
A Trustworthy Deep Reinforcement Learning

Framework for Slicing in Next-Generation

Open Radio Access Networks

by

Ahmad Nagib

A thesis submitted to the

School of Computing

in conformity with the requirements for

the degree of Doctor of Philosophy

Queen’s University

Kingston, Ontario, Canada

December 2024

Copyright © Ahmad Nagib, 2024

Abstract

Open radio access networks (O-RANs) represent a transformative architecture in mo-

bile communications, enabling multiple services to coexist on the same infrastructure

through network slicing. This allows mobile network operators (MNOs) to partition

the network into distinct virtual slices, each tailored to meet the specific needs of

one of the supported services. Such services reflect diverse, sometimes contradic-

tory, requirements from data-intensive services such as ultra-high definition (UHD)

video streaming to latency-intolerant services such as extended reality (XR) appli-

cations. Intelligent resource management algorithms are essential to ensuring these

services simultaneously meet their performance requirements. While deep reinforce-

ment learning (DRL) has shown promise in managing inter-slice resource allocation

(RA), its practical application faces several challenges, such as generalization and

safety, which hinder the widespread adoption of DRL algorithms in real environ-

ments.

This thesis makes several key contributions to address these challenges. First,

we introduce a trustworthy reinforcement learning (RL) framework for O-RAN that

systematically deals with such practical challenges in online deployment settings.

Next, we propose a hybrid transfer learning (TL)-aided DRL approach, combining

i

policy reuse and distillation methods, to enhance the generalization of DRL-based

slicing policies to new network scenarios. We also develop a safe DRL-based slicing

approach to reduce violations of the slices’ latency requirements. This includes de-

signing a reward function that reflects such requirements and learning a cost model

that estimates the latency attached to an action. Finally, we design predictive mech-

anisms incorporating pre-trained policy selection and demand forecasting models to

improve RL-based slicing agents’ performance under extreme network situations. To-

gether, these contributions advance the practical deployment of DRL-based resource

management agents in O-RAN.

Extensive simulations using real network traces demonstrate that our proposed

trustworthy RL approaches significantly improve service level agreement (SLA) satis-

faction and reduce latency while maintaining reasonable resource consumption across

O-RAN slices. These results highlight the applicability of our methods to address

the diverse service requirements in dynamic O-RAN deployment environments, par-

ticularly in immersive applications. While we focus on optimizing inter-slice RA

within O-RAN, our framework offers a pathway toward more comprehensive, pre-

dictive resource management strategies, ensuring robust performance in uncertain

network environments regardless of the architecture.

ii

Co-Authorship

Journal Articles

1. A. M. Nagib , H. Abou-Zeid and H. S. Hassanein, \Safe and Accelerated Deep

Reinforcement Learning-Based O-RAN Slicing: A Hybrid Transfer Learning

Approach," in IEEE Journal on Selected Areas in Communications, vol. 42,

no. 2, pp. 310-325, Feb. 2024, doi:10.1109/JSAC.2023.3336191.

2. A. M. Nagib , H. Abou-Zeid and H. S. Hassanein, \Accelerating Reinforce-

ment Learning via Predictive Policy Transfer in 6G RAN Slicing," in IEEE

Transactions on Network and Service Management, vol. 20, no. 2, pp. 1170-

1183, June 2023, doi:10.1109/TNSM.2023.3258692.

3. A. M. Nagib , H. Abou-zeid and H. S. Hassanein, \Toward Safe and Accel-

erated Deep Reinforcement Learning for Next-Generation Wireless Networks,"

in IEEE Network, vol. 37, no. 2, pp. 182-189, March/April 2023, doi:

10.1109/MNET.106.2100578.

iii

10.1109/JSAC.2023.3336191
10.1109/TNSM.2023.3258692
10.1109/MNET.106.2100578

Conference Publications

1. A. M. Nagib , H. Abou-Zeid and H. S. Hassanein, \SafeSlice: Enabling SLA-

Compliant O-RAN Slicing via Safe Deep Reinforcement Learning," IEEE Inter-

national Conference on Machine Learning for Communication and Networking

(ICMLCN), Barcelona, Spain, 2024 (Under Review).

2. A. M. Nagib , H. Abou-zeid and H. S. Hassanein, \Developing Trustworthy

Reinforcement Learning Applications for Next-Generation Open Radio Access

Networks," IEEE Canadian Conference on Electrical and Computer Engineer-

ing (CCECE), Kingston, ON, Canada, 2024, pp. 137-138, doi:10.1109/

CCECE59415.2024.10667311.

3. A. M. Nagib , H. Abou-zeid and H. S. Hassanein, \How Does Forecasting

A�ect the Convergence of DRL Techniques in O-RAN Slicing?," IEEE Global

Communications Conference (GLOBECOM), Kuala Lumpur, Malaysia, 2023,

pp. 2644-2649, doi:10.1109/GLOBECOM54140.2023.10437780.

4. A. M. Nagib , H. Abou-Zeid and H. S. Hassanein, \Transfer Learning-Based

Accelerated Deep Reinforcement Learning for 5G RAN Slicing," IEEE 46th

Conference on Local Computer Networks (LCN), Edmonton, AB, Canada,

2021, pp. 249-256, doi:10.1109/LCN52139.2021.9524965.

5. A. M. Nagib , H. Abou-Zeid, H. S. Hassanein, A. Bin Sediq and G. Boudreau,

\Deep Learning-Based Forecasting of Cellular Network Utilization at Millisec-

ond Resolutions," IEEE International Conference on Communications (ICC),

Montreal, QC, Canada, 2021, pp. 1-6, doi:10.1109/ICC42927.2021.9500858.

iv

Acknowledgments

I sincerely thank my supervisors, Prof. Hossam Hassanein and Dr. Hatem Abou-

Zeid, for their invaluable guidance, mentorship, and unwavering support throughout

my Ph.D. journey. Their expertise and encouragement were instrumental at every

step.

I also wish to express my gratitude to the examining committee|Prof. Melike

Erol-Kantarci, Dr. Ning Lu, Dr. Abd-Elhamid Taha, Prof. Yuanzhu Chen, and

Prof. Nick Graham|for their thought-provoking questions, constructive feedback,

and uplifting comments. The defence was a memorable experience that expanded

my perspective on my research.

Finally, to my family, friends and colleagues: your presence has been a pillar of

strength and motivation through the highs and lows of my time in Canada. Your

steadfast belief in me made a world of di�erence, and I could not have reached this

milestone without you by my side. I am especially grateful to my parents, brother,

and his wonderful family for their abundant and unconditional support.

I am deeply thankful to Dr. Shadi Khalifa for his un
agging support even before

my �rst day in Canada. I also want to thank Dr. Amir Mohamad and Dr. Adel

Ibrahim for the meaningful discussions and direction I received throughout my time

v

at Queen's TRL. I am also grateful to Dr. Akram Bin Sediq for his valuable guid-

ance and insightful exchanges throughout my involvement in the NSERC project in

collaboration with Ericsson, as well as during my Co-op there.

