We use
the reliability model adopted by Amer et al. [13] to implement
the failure probability.

B. Simulation Results and Analysis

We assess the performance of the RTAR, RTAR-H, and
RMEE schemes over varying the number of tasks requests.

Fig. 1a depicts the task drop rate of RTAR, RTAR-H, and
RMEE. It can be observed that as the number of tasks increases,
the drop rate increases for all schemes. This can be attributed to
the fact that the number of replicas per task available decreases
as the number of tasks increases. Note that RMEE renders the
lowest drop rate among all schemes. This is because RMEE
disregards the recruitment cost and focuses solely on assigning
the maximum possible number of replicas per task. Intuitively,
the more replicas per task, the lower the drop rate, since

recruiting more replicas reduces the risk of task failure. In
contrast, RTAR and RTAR-H account for the recruitment cost
and limit the number of replicas based on the available budget
for each task. However, RTAR and RTAR-H still provide a
comparable drop rate to RMEE, where they closely approach
the latter, with a small gap that reaches only 2.4%. This is due
to their ability to strike a balance between ensuring reliability
by providing multiple replicas per task and avoiding over-
provisioning of replicas at the expense of increased recruitment
costs and wasted resources. It can also be observed that RTAR-
H almost coincides with the optimal solution rendered by
RTAR, where it exhibits only a slight discrepancy of up to
1%.

Figure 1b shows the total recruitment cost of each scheme.
The total recruitment costs of the RTAR and RTAR-H schemes
are lower than that of the RMEE scheme. This is because
both schemes recruit workers up to certain budgets which
reduces the overall recruitment cost. The RMEE scheme always
results in high recruitment costs because the scheme tends to
maximize the number of recruited workers. Our scheme yields
a significant reduction in recruitment costs by up to 63%. It
is also observed that the RTAR-H scheme renders a small gap
with the optimal solution of up to 1.2%.

Figure 1c depicts the impact of varying the number of task
requests on the number of recruited workers. We observe that
the number of replicas recruited by the RMEE scheme is
constant for any number of task requests. This is because the
RMEE scheme maximizes the number of recruited workers
per task and as long as nothing can prevent the scheme from
recruiting workers, it will recruit all the available workers
within the area. The RTAR and RTAR-H schemes will recruit
less number of workers because recruitment is affected by the

2023 IEEE Global Communications Conference: Next-Generation Networking and Internet

3019
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:12:35 UTC from IEEE Xplore. Restrictions apply.

budget limits adopted by the schemes. Our scheme outperforms
the RMEE scheme resulting in a reduction in the number of
workers by up to 68%.

Based on our findings, we have determined that increasing
the number of replicas may not always be the best course of
action as a surplus of redundant replicas can be superfluous.
There are disadvantages to maximizing the number of replicas,
such as over-provisioning resources and increasing recruitment
costs. Additionally, we have concluded that adopting a recruit-
ment scheme that relies solely on workers’ reputation scores,
without considering their capabilities, can be advantageous.

V. CONCLUSION

In this work, we formulated the task assignment and replica-
tion problem in a highly uncertain edge computing environment
where information about the workers’ capabilities is unknown.
The performance of the workers is evaluated using inferred
reputation scores based on the Beta distribution. The problem
was formulated as an Integer Linear Program (ILP), and a poly-
nomial time-efficient heuristic approach was designed based on
matching theory. We compared and assessed the performance
of our scheme against a baseline scheme. Extensive simulations
show that our scheme yields 63% and 68% reduction in
recruitment cost and number of replicas, respectively, compared
to a baseline scheme that blindly maximizes the number of
replicas. Moreover, RTAR-H closely approaches the optimal
solution, rendering a small gap of up to 1% and 1.2% in terms
of task drop rate and recruitment cost, respectively.

In future work, we plan to include task priorities, which can
significantly affect the distribution of workers across tasks.

ACKNOWLEDGMENT

This research is supported by a grant from the Natural
Sciences and Engineering Research Council of Canada
(NSERC) under grant number ALLRP 549919-20, and a
grant from Distributive, Ltd.

REFERENCES

[1] “The Growth in Connected IoT Devices is Expected to
Generate 79.4ZB of Data in 2025.” [Online]. Available:
https://www.businesswire.com/news/home/20190618005012/en/The-
Growth-in-Connected-IoT-Devices-is-Expected-to-Generate-79.4ZB-
of-Data-in-2025-According-to-a-New-IDC-Forecast,%202019.

