
Uncertainty-Aware Multitask Allocation for
Parallelized Mobile Edge Learning

Duncan J. Mays, Sara A. Elsayed, Hossam S. Hassanein
School of Computing, Queen’s University, Kingston, ON, Canada

duncan.mays@queensu.ca, selsayed@cs.queensu.ca, hossam@cs.queensu.ca

Abstract—Harvesting the profuse yet underutilized computa-
tional resources of IoT devices, also referred to as Extreme Edge
Devices (EEDs), can significantly curtail the delay in parallelized
Mobile Edge Learning (MEL). However, EEDs are user-owned
devices, which causes them to experience a highly dynamic user
access behavior. Such dynamicity can lead to uncertainty in
the available computation and communication capabilities of
learners. In this paper, we propose the Minimum Expected Delay
(MED) scheme. MED is the first data allocation scheme in MEL
that accounts for uncertainty in learners’ capabilities and enables
multitask allocation. Given the state probabilities of learners,
MED strives to minimize the sum of the maximum expected delay
of all tasks, while abiding by certain training time and budget
constraints. Towards that end, MED formulates the data allo-
cation problem as an Integer Linear Program (ILP) and makes
uncertainty-aware decisions. We conduct rigorous experiments
on a real testbed of Jetson Nano devices. Extensive performance
evaluations show that MED outperforms a representative of
state-of-the-art uncertainty-naive schemes by up to 11%, 11%,
42%, and 5% in terms of training time, satisfaction ratio, data
drop rate, and occupancy time, respectively. In addition, MED
approaches a baseline scheme that assumes a perfect knowledge
of the learners’ states, yielding a gap of up to 10%, 5%, and
14% in terms of satisfaction ratio, data drop rate, and occupancy
time, respectively.

Index Terms—Parallel Learning, Mobile Edge Learning, Mul-
titask Allocation, Uncertainty, Extreme Edge Devices.

I. INTRODUCTION

With the advent of the Internet of Things (IoT), it is
anticipated that 41.6 billion IoT devices will be connected
to the Internet by 2025, triggering 79.4 zettabytes of data [1].
Due to the time-sensitive nature of such data, it is expected that
90% of analytics will be conducted at the edge to avoid the
excessive delay associated with data transmission to remote
data centers in cloud computing [2].

Extreme Edge Computing (EEC) has emerged as a comput-
ing paradigm that can drastically curtail the delay. It has been
adopted by several industrial entities [3]. EEC helps reduce the
delay by exploiting the prolific yet underutilized computational
resources of end devices, also referred to as Extreme Edge
Devices (EEDs) [4] [5] [6]. Although each EED may have
limited resources on its own, their collective power can be
significant. Consequently, integrating EEDs with Mobile Edge
Learning (MEL) provides a propitious edge learning paradigm
for a wide spectrum of applications, such as Tactile Internet,
ChatGPT, smart cities, and virtual and augmented reality [7]

[8]. Note that MEL enables Machine learning (ML) models to
be collaboratively trained on a collection of edge devices.

MEL can be classified into two main categories; Parallelized
Learning (PL) and Federated Learning (FL) [7] [8]. In PL, a
central orchestrator is responsible for sending data subsets to
each learner, while the learners in FL train on their own locally
stored data [8]. PL is used when the orchestrator lacks the
necessary computational resources to train an effective model,
thus prompting the workload to be distributed among several
learners [8]. FL, on the other hand, allows learners to use
models that are trained on a larger dataset, while keeping their
own data private [7]. Both PL and FL involve multiple learners
that train independent models in parallel, which are later
aggregated by the orchestrator to create a more generalized
model [9] [10]. One of the challenging issues encountered in
PL is system heterogeneity, where learners possess different
levels of computation and communication capabilities.

Failing to consider system heterogeneity can constrain PL
to the level of performance achieved by its least capable
learner [8]. To resolve this issue, existing schemes offer several
solutions. These include varying the size of the learners’ local
models [11], enabling learners to iterate over their local data
a different number of times [8] [9], or assigning different
amounts of data to each learner [12].