Finally, I would like to acknowledge my dear friend Alaa Nousir for her ongo-

ing support in many forms, including her instrumental e�orts in co-founding and

co-managing the Egyptian Students Association at Queen's, which enabled me to

connect with many wonderful and caring people far from home.

vi

Statement of Originality

I hereby certify that this Ph.D. thesis is an original work and that all ideas and

inventions attributed to others have been properly referenced.

Ahmad Nagib

December, 2024

vii

Contents

Abstract i

Co-Authorship iii

Acknowledgments v

Statement of Originality vii

Contents viii

List of Tables xiii

List of Figures xv

List of Abbreviations xviii

Chapter 1: Introduction 1

1.1 Motivation . 2

1.2 Research Statement . 5

1.3 Thesis Contributions . 6

1.4 Thesis Organization . 8

viii

Chapter 2: Background and Overview 10

2.1 Network Slicing . 10

2.1.1 RAN Slicing . 11

2.1.2 Inter-Slice RA . 13

2.1.3 Intra-Slice RA . 15

2.2 Slicing in Next-Generation O-RANs 16

2.2.1 O-RAN Intelligent Controllers 18

2.2.2 Slicing in the Context of O-RAN 20

2.3 Approaches to Inter-Slice RA . 21

2.3.1 Optimization-Based Approaches 22

2.3.2 Game Theory-Based Approaches 26

2.3.3 Machine Learning-Based Approaches 27

2.4 A Trustworthy DRL Framework for O-RAN 41

2.4.1 Accelerated Generalization . 42

2.4.2 Safety . 44

2.4.3 Robustness . 45

2.4.4 Explainability . 46

Chapter 3: Accelerated Generalization for DRL-Based Inter-Slice

Resource Allocation 48

3.1 Introduction . 48

3.2 Related Work . 52

3.2.1 Design Choices-Aided Approaches 52

3.2.2 Domain Knowledge-Aided Approaches 54

ix

3.2.3 Machine Learning-Aided Approaches 55

3.3 System Model . 57

3.3.1 Problem Statement . 59

3.3.2 Mapping to Deep Reinforcement Learning 60

3.4 Proposed TL Approaches for Accelerated Generalization 63

3.4.1 Policy Reuse . 64

3.4.2 Policy Distillation . 67

3.4.3 Proposed Hybrid Policy Transfer Approach 70

3.5 Training and Deployment Flows in TL-Aided O-RAN Architecture . . 74

3.5.1 Training Work
ow . 74

3.5.2 Deployment Work
ow . 76

3.6 Numerical Results and Discussion . 78

3.6.1 Generalization Performance of Policy Reuse against SOTA DRL

Algorithms . 80

3.6.2 E�ect of Reward Function Design and TL Approach on Gen-

eralization . 88

3.6.3 Performance of the Proposed Hybrid TL-Aided Approach for

O-RAN Slicing including Realistic Immersive Services 93

3.7 Summary . 103

Chapter 4: Safe DRL-Based Inter-Slice Resource Allocation 105

4.1 Introduction . 105

4.2 Related Work . 109

4.3 System Model . 114

x

4.4 Proposed Approach . 117

4.4.1 Risk-Sensitive Multi-Objective Reward Function 118

4.4.2 Safety Layer . 119

4.4.3 Supervised Learning for Cost Prediction 120

4.5 O-RAN Training and Deployment Flows 122

4.6 Numerical Results and Discussion . 127

4.6.1 Simulation Setup . 127

4.6.2 Baselines . 132

4.6.3 Results . 134

4.7 Summary . 142

Chapter 5: Enhancing the Performance of DRL-Based Inter-Slice

Resource Allocation under Extreme Situations 143

5.1 Introduction . 143

5.2 Related Work . 146

5.2.1 Enhancing the Performance of TL-Aided DRL 146

5.2.2 Time Series Forecasting-Aided DRL 148

5.3 System Model . 149

5.3.1 Transfer Learning Model . 149

5.3.2 Time Series Forecasting Model 151

5.4 Proposed Approaches for Enhancing RL-Based Slicing Performance

under Extreme Situations . 152

5.4.1 Predictive Policy Transfer for TL-Aided RL-Based O-RAN

Slicing . 152

xi

5.4.2 Forecasting-Aided DRL-Based O-RAN Slicing 161

5.5 PRB Utilization Data Description . 170

5.6 Numerical Results and Discussion . 174

5.6.1 Performance of Predictive Policy Transfer for TL-Aided RL-

Based O-RAN Slicing . 175

5.6.2 Performance of Forecasting-Aided DRL-Based O-RAN Slicing 187

5.7 Summary . 196

Chapter 6: Conclusion and Future Direction 198

6.1 Thesis Summary . 198

6.2 Future Directions . 200

6.2.1 Integration with O-RAN Systems and Standardization Needs . 200

6.2.2 Addressing Robustness and Explainability of DRL-Based Al-

gorithms . 201

6.2.3 Combining Approaches for a Comprehensive Trustworthy DRL-

Based Solution . 202

6.2.4 Extending the Comparison with Other Emerging Approaches . 202

6.2.5 Incorporating More Flexibility in Slicing Controller Design . . 203

6.3 Concluding Remarks . 203

Bibliography 206

xii

List of Tables

2.1 Comparison Between the Reviewed Inter-Slice RA Approaches. 38

3.1 Approaches to Tackle the Accelerated Generalization Challenge. . . . 53

3.2 List of Frequently Used Notations. 58

3.3 Performance Study 1 Setup: Simulation Parameters Settings. 81

3.4 Performance Study 1 Setup: RAN Slicing DRL Settings. 83

3.5 Performance Study 2 Setup: Simulation Parameters Settings. 88

3.6 Performance Study 2 Setup: RAN Slicing DRL Settings. 89

3.7 Performance Study 3 Setup: RAN Slicing DRL Settings. 94

3.8 Performance Study 3 Setup: Simulation Parameters Settings. 95

4.1 Performance Study Setup: Simulation Parameters Settings. 128

4.2 Training-Deployment Scenarios Experienced by the Agents. 129

4.3 Performance Study Setup: RAN Slicing DRL Settings. 131

4.4 Settings and Performance of the Trained Cost Prediction Model. . . 132

5.1 Reward Function Weight Combinations of the Expert Policies and

Learner Agents. 160

5.2 Processed Dataset Parameters. 172

xiii

5.3 Mapping of Original Data Points to Aggregated Samples. 172

5.4 Trace Files Auxiliary Meta-Data. 174

5.5 Performance Study 1 Setup: Simulation Parameters Settings. 176

5.6 Performance Study 1 Setup: RAN Slicing DRL Settings. 177

5.7 Policy Reuse Performance Statistics. 180

5.8 Multilayer Perceptron Hyperparameters. 185

5.9 Predictive Models Performance Evaluation. 186

5.10 Performance Study 2 Setup: RAN Slicing DRL Settings. 188

5.11 Performance Study 2 Setup: Simulation Parameters Settings. 189

5.12 LSTM Hyperparameter Settings. 190

xiv

List of Figures

1.1 Challenges experienced by RL algorithms in real-world scenarios. . . . 4