[2] “Artificial Intelligence Market Worth $1,811.75 Billion By
2030.” [Online]. Available: https://www.grandviewresearch.com/press-
release/global-artificial-intelligence-ai-market

[3] “Global Natural Language Processing (NLP) Market Size to.” [Online].
Available: https://www.globenewswire.com/en/news-release/2023/01/11/
2587125/0/en/Global-Natural-Language-Processing-NLP-Market-Size-
to-Reach-49-4-billion-by-2027-Growing-at-a-CAGR-of-25-7-Report-
by-MarketsandMarkets.html

[4] R. W. Coutinho and A. Boukerche, “Design of Edge Computing
for 5G-Enabled Tactile Internet-Based Industrial Applications,” IEEE
Communications Magazine, vol. 60, no. 1, pp. 60–66, 1 2022.

[5] H. Peng, P. C. Chen, P. H. Chen, Y. S. Yang, C. C. Hsia, and L. C. Wang,
“6G toward Metaverse: Technologies, Applications, and Challenges,”
APWCS 2022 - 2022 IEEE VTS Asia Pacific Wireless Communications
Symposium, pp. 6–10, 2022.

[6] C. Yang, P. Liang, L. Fu, G. Cui, F. Huang, F. Teng, and Y. A. Bangash,
“Using 5G in smart cities: A systematic mapping study,” Intelligent
Systems with Applications, vol. 14, p. 200065, 5 2022.

[7] S. Hakak, T. R. Gadekallu, P. K. R. Maddikunta, S. P. Ramu, P. M,
C. De Alwis, and M. Liyanage, “Autonomous vehicles in 5G and
beyond: A survey,” Vehicular Communications, vol. 39, p. 100551, 2
2023.

[8] D. De, A. Mukherjee, and D. Guha Roy, “Power and Delay
Efficient Multilevel Offloading Strategies for Mobile Cloud
Computing,” Wireless Personal Communications, vol. 112, no. 4,
pp. 2159–2186, 6 2020. [Online]. Available: https://link-springer-
com.proxy.queensu.ca/article/10.1007/s11277-020-07144-1

[9] S. M. Oteafy and H. S. Hassanein, “IoT in the Fog: A Roadmap
for Data-Centric IoT Development,” IEEE Communications Magazine,
vol. 56, no. 3, pp. 157–163, 3 2018.

[10] “Distributive.” [Online]. Available: https://kingsds.network/
[11] C. Li, Y. Zhang, X. Gao, and Y. Luo, “Energy-latency tradeoffs for edge

caching and dynamic service migration based on DQN in mobile edge
computing,” Journal of Parallel and Distributed Computing, vol. 166,
pp. 15–31, 8 2022.

[12] I. M. Amer, S. M. Oteafy, S. A. Elsayed, and H. S. Hassanein, “QoS-
based Task Replication for Alleviating Uncertainty in Edge Computing,”
2022 IEEE Global Communications Conference, GLOBECOM 2022 -
Proceedings, pp. 5147–5152, 2022.

[13] I. M. Amer, S. M. Oteafy, and H. S. Hassanein, “Task Replication
in Unreliable Edge Networks,” Proceedings - Conference on Local
Computer Networks, LCN, pp. 173–180, 2022.

[14] P. Dai, B. Han, X. Wu, H. Xing, B. Liu, and K. Liu, “Distributed
Convex Relaxation for Heterogeneous Task Replication in Mobile Edge
Computing,” IEEE Transactions on Mobile Computing, 2022.

[15] Gurobi Optimization, LLC, “Gurobi Optimizer Reference Manual,”
2021. [Online]. Available: https://www.gurobi.com

[16] D. Gale and L. S. Shapley, “College admissions and the stability of
marriage,” The American Mathematical Monthly, vol. 69, no. 1, pp.
9–15, 1962.

[17] A. M. Zaki and S. Sorour, “Proactive Migration for Dynamic
Computation Load in Edge Computing,” IEEE International Conference
on Communications, vol. 2022-May, pp. 4275–4280, 2022.

[18] C. Zhang and Z. Zheng, “Task migration for mobile edge computing
using deep reinforcement learning,” Future Generation Computer
Systems, vol. 96, pp. 111–118, 7 2019.

[19] E. Saleh and C. Shastry, “Task Migration in Volunteer Computing
Systems,” Proceedings - 2022 4th International Conference on
Advances in Computing, Communication Control and Networking,
ICAC3N 2022, pp. 2076–2079, 2022.

[20] A. Josang and R. Ismail, “The beta reputation system,” in Proceedings
of the 15th bled electronic commerce conference, vol. 5, 2002, pp.
2502–2511.

[21] P. Raghavan, “Probabilistic construction of deterministic algorithms:
Approximating packing integer programs,” Journal of Computer and
System Sciences, vol. 37, no. 2, pp. 130–143, 10 1988.

2023 IEEE Global Communications Conference: Next-Generation Networking and Internet

3020
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:12:35 UTC from IEEE Xplore. Restrictions apply.