Data allocation schemes that allocate different amounts of
data to each learner can minimize staleness, which helps
improve the learning accuracy [8]. However, existing schemes
fail to account for uncertainty in learners’ capabilities. In
particular, since EEDs are user-owned devices, they undergo
a dynamic user access behavior. Thus, at any given time
during training, users can access their devices to stream
a video, play a video game, or run any other intensive
application/learning task, which can profoundly affect the
computation and communication capabilities of learners [5].
This dynamic behavior and resource contention can trigger
a high level of uncertainty in the training capabilities of
learners, which can drastically increase the training time and
data drop rate [5]. Such uncertainty imposes a challenging
data allocation issue that has been mostly overlooked in MEL.
In addition, most existing schemes fail to consider scenarios
where the orchestrator receives multiple rather than single
learning tasks.

In this paper, we propose the Minimum Expected Delay
(MED) scheme. MED enables multitask data allocation that
accounts for uncertainty in the different states at which the979-8-3503-1090-0/23/$31.00 © 2023 IEEE

2023 IEEE Global Communications Conference: IoT and Sensor Networks

3597

GL
O

BE
CO

M
 2

02
3

- 2
02

3
IE

EE
 G

lo
ba

l C
om

m
un

ic
at

io
ns

 C
on

fe
re

nc
e

|
97

9-
8-

35
03

-1
09

0-
0/

23
/$

31
.0

0
©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

GL
O

BE
CO

M
54

14
0.

20
23

.1
04

36
75

0

Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:14:35 UTC from IEEE Xplore. Restrictions apply.

learners can be, and the probabilistic impact of such states on
their capabilities. MED models variations in a given learner’s
performance as uncertainty in the learner’s capabilities, and
allocates data for multiple tasks in the presence of such
uncertainty. Given the state probabilities of each learner (i.e.,
learner’s capabilities), MED formulates the data allocation
problem as an Integer Linear Program (ILP) to minimize the
sum of the maximum expected training delay of all incoming
tasks, while abiding by certain budget and deadline limits. Our
contributions can be summarized as follows:

• We account for uncertainty in learners’ capabilities and
make uncertainty-aware data allocation decisions in PL.
For the first time in the literature, we consider the
dynamic user access behavior of EEDs and minimize the
training time of PL under uncertainty.

• We foster multitask data allocation that enables multiple
tasks to contend for the available learners’ resources,
while maintaining certain time and budget constraints.

• We conduct extensive experiments on a real testbed of
Jetson Nano devices.

We implement MED using a custom-built Python MEL
framework, Axon [13]. We evaluate the performance of
MED by comparing it to a representative of uncertainty-naive
schemes [14] [15], as well as a baseline scheme that adopts
the ideal yet unpractical case, where the orchestrator has a
perfect knowledge of the learners’ states. Extensive evaluations
show that MED yields significant improvements of up to 11%,
11%, 42%, and 5% in terms of training time, satisfaction ratio,
data drop rate, and occupancy time, respectively, compared to
the uncertainty-naive scheme. In addition, MED approaches
the ideal scheme, with a gap of up to 10%, 5%, and 14% in
terms of satisfaction ratio, data drop rate, and occupancy time,
respectively.

The remainder of the paper is organized as follows. In
Section II, we highlight some related work. In Section III,
we provide a detailed description of the proposed scheme
(MED). In Section IV, we discuss the performance evaluation
and results. In Section V, we highlight our conclusions and
future directions.

II. RELATED WORK

Various studies [8] [12] [16] have investigated the issue of
system heterogeneity in MEL. To address this issue, existing
schemes typically adjust the workload assigned to learners
according to their capabilities [12] [16]. This can be achieved
by adopting one of three approaches; altering the number of
learning iterations performed by each learner [11], adjusting
the size of the model assigned to each learner [12], or varying
the amount of data allocated to each learner [8] [17] [18].

In [11], learners perform varying numbers of local updates
during each global communication cycle. However, this ap-
proach leads to stale updates, which in turn can negatively
impact the accuracy of the training process. Staleness, which
is a measure of the redundancy of two parameter updates from
different learners, is used to determine the extent to which such
updates provide redundant information.