2.1 Overview of RAN slicing. 12

2.2 The scope and temporal resolution of inter-slice and intra-slice RA. . 14

2.3 O-RAN architecture overview. 17

2.4 Basic interactions between the DRL agent and the O-RAN environment. 33

2.5 Detailed interaction between RL-based slicing controllers and RAN

environments. 36

2.6 The proposed trustworthy DRL framework for RRM in O-RANs. . . 41

3.1 Example of the reward function's behaviour. 62

3.2 The proposed hybrid TL-aided DRL-based slicing approach's compo-

nents and interactions. 71

3.3 The TL-aided DRL-based O-RAN system architecture. 75

3.4 Comparison of expert policies' training performance using SOTA DRL

algorithms. 85

3.5 Comparison of TL-aided and non-TL-aided DRL-based inter-slice RA

under various deployment conditions. 86

xv

3.6 Numerical results: (a) Training performance of SOTA DRL algorithms

and baselines; (b) Deployment performance of the proposed reward

functions and TL-aided DRL-based slicing approaches. 91

3.7 Reward convergence performance of the proposed TL-aided DRL al-

gorithms for inter-slice RA . 98

3.8 Accelerated generalization performance of the proposed TL-aided DRL-

based slicing approaches. 100

3.9 The e�ect of the introduced parameter� on the generalization perfor-

mance of the proposed hybrid TL-aided DRL-based slicing approach. 103

4.1 The inputs and outputs of the proposed SL-based cost model. 121

4.2 The proposed safe DRL-based O-RAN slicing system. 124

4.3 Safety performance of the proposed safe DRL-based inter-slice RA

under the same tra�c test categories. 135

4.4 Safety performance of the proposed safe DRL-based inter-slice RA

under di�erent tra�c test categories. 136

4.5 Cumulative latency of the proposed safe DRL-based slicing approach. 138

4.6 Number of instantaneous violations accumulated over decision time

steps for the proposed safe DRL-based slicing approach. 139

4.7 Resource consumption of the proposed safe DRL-based slicing approach.141

5.1 The proposed predictive policy transfer O-RAN slicing system. 153

5.2 Proposed forecasting-aided DRL-based O-RAN slicing: Overall sys-

tem architecture. 162

xvi

5.3 Proposed forecasting-aided DRL-based O-RAN slicing: Detailed in-

teraction steps. 163

5.4 Pipeline used to build the forecasting models. 168

5.5 Sample of average downlink PRB utilization time series using di�erent

slicing window sizes. 173

5.6 Normalized reward given four slice priority con�gurations guided by

all expert policies. 179

5.7 Scatter plot of reward convergence error and the distance between the

weight vectors of expert and learner agents' reward functions. 182

5.8 Heat maps of reward convergence error. 183

5.9 Scatter plot of actual and predicted values of the reward convergence

error of two of the built MLP and extra-trees regressor models. 187

5.10 Convergence performance of the proposed forecasting-aided DRL-based

slicing approach under four di�erent tra�c patterns. 191

5.11 Convergence performance of the proposed forecasting-aided DRL-based

slicing approach under di�erent forecasting error models. 192

5.12 Overall performance of the proposed forecasting-aided DRL-based slic-

ing approach averaged over multiple runs. 193

5.13 Ther 2 score and RMSE of the built forecasting models. 195

xvii

List of Abbreviations

A2C Advantage Actor-Critic.

A3C Asynchronous Advantage Actor-Critic.

AC Actor-Critic.

ACER Actor-Critic with Experience Replay.

ANNs Arti�cial Neural Networks.

ARIMA Autoregressive Integrated Moving Average.

AutoML Automated Machine Learning.

AVs Aerial Vehicles.

BS Base Station.

C-RAN Cloud Radio Access Network.

CMDP Constrained Markov Decision Process.

CNNs Convolutional Neural Networks.

xviii

CP Control Plane.

CUs Centralized Units.

dApps Distributed Applications.

DDPG Deep Deterministic Policy Gradient.

DDQN Double Deep Q-Network.

DL Deep Learning.

DMLC Distributed (Deep) Machine Learning Community.

DNAF Discrete Normalized Advantage Function.

DNN Deep Neural Network.

DQN Deep Q-Network.

DR Domain Randomization.

DRL Deep Reinforcement Learning.

DUs Distributed Units.

eMBB Enhanced Mobile Broadband.

eNBs Evolved NodeBs.

FL Federated Learning.

xix

FRL Federated Reinforcement Learning.

GANs Generative Adversarial Networks.

GRU Gated Recurrent Unit.

GT Game Theory.

InP Infrastructure Provider.

InPs Infrastructure Providers.

KL Kullback-Leibler.

KPIs Key Performance Indicators.

KPMs Key Performance Metrics.

LSTM Long Short-Term Memory.

MARL Multi-Agent Reinforcement Learning.

MCS Modulation and Coding Scheme.

MDP Markov Decision Process.

ML Machine Learning.

MLP Multilayer Perceptron.

mMTC Massive Machine Type Communications.

xx

MNOs Mobile Network Operators.

MSE Mean Squared Error.

near-RT Near-Real-Time.

NGWNs Next-Generation Wireless Networks.

non-RT Non-Real-Time.

O-RAN Open Radio Access Network.

PF Proportional Fair.

PPO Proximal Policy Optimization.

PRBs Physical Resource Blocks.

QoE Quality of Experience.

QoS Quality of Service.

RA Resource Allocation.

RAN Radio Access Network.

RATs Radio Access Technologies.

RICs Radio Access Network Intelligent Controllers.

RL Reinforcement Learning.

xxi

RMSE Root Mean Square Error.

RNNs Recurrent Neural Networks.

RR Round-Robin.

RRM Radio Resource Management.

RRP Radio Resource Partitioning.

RUs Radio Units.

SAC Soft Actor-Critic.

SARSA State{Action{Reward{State{Action.

SDN Software-De�ned Networking.

SE Spectral E�ciency.

SHAP Shapley Additive Explanations.

SL Supervised Learning.

SLAs Service Level Agreements.

SOTA State-of-the-Art.

SSR Sum of Squared Residuals.

TL Transfer Learning.

TSS Total Sum of Squares.

xxii

TTIs Transmission Time Intervals.

UEs User Equipments.

UHD Ultra-High De�nition.

UP User Plane.

URLLC Ultra-Reliable Low-Latency Communications.

V2I Vehicle-to-Infrastructure.

V2V Vehicle-to-Vehicle.