HeteroFL [12] addresses the issue of system heterogeneity
by distributing models of varying sizes to learners based on
their capabilities. To accomplish this, the orchestrator prunes
the central model into various sizes using the lottery ticket
technique [19]. These sub-models are then transmitted to the
learners. After global aggregation, the orchestrator converts
all sub-models back to their original sizes before aggregating
them. Although effective, this approach can be resource-
intensive, since the orchestrator must refine the model into
parameter sets of diverse sizes.

In [8] [17] [18], the approach of changing the amount
of data allocated to each learner results in significant im-
provements compared to the aforementioned approaches. In
particular, this approach is computationally inexpensive for the
orchestrator and is capable of eliminating staleness. In [18],
a decentralized data allocation scheme that relies on bench-
marking is proposed. The underlying benchmarking scheme
endeavors to estimate the rate (in samples per second) at
which each learner can train a certain model. However, such
schemes assume that the orchestrator has a single rather than
multiple incoming learning tasks. In addition, they assume that
the computation and communication capabilities of learners
remain static throughout the learning task. Thus, they fail to
account for uncertainty.

In contrast to existing schemes, we propose an uncertainty-
aware data allocation scheme that enables multitask allocation
in the presence of uncertainty in learners’ capabilities. We also
conduct experiments on a real testing environment rather than
relying on simulations.

III. MINIMUM EXPECTED DELAY (MED)

In MED, learners are provided with multiple models, one
to be trained for each learning task, and the orchestrator
determines the amount of data to be allocated to each learner
for each task. MED allocates data for each learning task
given a pool of learners with uncertain computation and
communication capabilities. In this section, we present the
underlying system model and problem formulation of MED.

A. System Model and Overview

Consider a set of n learners W = {w1, w2, ..., wn}, and
a set of m requesters R = {r1, r2, ..., rm} that subscribe to
the service provided by the orchestrator. The orchestrator is
a central entity that is responsible for allocating the comput-
ing resources of learners to serve incoming requests. Each
requester ri ∈ R has a parallel learning task that involves
training Di data shards among the learners such that a certain
training deadline Ti is not exceeded. Let Ωi be the model
parameters of the learning task of requester ri. The size (in
bytes) of each data shard for each request ri is denoted αi.

Each learner wj ∈ W is recruited by the orchestrator in
exchange for some incentives. In particular, each learner wj

sets a certain unit price pj per data shard. Note that all requests
must be served within a certain budget B. At any given time,
each learner wj can be in one of a set S = {s1, s2, ..., sh} of h
possible states, each of which corresponds to a potential user

2023 IEEE Global Communications Conference: IoT and Sensor Networks

3598
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:14:35 UTC from IEEE Xplore. Restrictions apply.

activity, such as idle, training, downloading, etc. Each state
induces different computation and communication capabilities
for the learner. Note that such states can be estimated by the
orchestrator using historical information of the learners [20].
For each learner wj , each state sj,k ∈ S triggers different
benchmarks ci,j,k and bj,k with probability γj,k, where γj,k
indicates the level of certainty in the learner’s state. This
probability can be acquired using uncertainty quantification
methods [21]. The benchmarks are determined using the subset
benchmarking technique [18]. The benchmark ci,j,k represents
the compute power of learner wj for request ri when the
learner is in state sj,k. In other words, it is the rate (in data
samples per second) at which wj can train the model of
request ri when the learner is in state sj,k. The benchmark
bj,k represents the networking capability (in bytes per second)
of learner wj when the learner is in state sj,k. Similar to other
works, we assume that the channel is perfectly reciprocal [17].

It is paramount that each learner uploads the trained param-
eters of each request ri to the orchestrator by the deadline Ti.
The orchestrator aggregates all the uploaded parameters and
restarts the training regime in the next Global Update Cycle
(GUC). Typically, learners that do not upload their parameters
by the deadline are not represented in the aggregated parame-
ters that are trained in the next GUC. This causes their work to
be wasted. To improve the performance, we use learner halting.
Upon task assignment, the orchestrator informs each learner of
the deadline of the task assigned to it. Each learner periodically
checks this deadline throughout their local update routine. If
a learner exceeds the deadline, it halts training and uploads its
partially trained parameters to the orchestrator, regardless of
its progress in the training task. These partial updates are then
aggregated as normal, with reduced weighting due to being
trained on fewer data samples.

B. Problem Formulation

The delay of a parallel process is the delay of the longest
sub-process that needs to be completed. In PL, this means
that the training time in a GUC is the longest training time
rendered by all the learners training for the corresponding
task [14] [15]. Thus, in an uncertainty-naive data allocation
approach [14] [15], the best way to minimize the training
delay is to minimize the maximum delay of learners. However,
such an approach fails to account for uncertainty in learners’
capabilities, where a learner’s network bandwidth and training
rate depend on the state of the learner. In MED, we account
for uncertainty by considering the expected delay given the
learners’ state probabilities.

The main objective of MED is to minimize the sum of the
maximum expected training delay of all tasks. The expected
training delay of each learner wj when assigned di,j data
shards from task ri is denoted δi,j , and is calculated by
summing the delay in each state multiplied by the probability
of that state, as given by Eq. 1. Note that the training delay
of learner wj at state sj,k is the sum of the time it takes to
download the model parameters and the training data, train the

model, and upload its parameters. MED strives to achieve its
objective while abiding by certain budget and deadline limits.

δi,j =
∑
k∈S

γj,k

[
2Ωi + αidi,j

bj,k
+

di,j
ci,j,k

]
(1)

We formulate the data allocation problem as an Integer Lin-
ear Program (ILP), where the decision variable di,j indicates
the amount of data shards of request ri that is allocated to
learner wj . The problem formulation is given by Eq. 2.

min
di,j∈Z≥0

∑
i∈R

max
j∈W

δi,j (2a)

subject to:

δi,j ≤ Ti,∀ri ∈ R,∀wj ∈ W (2b)∑
wj∈W

di,j = Di,∀ri ∈ R (2c)

∑
ri∈R

∑
wj∈W

dij ∗ pj ≤ B (2d)

∑
ri∈R

di,j ≥ Dl,∀wj ∈ W (2e)

di,j > 0 => dz,j = 0,∀rz ∈ R, z ̸= i,∀wj ∈ W (2f)

Constraint (2b) ensures that the expected training delay of
each task ri does not exceed its deadline Ti. Constraint (2c)
ensures that for each task ri, the total number of data shards
assigned to all learners is equal to the corresponding size of
the task’s training data set Di. Constraint (2d) ensures that
the total recruitment cost of all the learners used to train all
tasks does not exceed a certain budget limit B. Constraint
(2e) is used to guarantee that each learner is assigned a lower
bound of data shards Dl. This is to ensure the utilization of
all learners, which can positively affect accuracy. Constraint
(2f) ensures that each learner is assigned data shards from at
most one request.

IV. PERFORMANCE EVALUATION

In this section, we evaluate the performance of MED
compared to the MinMax Training Time-Ideal (MMTT-Ideal)
scheme and the MinMax Training Time-Uncertain (MMTT-
Uncertain) scheme [14] [15]. Note that MMTT-Ideal adopts
the ideal case, where the orchestrator has a perfect knowl-
edge of the learners’ capabilities at any given state. Though
unrealistic, MMTT-Ideal considers the case where there is no
uncertainty, and thus acts as an upper bound on the reachable
potential of uncertainty-naive schemes. In contrast, MMTT-
Uncertain is a representative of state-of-the-art uncertainty-
naive schemes [14] [15]. In MMTT-Uncertain, the orchestrator
assumes that the learners’ capabilities remain the same during
the training process when in fact they do change over time
due to the dynamic user access behavior.