V2X Vehicle-to-Everything.

VANET Vehicular Ad-hoc Network.

VoNR Voice over New Radio.

VR Virtual Reality.

XGBoost Extreme Gradient Boosting.

XR Extended Reality.

XRL Explainable Reinforcement Learning.

xxiii

1

Chapter 1

Introduction

6G networks are expected to deliver a range of heterogeneous services, enabling seam-

less interaction between the digital and physical worlds [1]. Examples are holographic

communications and extended reality (XR) applications. The open radio access net-

work (O-RAN) paradigm will play a crucial role in making such a vision a reality

[1]. To facilitate this, radio access network (RAN) slicing, a critical development

supported by the O-RAN architecture and commercialized by telecommunications

vendors [2, 3], enables the partitioning of the network into logically isolated network

slices that share underlying radio resources.

Mobile network operators (MNOs) must be able to manage and optimize network

slices individually to meet application-speci�c service-level agreements (SLAs) [4, 5,

6]. The O-RAN's open interfaces and controllers aim to empower MNOs to do so

exibly and intelligently [7]. This allows for improved user experiences, ensuring

users have the necessary resources to engage in the various supported applications

regardless of their heterogeneous requirements [8]. Such highly diverse, sometimes

contradictory, requirements are typically represented in the form of network key

1.1. MOTIVATION 2

performance indicators (KPIs), such as latency and throughput. In RAN slicing,

radio resource allocation (RA) involves balancing two con
icting objectives:

1. to maximize the spectral e�ciency (SE) by minimizing the used resources,

2. to keep the SLA violation rate under the de�ned thresholds for each slice.

Next-generation wireless networks (NGWNs) will become more complex due to

the growth in mobile data tra�c and higher densities of mobile users. They will

involve a variety of radio access technologies (RATs), devices and services. In such

highly dynamic NGWNs, the scope of optimization and the stringency of network

requirements are both expected to increase [9]. Hence, determining the minimum

share of RAN resources required for a slice to meet speci�c SLA criteria at a given

time becomes more challenging [10]. The complexity is further ampli�ed by the

interactions of per-
ow mechanisms within each slice, such as scheduling algorithms

and adaptive modulation and coding schemes (MCS) [10]. Therefore, solely relying

on traditional model-based approaches for orchestrating resources in network slicing

is impractical [11, 12].

1.1 Motivation

The increasing complexity of networks and the diversity of services necessitate intel-

ligent and dynamic coordination of network resources by MNOs. Machine Learning

(ML) techniques, and speci�cally deep reinforcement learning (DRL), will be among

the key ingredients to control and optimize O-RAN slicing in NGWNs due to the

following reasons [13]:

1.1. MOTIVATION 3

1. Network Complexity: Estimating optimal performance becomes hard given NG-

WNs' heterogeneous and dynamic nature. ML can manage network complexity

while delivering competitive performance.

2. Model De�ciency: Cellular networks are designed based on assumptions to

approximate end-to-end system behaviour through simple models. ML-based

approaches can capture the unknown dynamics and nonlinearities of NGWNs.

3. Algorithm De�ciency : Optimal algorithms are often too complex for practical

implementation, leading to system designs that rely on heuristics or simple

rules. ML can balance system performance and complexity in NGWNs.

Reinforcement learning (RL) is well-suited for such contexts due to the seamless

compatibility of network control operation with the RL feedback loop. Consequently,

DRL algorithms have demonstrated strong potential to adapt to operator goals and

provide a pathway toward autonomous self-driving networks [14, 15, 16, 17, 18].

Standard bodies and telecommunication vendors have made some e�orts toward

adopting RL in commercial wireless networks [19, 20]. However, the literature fails

to systematically design methodologies to tackle the following key challenges faced

in real-world scenarios, demonstrated in Fig. 1.1:

1. Ungeneralizable algorithms.The DRL-based slicing algorithms are trained us-

ing o�ine simulation environments. These are usually inaccurate and do not re-

ect all the situations in O-RAN deployment environments. Hence, the trained

algorithms cannot generalize to previously unseen network scenarios.

1.1. MOTIVATION 4

(a) Ungeneralizable algorithms (b) Slow convergence

(c) Risky exploration (d) Non-Robust algorithms

Figure 1.1: Challenges experienced by RL algorithms in real-world scenarios.

2. Slow convergence.DRL agents may require thousands of time steps to converge

to an acceptable performance when encountering new scenarios due to their ex-

ploratory behaviour. Stochastic O-RAN deployments, though, can only a�ord

limited exploration while optimizing near-real-time functions such as slicing.

3. Risky exploration. The DRL slicing policies do not commonly integrate safety

guarantees to ensure compliance with the SLA requirements of each O-RAN

slice. Hence, after deployment, a DRL slicing agent can take RA decisions that

signi�cantly degrade the end user's quality of experience (QoE).

1.2. RESEARCH STATEMENT 5

4. Non-robust algorithms. In slicing literature, DRL algorithms are not typi-

cally designed to improve worst-case performance under network uncertainties

caused by gaps between training and real-world environments. To be robust,

a DRL algorithm must address this in non-stationary O-RAN environments.

These interconnected challenges become especially evident when RL agents are

newly deployed in a live network or face signi�cant changes in network conditions, as

often occurs in O-RAN slicing. DRL algorithms must quickly, safely, and robustly

generalize to an acceptable slicing con�guration to enforce SLAs while optimizing

resource consumption. Additionally, RA decisions should be explainable to MNOs.

In this thesis, methods meeting these criteria are referred to as trustworthy RL

algorithms [21]. Our primary focus is on accelerated generalization and safety, as

explained in the next sections.

1.2 Research Statement

Research on RL-based inter-slice RA has focused on optimally distributing the radio

resources among slices without explicitly considering the identi�ed practical chal-

lenges. The systematic adoption of safe DRL techniques with accelerated generaliza-

tion and improved robustness in wireless networks remains limited. We believe that:

\ Developing trustworthy DRL algorithms is essential for maintaining

high QoE for users across heterogeneous services in future commer-

cial O-RAN deployments. By ensuring these algorithms optimize

radio resource utilization while minimizing SLA violations, we can

1.3. THESIS CONTRIBUTIONS 6

achieve operational e�ciency and service reliability in NGWNs. "
The primary goal of this thesis is to design DRL methods for inter-slice RA in

O-RAN that 1) generalize, quickly, to di�erent network slicing scenarios, 2) adapt to

changes in network conditions and MNOs' priorities, and 3) reduce SLA violations

while deployed in a live network setting.