We use the following performance metrics: 1) The average
training time, which is the average time needed to complete
training the learning models of the tasks. 2) The satisfaction

2023 IEEE Global Communications Conference: IoT and Sensor Networks

3599
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:14:35 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Description of the 3 ML tasks MNIST˙FFN, MNIST˙CNN, and Fashion.
Architecture Number of Iterations Deadline Number of Data Shards

MNIST FFN ThreeNN 2 55 (sec) 60
MNIST CNN ConvNet 1 40 (sec) 60

Fashion FashionNet 1 40 (sec) 20

ratio, which is the ratio of the number of tasks that finish
training before their specified deadline to the total number of
tasks. 3) The average data drop rate, which is the number
of the data samples that have been dropped (i.e., not trained
on) in a task, divided by the total number of data samples in
the task’s dataset, averaged among all tasks. 4) The average
occupancy time, which is the amount of time the learners
spend working on a task divided by the total time to complete
the trial, averaged among all tasks. Note that learners spending
more time sitting idle reduces this metric.

A. Experimental Setup

We implement MED, MMTT-Ideal, and MMTT-Uncertain
on a real testbed of 10 Jetson Nanos, each with 4 GB memory,
and a 912 MHz processor. This implementation is done using
our custom-built Python framework Axon [13]. Axon is an
open-source, simple, and easy to access MEL framework.
We use the Gurobi optimizer [22] to solve the optimization
problem.

Experiments are conducted using three training tasks, de-
scribed in Table I. The architecture of the Neural Network
(NN) trained for the three tasks MNIST FFN, MNIST CNN,
and Fashion is denoted ThreeNN, ConvNet and FasionNet,
respectively. Note that ThreeNN consists of three hidden feed-
forward layers of size [500, 300, 100]. ConvNet uses two
3× 3 convolutional layers with 6 and 16 filters, respectively,
and a feed forward layer with 200 units. FashionNet uses two
3× 3 convolutional layers with 16 and 32 filters, respectively,
and two feed-forward layers with 1000 and 50 units each. All
neural networks are trained over 5 GUCs with a learning rate
of 0.0001.

We use the subset benchmarking scheme [18] with a bench-
mark size of 20 shards to determine the learners’ computation
and communication characteristics. Prior to the experiments,
each learner wj runs network and compute benchmarks for
each task ri and state sj,k to determine bj,k and ci,j,k. The
number of states and number of tasks are set to 3, the budget
is set to 300$, and the minimum number of data shards Dl

allocated to each learner is set to 1. We model the variance
in the unit price specified by learners using a bounded normal
distribution. At the beginning of each trial, learners determine
their price by sampling a normal distribution of mean 1.0 and
variance 0.5. This sample is then bounded to the range [0.1,
1.5].

We simulate variations in learners’ capabilities using a set
of discrete states, one corresponding to each stressor function.
The learner’s state distribution is set at the beginning of
each trial, and then sampled to determine the state at the
beginning of each local training routine. We use three states;
idle, training and downloading. The idle state does not involve

any stressor function and represents the full capabilities of the
learner. The training state represents resource contention with
another training task, and is represented via the multiplication
of two 900 × 900 matrices during the training loop. The
download state represents contention for network bandwidth
and is represented by downloading a 900 × 900 matrix of
random data.

We instantiate the learners’ state distribution by feeding a
random one-hot vector into a heated softmax function. First, a
one-hot vector with elements representing each state is created
by sampling a uniform distribution across the states. This
vector is then fed into a softmax function, which accepts
both a vector and a heat parameter, and outputs a probability
distribution across the learner states. The softmax heat param-
eter controls the spread of the output distribution. High heat
values correspond to uniform, high entropy state distributions,
whereas low heat values correspond to distributions that are
strongly skewed to one state and have low entropy. The
resulting state distribution is sampled at the beginning of
each training routine to set the learner’s state. The state heat
parameter is set to 0.5.

B. Results and Analysis

In our experiments, we evaluate the performance of MED,
MMTT-Ideal, and MMTT-Uncertain over varying number of
learners. All experiments are repeated 40 times for each
instance, and simulation results are presented at a confidence
level=95%. The rendered confidence intervals are shown in
Figure 1(a). Since the confidence intervals are negligible, they
are not explicitly depicted in the remaining figures for clarity
of presentation.

Figure 1(a) depicts the average training time of MED,
MMTT-Ideal, and MMTT-Uncertain over varying number of
learners. Note that the average training time decreases as
the number of learners increases in all schemes. This can
be attributed to the fact that as the number of learners
increases, the chance of allocating lower amount of data to
each learner increases, which increases the learner’s speed of
training the allocated data, thus reducing the average training
time. MMTT-Ideal yields the upper bound on the potential
improvement in training time. This is since MMTT-Ideal has
perfect knowledge of the learners’ states at the beginning of
each GUC, and reallocates data to ensure the lowest training
time as the learners’ states change. MED approaches MMTT-
Ideal, with a gap of up to 32%. Note that MED significantly
outperforms MMTT-Uncertain, with an improvement of up to
11%. This is because, as opposed to MED, MMTT-Uncertain
does not account for uncertainty. Thus, MMTT-Uncertain
allocates data based on inaccurate benchmark scores that
represent the learners’ capabilities when they are in a different

2023 IEEE Global Communications Conference: IoT and Sensor Networks

3600
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:14:35 UTC from IEEE Xplore. Restrictions apply.

(a) Average training time (b) Satisfaction Ratio (c) Average Data drop rate

(d) Average time occupancy

Fig. 1: Performance results for a global update cycle of MED, MMTT-Ideal, and MMTT-Uncertain over varying numbers of learners..

state than the one they are actually in. Thus, there is a high
risk of allocating more data to less capable learners, which
can prolong the training time in MMTT-Uncertain. In other
words, MMTT-Uncertain is much more prone than MED to
overestimating the capabilities of resource-poor learners, and
underestimating the capabilities of resource-rich learners.

We conduct the same experiment to assess the satisfac-
tion ratio of MED, MMTT-Ideal, and MMTT-Uncertain over
varying number of learners. As depicted in Figure 1(b), the
satisfaction ratio increases as the number of learners increases
in all schemes. This is because the higher the number of
learners, the fewer the shards of data that are allocated to each
learner. Consequently, learners tend to complete their training
routines faster, and are thus more likely to complete the task
before the deadline. MMTT-Ideal has near perfect satisfaction
ratio for all number of learners. This is due to the fact that
it has perfect knowledge of the learners’ states at each GUC
and can reallocate to maintain efficiency as the learners’ states
change. MED closely approaches MMTT-Ideal in satisfaction
ratio as the number of learners increases, yielding a gap of
up to 10%. MED also outperforms MMTT-Uncertain, with an
improvement of up to 11%. This can be attributed to the fact
that MED has a probabilistic knowledge of the learners’ states,
whereas MMTT-Uncertain assumes that the states remain fixed
throughout the training process, and it does not possess any

knowledge about their dynamic change. As a result, MMTT-
Uncertain tends to over-allocate data to weak learners while
underutilizing strong learners, leading to a lower likelihood of
finishing tasks on time than MED.

Figure 1(c) shows the average data drop rate of MED,
MMTT-Ideal, and MMTT-Uncertain over varying number of
learners. The drop rate is a metric that quantifies the number
of data batches that are allocated but not trained on. Thus,
learners halting early in their training routine increases the
drop rate. Note that as the number of learners increases, the
data drop rate decreases. This is because as the number of
learners increases, fewer data shards need to be assigned to
each learner. Thus, learners are more likely to complete the
whole task within the specified time. MMTT-Ideal has an
average data drop rate of nearly 0% for all numbers of learners.
This is due to the fact that it can reallocate data in between
GUCs with full and perfect knowledge of the learners’ states,
which helps ensure that the whole task is completed. MED
closely approaches MMTT-Ideal as the number of learners
increases, yielding a small gap of up to 5%. It can also be ob-
served that MED significantly outperforms MMTT-uncertain
by up to 42%. This is since MMTT-Uncertain is unaware of
the uncertainties in the learners’ training capabilities, and is
thus more likely to allocate data to learners that have a higher
risk of not completing training before the deadline.