1.3 Thesis Contributions

The main contributions of this Ph.D. thesis are as follows:

1. Trustworthy DRL Framework for O-RAN: We propose a framework to address

the identi�ed practical challenges in O-RAN deployment environments. This

framework introduces the concept of trustworthy DRL to the O-RAN archi-

tecture to guide the deployed DRL-based radio resource management (RRM)

agents. It suggests work
ows that support incorporating generalizable, safe,

robust, and explainable approaches. This is the �rst work to identify and cat-

egorize the challenges of applying RL in RRM, providing methodologies for

researchers to address these DRL-related limitations systematically. The ap-

plicability of our proposed trustworthy DRL framework is demonstrated in

O-RAN, yet its
exibility allows it to be extended for resource management in

wireless networks within various architectures.

2. Accelerated Generalization for DRL-based O-RAN Slicing:We introduce a

module to handle the di�erences between o�ine training and live deployment

1.3. THESIS CONTRIBUTIONS 7

environments and adapt quickly to changes in network conditions. By incorpo-

rating transfer learning (TL) as a core component in the O-RAN architecture,

we reuse knowledge from pre-trained slicing policies to address slow DRL gen-

eralization. We propose a novel hybrid TL-aided DRL method that combines

policy reuse and distillation TL techniques, balancing deterministic and ex-

ploratory actions. This results in signi�cant improvements in initial reward

values and convergence rates, outperforming the generalizability of the base-

line approaches.

3. Safe DRL-based O-RAN Slicing:We put forward a module to address risky

online exploration in DRL-based O-RAN slicing. We design a sigmoid-based

risk-sensitive RL reward function that explicitly incorporates cumulative SLA

constraints in the RL design. We also build a supervised learning cost model

that acts as a safety layer to project the slicing agent's actions to the near-

est safe actions, ful�lling instantaneous constraints. This is the �rst work

to thoroughly investigate the performance of constrained RL under extreme

and changing deployment conditions in O-RAN. The results show a signi�cant

decrease in average cumulative latency and instantaneous latency violations

compared to the baselines while maintaining acceptable resource utilization.

4. Enhancing the Performance of RL-based O-RAN Slicing under Extreme Sit-

uations: We �nally propose two approaches to improve the performance of

RL-based slicing algorithms under extreme situations. We re
ect these situa-

tions by allowing changes in the MNOs' priorities of ful�lling the slices' SLAs

and tra�c demand, particularly when resources are scarce. We are the �rst to

1.4. THESIS ORGANIZATION 8

support this O-RAN service model in which MNOs can
exibly modify the net-

work slices' con�gurations, often assumed to be constants in the literature. To

e�ciently adapt to such changes, we design a novel predictive approach to select

the best policy to be reused by a TL-aided RL agent. Moreover, a forecasting-

aided approach is proposed to guide DRL agents by factoring in forecasted

tra�c demand levels when taking inter-slice RA decisions. The results show

improvements in the percentage of generalized scenarios, initial reward values,

and convergence rates while being robust against forecast errors.

Our performance studies support multiple services, including real virtual reality

(VR) gaming tra�c, to re
ect immersive scenarios of O-RAN slicing in NGWNs. We

also demonstrate that acceptable forecasting error levels can be achieved using live

network cell load data collected at millisecond granularity. The implementations of

the proposed approaches, developed environments, and baselines are publicly avail-

able1 to promote reproducible research and facilitate further research on trustworthy

DRL in O-RAN.

1.4 Thesis Organization

We proceed by introducing O-RAN slicing and RL in Chapter 2. We review RAN

slicing literature and highlight the need for trustworthy RL. We end the chapter by

de�ning the modules of our proposed trustworthy DRL framework for O-RAN slic-

ing. Chapter 3 presents our proposed TL-aided DRL methods for O-RAN slicing as

part of the accelerated generalization module. The constrained DRL-based slicing

1Available at http://www.github.com/ahmadnagib/

1.4. THESIS ORGANIZATION 9

approach is presented in Chapter 4 as an instantiation of the safety module. Chap-

ter 5 describes ways to enhance the performance of slicing DRL-based algorithms

under O-RAN extreme situations, including the forecasting-aided approach and the

predictive policy selection for TL-aided approaches. Chapter 6 concludes the thesis

and outlines potential future work.

10

Chapter 2

Background and Overview

In this chapter, we introduce network slicing and explain how the O-RAN architec-

ture makes it feasible in NGWNs. We also review existing traditional and RL-based

inter-slice RA studies and their limitations in real-world scenarios. Finally, we pro-

pose a trustworthy DRL framework for O-RAN and discuss how it can address the

identi�ed challenges. The modules of such a framework aim to design algorithms

that generalize to di�erent network scenarios, adapt quickly to changes in network

conditions and MNO con�gurations, and reduce potential SLA violations.

2.1 Network Slicing

The term network slicing was brought into the spotlight in literature as an example

of software-de�ned networking (SDN) capabilities to support the growing demand

for virtualization and cloud services [22]. According to 3GPP, slicing is a network-

ing paradigm that creates isolated logical partitions to support a wide range of use

2.1. NETWORK SLICING 11

cases and deployment scenarios simultaneously while sharing the same physical in-

frastructure [23, 24]. These partitions, called slices, re
ect tra�c categories, MNOs'

preferences, or logical systems created on-demand for third-party entities or ten-

ants. In this service model, tenants can request separate slices from an MNO with

particular SLAs to serve their users based on the type of application they require

[10, 25]. Network slicing comprises a collection of network functions and resources

that must be optimally managed to simultaneously ful�ll diverse SLAs in terms of

latency, throughput and other network KPIs.

2.1.1 RAN Slicing

Resource management for network slicing includes computational, communication

and radio resources in core network and RAN, each with a partially di�erent op-

timization goal [24, 26, 27, 28, 29]. RAN slicing speci�cally received considerable

attention in recent years on academic and industry levels as it can support a plethora

of new services in NGWNs [30, 31, 32, 33, 3, 34, 35, 36, 37, 38, 39]. In the RAN

slicing problem, MNOs need to minimize radio resource utilization while satisfying

slices' SLAs in RANs. RRM is particularly challenging due to the scarcity of radio

resources, the dynamicity of wireless channels, and interferences [16]. The available

radio resources are signi�cantly a�ected by the stochastic channel quality and the

time-varying user demands for the provided services. Predicting tra�c demand for

each type of service is challenging in the short term, especially with the advent of

new 6G services.

2.1. NETWORK SLICING 12

Figure 2.1: Overview of RAN slicing.

An overview of RAN slicing is depicted in Fig. 2.1. The �gure shows a sce-

nario that includes three slices re
ecting the key service categories de�ned in the

5G standards: ultra-reliable low latency communications (URLLC), enhanced mo-

bile broadband (eMBB), and massive machine type communications (mMTC). Each

service category supports di�erent purposes and use cases and hence has di�erent

latency, reliability, and data rate requirements. These use case categories are envi-

sioned to have even more strict requirements in 6G networks [40]. This comes with

a cost, as MNOs must manage the available network resources in a way that ful-

�lls the diverse, sometimes con
icting, requirements of such heterogeneous services.