2023 IEEE Global Communications Conference: IoT and Sensor Networks

3601
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:14:35 UTC from IEEE Xplore. Restrictions apply.

Figure 1(d) depicts the average occupancy time of MED,
MMTT-Ideal, and MMTT-Uncertain over varying number of
learners. Note that the average occupancy time declines for all
schemes as the number of learners increases. This is because as
the number of learners increases, it is more likely that at least
one learner uploads their update late, thus forcing the others to
sit idle for some time, which leads to wasting resources. Note
that MMTT-Ideal represents the upper bound on the reachable
potential improvement in occupancy time. This is due to its
perfect knowledge of the learners’ states, which reduces the
training time, thus reducing the risk of learners sitting idle
waiting for others to finish training on their allocated data
shards. MED yields the second best average occupancy time,
with a gap of up to 14% with MMTT-Ideal. MED outperforms
MMTT-Uncertain by up to 5%. This can be attributed to the
fact that MED accounts for uncertainty in learners’ states,
which helps reduce the average training time compared to
MMTT-Uncertain, thus reducing the risk of learners sitting
idle waiting for other learners to finish.

V. CONCLUSION

In this paper, we have proposed the Minimum Expected
Delay (MED) scheme. MED fosters data allocation for mul-
tiple learning tasks in the presence of uncertainty in learners’
capabilities in Parallelized Learning (PL) at the extreme edge.
Given the state probabilities of learners’s capabilities, MED
makes uncertainty-aware data allocation decisions that strive
to minimize the sum of the maximum expected delay of all
tasks, while maintaining certain budget and deadline limits.
Extensive evaluations on a real testing environment have
shown that MED outperforms a representative of uncertainty-
naive schemes by up to 11%, 11%, 42%, and 5% in terms of
training time, satisfaction ratio, drop data rate, and occupancy
time, respectively. Evaluations have also shown that MED
approaches the ideal scheme, with a gap of up to 10% and 5%
in terms of satisfaction ratio and drop data rate, respectively.
In the future, we plan on using data replication schemes to
account for the probabilistic risk of learners failing to finish
training on time.

ACKNOWLEDGMENT

This research is supported by a grant from the Natural Sci-
ences and Engineering Research Council of Canada (NSERC)
under grant number ALLRP 549919-20, and a grant from
Distributive, Ltd.

REFERENCES

[1] “The Growth in Connected IoT Devices is Expected to Generate
79.4ZB of Data in 2025”, Business Wire, [Online], Available:
https://www.businesswire.com/news/home/20190618005012/en/The-
Growth-in-Connected-IoT-Devices-is-Expected-to-Generate-79.4ZB-of-
Data-in-2025-According-to-a-New-IDC-Forecast, 2019.

[2] K. Gyarmathy, “Iot statistics and trends to know in 2022”, [Online],
Available: https://www.vxchnge.com/blog/iot-statistics (Accessed 2023,
April 10).

[3] “Distributive Ltd.”, [Online], Available: https://kingsds.network/ (Ac-
cessed 2023, April 10).

[4] R. F. El Khatib, S. A. Elsayed, N. Zorba and H. S. Hassanein, “Optimal
Proactive Resource Allocation at the Extreme Edge,” IEEE International
Conference on Communications (ICC), Seoul, Korea, pp. 5657-5662,
2022.

[5] “M. De’bas, S. A. Elsayed and H. S. Hassanein, “Multitiered Worker-
Oriented Resource Allocation at the Extreme Edge,” IEEE Global
Communications Conference (GLOBECOM), Rio de Janeiro, Brazil, pp.
5674-5679, 2022.

[6] “HomeEdge”, [Online], Available: https://wiki.lfedge.org/display/HOME/
Home+Edge+Project (Accessed 2023, April 10).

[7] W. Y. B. Lim et al., “Federated Learning in Mobile Edge Networks:
A Comprehensive Survey,” IEEE Communications Surveys & Tutorials,
vol. 22, no. 3, pp. 2031-2063, thirdquarter 2020.