This includes optimizing a myriad of network functionalities that operate at di�erent

timescales and have di�erent goals [9].

2.1. NETWORK SLICING 13

Following numerous developments in the slicing literature, two primary hierar-

chical RRM functions are now involved, as seen in the �gure:

1. Slice admission controlallows the MNO to approve or deny a tenant's request

for a network slice. The MNO seeks to maximize the total revenue by approving

requests while being constrained by the limitations of the resource pool. In this

competitive environment, admission control serves as an intermediary between

MNOs' infrastructure and tenants, ensuring SLA compliance for the admitted

slices. With the anticipated increase in the categories of deployment use cases,

it will become essential to develop an intelligent system that can dynamically

manage slice requests over time. [41]

2. Slice RA is concerned with partitioning the available spectrum periodically

among the slices approved by the admission control function. This is followed

by allocating the physical resource blocks (PRBs) among each slice's users for

transmissions as illustrated in Fig. 2.1. These two sub-problems are known

as inter-slice and intra-slice RA, respectively [33], as discussed in the following

two subsections.

2.1.2 Inter-Slice RA

This function involves the periodic partitioning of the available spectrum among

the admitted slices and is often referred to as radio resource partitioning (RRP)

in industrial contexts [42]. The decided partitioning of resources is enforced in an

upcoming time window, known as the slicing window, whose duration is con�gured by

2.1. NETWORK SLICING 14

Figure 2.2: The scope and temporal resolution of inter-slice and intra-slice RA.

the MNOs. This process is typically executed at the base station (BS) level [24], and

consecutive slicing windows can have di�erent allocation con�gurations depending

on the tra�c demand and other network conditions as shown in Fig. 2.2. A slicing

window generally spans several transmission time intervals (TTIs), which are the

shortest time units a BS can schedule for users' uplink or downlink transmissions in

cellular networks.

As illustrated in Fig. 2.2, the spectrum allocated to each slice is modelled as a

2.1. NETWORK SLICING 15

grid of PRBs over time and frequency dimensions. PRBs are the fundamental units

scheduled to carry users' data in cellular networks. Hence, the decision variable of

the inter-slice RA problem is the set of PRBs allocated to each admitted slice during

a given slicing time window [25]. The allocated PRBs must enable the admitted slices

to meet their diverse requirements despite the constantly changing network condi-

tions. The SLAs de�ne these requirements and must be adhered to, as any violations

can negatively impact the end user's QoE. Additionally, SLA breaches may result

in monetary penalties for the infrastructure provider (InP). It is important to note

that the relationship between SLA satisfaction, inter-slice RA, and tra�c demand is

not yet well established. Furthermore, the resource demand in an upcoming slicing

window is not easily predictable [43].

2.1.3 Intra-Slice RA

The intra-slice RA, also known as packet scheduling [33], occurs after the spectrum

has been partitioned among the slices. It utilizes small time slots, known as TTIs,

for the �ne-grained allocation of the available PRBs to users within the same slice.

The di�erences between the scope and temporal resolution of inter-slice and intra-

slice RA are highlighted in Fig. 2.2. The intra-slice RA process is typically managed

by a dedicated scheduler based on the users' actual demand while considering other

factors such as interference control, SE, user fairness, and load balancing [33, 25].

The decision variable in scheduling is the set of PRBs allocated to each active user

within a slice at a given TTI. Solving the intra-slice RA problem in real-time imposes

strict time constraints on potential algorithms. Consequently, scheduling algorithms

2.2. SLICING IN NEXT-GENERATION O-RANS 16

such as round-robin (RR) and proportional fair (PF) are commonly employed in

practical implementations [44].

As discussed, resource management for network slicing can be examined from

multiple perspectives. This thesis focuses on the inter-slice RA aspect of RAN slicing.

The primary objective is to meet each tenant's service requirements while reducing

the amount of the utilized PRBs, thereby maintaining acceptable SE and minimizing

SLA violations. Determining the minimum share of RAN resources required for a

slice to meet speci�c SLA criteria in each observed network state presents a complex

challenge [10], especially as the optimization domains and network requirements are

expected to become larger and more stringent in NGWNs [9]. This complexity

is further intensi�ed by the interactions of per-
ow mechanisms within each slice,

including scheduling algorithms and adaptive MCS [10].

2.2 Slicing in Next-Generation O-RANs

According to GSMA Intelligence, 60% of the 100 MNOs they surveyed globally iden-

ti�ed network slicing as one of the top two bene�ts of the new cellular network ar-

chitectures [45]. The survey's report highlights network slicing's potential to enable

new use cases for consumers, such as mobile cloud gaming experiences. Numerous

studies have examined RA in cloud RAN (C-RAN) by focusing on the power, data

rate, and delay constraints of a single service [46]. However, current traditional

RANs exhibit a lack of
exibility and openness necessary to accommodate concur-

rent service demands e�ectively. This limitation has led to the development of a new

transformative RAN paradigm enabled by the O-RAN standard architecture [47].

2.2. SLICING IN NEXT-GENERATION O-RANS 17

Figure 2.3: O-RAN architecture overview as adopted from the O-RAN architecture
description document [47].

This work has been spearheaded by the O-RAN Alliance, a consortium composed of

MNOs, vendors, and research institutions [7].

O-RAN's objective is to enhance the
exibility, e�ciency, and interoperability of

NGWNs. To achieve this, it promotes the following key elements as highlighted in

Fig. 2.3 [48, 49]:

1. Cloudi�cation : This involves the disaggregation of hardware and software.

RAN application software functions as cloud-native elements operating on a

cloud architecture that utilizes general-purpose hardware.

2. Intelligent Automation: This includes automation and model-driven manage-

ment and orchestration systems. O-RAN incorporates ML capabilities to en-

sure e�cient lifecycle management of network functions. Hence, it includes

2.2. SLICING IN NEXT-GENERATION O-RANS 18

RAN intelligent controllers (RICs) responsible for controlling and optimizing

RAN functions at di�erent timescales, as explained later in this chapter.

3. Open Interfaces: O-RAN features open internal interfaces such as O1, O2,

E2, and F1 interfaces which connect di�erent parts of the RAN. These are

integrated with interfaces de�ned by the 3GPP, such as the E1 interface.