[8] U. Mohammad and S. Sorour, “Adaptive Task Allocation for Mobile
Edge Learning,” IEEE Wireless Communications and Networking Con-
ference Workshop (WCNCW), Marrakech, Morocco, pp. 1-6, 2019.

[9] H. Yu, S. Yang, and S. Zhu, “Parallel Restarted SGD with Faster Conver-
gence and Less Communication: Demystifying Why Model Averaging
Works for Deep Learning,” Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, pp. 5693–5700, 2019.

[10] K. A. Bonawitz, H. Eichner, W. Grieskamp, D. Huba, A. Ingerman, V.
Ivanov, C. M. Kiddon, J. Kone�cn´y, S. Mazzocchi, B. McMahan, T. V.
Overveldt, D. Petrou, D. Ramage, and J. Roselander, “Towards Federated
Learning at Scale: System Design”, arXiv preprint arXiv:1902.01046,
2019.

[11] S. Wang, T. Tuor, T. Salonidis, K. K. Leung, C. Makaya, T. He,
and K. Chan, “When Edge Meets Learning : Adaptive Control for
Resource-Constrained Distributed Machine Learning”, IEEE Conference
on Computer Communications (INFOCOM), Honolulu, HI, USA, pp.
63-71, 2018.

[12] E. Diao, J. Ding, V. Tarokh, “HeteroFL: Computation and Communica-
tion Efficient Federated Learning for Heterogeneous Clients” [Online]
Available: https://arxiv.org/abs/2010.01264, 2021.

[13] “Axon”, [Online], Available: https://github.com/DuncanMays/axon-
ECRG (Accessed 2023, April 10).

[14] B. Yuan, Y. He, J. Q. Davis, T. Zhang, T. Dao, B. Chen, P. Liang, C.
Re, and C. Zhang, “Decentralized Training of Foundation Models in
Heterogeneous Environments,” arXiv preprint arXiv:2206.01288, 2022.

[15] H. Qi, E. R. Sparks, and A. S. Talwalkar, “Paleo: A Performance Model
for Deep Neural Networks,” International Conference on Learning
Representations (ICLR), Toulon, France, 2017.

[16] Z. Wei, S. Gupta, X. Lian, and J. Liu, “Staleness-Aware Async-SGD
for Distributed Deep Learning,” IJCAI International Joint Conference
on Artificial Intelligence, pp. 2350–2356, 2016.

[17] U. Mohammad, S. Sorour, and M. Hefeida, “Task Allocation for Mobile
Federated and Offloaded Learning with Energy and Delay Constraints”,
IEEE International Conference on Communications Workshops (ICC
Workshops), Dublin, Ireland, pp. 1-6, 2020.

[18] D. J. Mays, S. A. Elsayed and H. S. Hassanein, “Decentralized Data
Allocation via Local Benchmarking for Parallelized Mobile Edge Learn-
ing,” International Wireless Communications and Mobile Computing
(IWCMC), Dubrovnik, Croatia, pp. 500-505, 2022.

[19] J. Frankle, M. Carbin, “The Lottery Ticket Hypothesis: Finding Sparse,
Trainable Neural Networks”, 7th International Conference on Learning
Representations (ICLR), New Orleans, Louisiana, 2019.

[20] R. Kain, S. A. Elsayed, Y. Chen, and H. S. Hassanein, “Multi-step Pre-
diction of Worker Resource Usage at the Extreme Edge”, in Proceedings
of the 25th International ACM Conference on Modeling Analysis and
Simulation of Wireless and Mobile Systems (MSWiM), pp. 25–32, 2022.

[21] A. Amini, W. Schwarting, A. Soleimany, and D. Rus, “Deep Evidential
Regression”, Advances in Neural Information Processing Systems, vol.
33, pp. 14927–14937, 2020.

[22] Gurobi, “Gurobi Optimizer Reference Manual”, [Online], Available:
http://www.gurobi.com (Accessed 2023, April 10).

2023 IEEE Global Communications Conference: IoT and Sensor Networks

3602
Authorized licensed use limited to: Queen's University. Downloaded on March 05,2024 at 13:14:35 UTC from IEEE Xplore. Restrictions apply.