2.2.1 O-RAN Intelligent Controllers

O-RAN will provide MNOs with greater control over the network. O-RAN-based

NGWNs will incorporate generic modules and interfaces for data collection, distri-

bution, and processing [7]. O-RAN RICs facilitate data-driven closed-loop control

through custom logic applications [50, 51]. These applications can be deployed at

three levels, enabling control decisions across various timescales as follows [52, 50]:

1. Near-real-time RIC: The near-real-time (near-RT) RIC is implemented at the

network edge, managing control loops with a periodicity ranging from 10 mil-

liseconds to 1 second [53]. As shown in Fig. 2.3, it interfaces with O-RAN's

distributed units (DUs), centralized units (CUs), and radio units (RUs), in

addition to legacy O-RAN-compliant LTE evolved NodeBs (eNBs). CUs have

two components: one to handle control plane (CP) functionality and another

to handle user plane (UP) functionality. Typically associated with multiple

RAN nodes, the closed-loop control exerted by the near-RT RIC can signi�-

cantly impact the quality of service (QoS) for hundreds or even thousands of

user equipments (UEs) [2]. The near-RT RIC comprises applications known as

2.2. SLICING IN NEXT-GENERATION O-RANS 19

xApps, which implement custom logic as well as the necessary services to sup-

port their execution. It receives data from the RAN, such as user, cell, or slice

key performance metrics (KPMs), and if required, computes and dispatches

control actions. Consequently, xApps can integrate algorithms for network

slicing at the connected nodes level, or, in other words, BSs [2]. Therefore, an

intelligent inter-slice RA controller is typically deployed in the near-RT RIC.

2. Non-real-time RIC: The non-real-time (non-RT) RIC complements the near-

RT RIC for intelligent RAN operation and optimization on timescales greater

than 1 second [54, 55, 56]. Through the non-RT control loop, the non-RT

RIC primarily provides guidance, enrichment information, and management of

ML models for the near-RT RIC [57]. Applications deployed at this level are

referred to as rApps [2].

3. Real-Time Control Loops: The current O-RAN speci�cations lack a practical

approach for executing real-time control loops with timescales below 10 mil-

liseconds. As shown in Fig. 2.3, such a control level is absent. However,

the authors of [50] introduce the concept of distributed applications (dApps)

that enhance existing xApps and rApps by enabling MNOs to implement �ne-

grained, data-driven management and control in real-time at the CUs and DUs.

dApps receive real-time data from the RAN and enrichment information from

the near-real-time RIC, allowing them to control lower-layer functionalities.

This enables use cases with stricter timing requirements than those considered

by the other two RICs, such as intra-slice RA [58]. This level of control is

limited in scale concerning the number of devices being optimized [2].

2.2. SLICING IN NEXT-GENERATION O-RANS 20

2.2.2 Slicing in the Context of O-RAN

O-RAN o�ers unparalleled
exibility in supporting diverse network slicing scenarios

that traditional RAN architectures cannot match [49]. Its open and programmable

nature ensures that each slice can operate independently, maintaining its own per-

formance parameters without interference from others. O-RAN's standardized open

interfaces enable data-driven network management, allowing MNOs to collect real-

time data from the RAN [51]. These interfaces also facilitate the consultation of

intelligent slicing RA controllers, which utilize advanced analytics and AI capabil-

ities to enhance dynamic slice management, optimizing resources in real time by

adapting to changing network conditions and user demands. Slicing xApps will be

typically deployed in the near-RT RIC and interact with RAN nodes, such as BSs,

through the E2 interface shown in Fig. 2.3.

In this service model, MNOs have the
exibility to con�gure network slices in

ways that traditional RANs cannot support. For example, in Chapter 5, we are

the �rst to de�ne a scenario and propose methods to e�ectively enable MNOs to

change the relative priorities of ful�lling the SLAs of the available slices. Di�erent

deployments and operators may have varying preferences that change over time.

These priorities are often assumed to be constants in the literature [46, 59]. With

the rise of the O-RAN paradigm, similar scenarios are expected to become more

feasible on a larger scale in future 6G networks. Hence, a critical challenge within

O-RAN is balancing services with varying QoS requirements, resource needs, and

MNOs' priorities [60, 61, 62].

2.3. APPROACHES TO INTER-SLICE RA 21

2.3 Approaches to Inter-Slice RA

Approaches to solving the inter-slice RA problem have evolved similarly to the liter-

ature on RA in NGWNs in general. This started with basic rule-based approaches

while the community was still cumulatively building consensus on ways to de�ne and

execute RAN slicing at the various network levels [24]. For instance, the authors of

[63, 64] extend the traditional scheduling algorithms, such as RR, to determine the

PRB allocation to each slice. Most emerging studies at that time did not consider

satisfaction of the slice requirements. They mainly examined certain network KPIs

such as throughput while typically comparing the performance against baselines that

allocated a �xed amount of the PRBs to each slice or those which do scheduling on

the user level with no slicing [65].

Since then, various frameworks, such as classic optimization, game theory (GT),

supervised learning (SL), and RL, have been utilized to address this problem. The ap-

proaches to solving resource management problems in network slicing can be broadly

categorized into three main groups: optimization-based, GT-based and ML-based

approaches [31]. We �nd that the approaches to inter-slice RA follow a similar clas-

si�cation scheme. In Sections 2.3.1, 2.3.2, and 2.3.3, we review research studies

that address the inter-slicing RA problem using such a scheme. It is worth point-

ing out that such a categorization is not mutually exclusive. Methods from di�erent

categories may be combined to solve the complex end-to-end slicing problem, as men-

tioned in multiple instances throughout this chapter. We summarize the di�erence

between all the reviewed categories and provide the related work in Table 2.1.

2.3. APPROACHES TO INTER-SLICE RA 22

2.3.1 Optimization-Based Approaches

These are mainly traditional model-based or heuristic-based methods that provide

exact or approximate answers to the inter-slice RA optimization problem. This

includes closed-form, heuristic, and classic optimization approaches, as reviewed in

the following three subsections.

Closed-Form Approaches

The closed-form approaches refer to mathematical methods that can provide an

exact solution without requiring iterative techniques [31]. They can be expressed

analytically as an equation or formula that includes a �nite number of standard

operations such as addition and multiplication. One signi�cant example is queueing

models with a closed-form solution for several KPMs.

For instance, in [66, 67], the authors apply tools from queueing theory to estimate

the number of PRBs necessary to attain speci�c latency targets for URLLC slices.

The authors assume that each slice has its separate downlink queue at the BS. They

propose to model it as anM=M=1=K queue to estimate the latency of the packets.

They derive the service rate based on formulas that include the number of users,

packet size, data rate per user, and the maximum data rate provided by one PRB.

Among all the service rate values that lead to an acceptable URLLC latency, they

select the one which minimizes the di�erence between the maximum tolerated latency

by a URLLC slice and the time a packet spends in the queue. Finally, they derive

the corresponding number of PRBs assigned to a URLLC slice based on the obtained

service rate, the maximum data rate provided by one PRB, and the average packet

2.3. APPROACHES TO INTER-SLICE RA 23

size of the URLLC application that is assumed to be constant. Similarly, in [68], the

correlation between incoming tenant service tra�c and the resource requirements

is utilized to compute the over-provisioning ratio usingM=M=1 queueing theory

for each evaluated tra�c allocation ratio. This approach ultimately identi�es the

optimal allocation ratio that meets the speci�ed service latency requirements.

Classic Optimization Approaches

Classic optimization approaches to inter-slice RA involve �nding the best solution

from a set of feasible solutions using mathematical techniques. It often aims to

minimize or maximize an objective function subject to constraints. This includes

techniques like linear programming, integer programming, dynamic programming,

and various forms of calculus-based methods.

For instance, in [69], the authors propose a dynamic programming algorithm

to allocate the limited PRB resources and improve resource utilization. At each

stage, the proposed algorithm calculates the optimal value by traversing all possible

decisions. The simulation results show that the proposed RA approach attains a

slightly better total utility value and fairness than when each slice is allocated PRB

resources equally or according to real-time active users.

Moreover, in [70], linear programming is employed. After identifying a set of

users whose QoS can be satis�ed, the authors propose to execute slice association and

bandwidth allocation for such users jointly. They propose a network-centric policy

in an attempt to reach optimal bandwidth utilization. By relaxing the problem, the

authors convert it into a linear programming model that is straightforward to solve.

2.3. APPROACHES TO INTER-SLICE RA 24

The results show that the proposed approach can outperform traditional methods in

typical scenarios by accommodating more users and reducing resource utilization.

On the other hand, the problem of inter-slice RA is formulated as a non-linear

programming problem in [71, 72, 73, 74]. However, in all these instances, the problem

has to be simpli�ed. For example, in [71], the problem was relaxed into a convex

optimization problem. Furthermore, in [73], given the di�culty of solving the original

combinatorial integer non-linear programming optimization problem in polynomial

time, the authors converted it into a continuous linear program. Other approaches

of relaxation or approximation are also used in the context of the slice RA problems,

such as majorization-minimization approximation methods [74] and heuristics, as

discussed in the next subsection, to make them computationally tractable and achieve

near-optimal solutions.

In most of the aforementioned classic optimization work, the PRB allocation is

determined using comprehensive yet impractical pre-existing models. These models

do not address the problem from an online learning perspective by leveraging data

from previous decision time steps. In [6], the inter-slice RA problem is formulated as a

multi-objective programming problem that strives to enhance the SLA performance

across all slices. The authors then reformulate the problem to an online convex

optimization problem. Using data from past allocations, the approach learns the

current RA, eliminating the need for complex modelling and parameter adjustments

in highly dynamic wireless environments.

2.3. APPROACHES TO INTER-SLICE RA 25

Heuristic-Based Approaches

Heuristic methods are popular for quickly �nding solutions to large-scale problems

with complicated constraints and objective functions involving discrete and continu-

ous variables. Heuristics and other previously discussed relaxation techniques can be

employed to break down large problems into smaller sub-problems, thereby reducing

complexity [31]. For instance, in [75], the RA optimization problem is formulated

mathematically to accommodate best-e�ort and mission-critical tra�c in a 5G ve-

hicular ad-hoc network (VANET) context. Consequently, genetic algorithms are

utilized to solve the problem. Moreover, the authors of [46] model slicing RA prob-

lem, including PRB allocation, in an O-RAN context as a non-convex mixed-integer

non-linear problem. An iterative heuristic algorithm is then utilized to solve the

broken-down sub-problems.

Heuristic approaches are commonly used to relax the intractable classic opti-

mization methods to solve the inter-slice RA problem as highlighted in Table 2.1

[46, 76, 77, 78]. However, they can also be combined with other learning-based

approaches, such as SL and RL, to solve the problem. For instance, in [79], The

authors model the problem as a linear program aimed at minimizing total network

delay. They propose to forecast slices' radio capacities using a long short-term mem-

ory (LSTM) neural network, which is a supervised ML model. Then, they handle

large problem instances using a low-complexity heuristic algorithm based on such

a forecast. In [80], the authors propose an o�ine RL approach to determine the

inter-slice RA among eMBB and vehicle-to-everything (V2X) slices. Then, a heuris-

tic algorithm �ne-tunes the inter-slice RA decisions based on the RL agent's results

2.3. APPROACHES TO INTER-SLICE RA 26

and actual demands.

2.3.2 Game Theory-Based Approaches

While GT-based methods encompass optimization, what sets them apart is the

strategic interplay between multiple agents. These agents are presumed to act ratio-

nally and are represented through mathematical models. They strive to achieve an

equilibrium that satis�es all involved parties. GT techniques can involve cooperative

or non-cooperative agents [31]. GT models o�er a promising approach for managing

multi-actor problems in the context of network slicing and RA in wireless networks

[81].

For instance, in [82], the authors model the problem as a tra�c-shaping game.

They propose an RA model that considers the network state but is restricted by

the network slices' pre-allocated shares to ensure a level of protection among slices.

Moreover, the authors in [83] model the problem as a game, where each slice dynami-

cally responds to the allocations of other slices to optimize its own utility. They show

that, under elastic tra�c conditions, the game converges to a Nash equilibrium. At

this equilibrium, each tenant achieves performance that is at least as good as with

static resource partitioning, thereby maintaining the same level of protection.

Furthermore, in [84], the authors examine the inter-slice RA among two network

slices with heterogeneous requirements in fog RANs. This problem has been for-

mulated as a Stackelberg game, where the inter-slice RA controller serves as the

leader, and the intra-slice RA controllers function as followers. At least one Stackel-

berg equilibrium has been established under certain conditions. Given the problem's

2.3. APPROACHES TO INTER-SLICE RA 27

complexity, low-complexity RA schemes have been introduced, considering that the

controllers behave as players with bounded rationality. Finally, in [85], the problem

is modelled as a bankruptcy game to improve resource utilization in the context of

4G C-RAN.

Similar to heuristic approaches, GT approaches can be combined with other learn-

ing approaches to provide an end-to-end solution to the slice RA problem. In [86], a

proxy-Lagrangian two-player game is formulated to enhance energy e�ciency in C-

RAN through a statistical federated learning (FL) approach. Each CU and network

slice instance pair functions as a local agent, developing its own model. Follow-

ing this, a central orchestrator consolidates the local models to allocate PRBs and

computing resources e�ciently.

2.3.3 Machine Learning-Based Approaches

The reviewed methods under the broad optimization-based and GT-based categories

are not well suited to the speci�c characteristics of NGWNs and their heterogeneous

service requirements due to the following reasons [16, 87, 13, 12]:

ˆ Network Complexity: The complexity of NGWNs is increasing due to the

growth in mobile data tra�c and number of devices, and the higher density of

mobile users. This also involves evolving communication models, radio access

technologies, and services. According to [88], the number of settings required

for optimization has risen from 1500 in 4G to over 2000 in 5G. In such complex

deployment scenarios, estimating the optimal performance is hard, given the

heterogeneous and dynamic nature of future wireless networks.

2.3. APPROACHES TO INTER-SLICE RA 28

ˆ Model De�ciency: Future cellular network dynamics will show long-term and

short-term trends, which traditional methods cannot adapt to. Such methods

do not learn service tra�c and physical layer patterns. Existing networks have

been designed with many assumptions to approximate the end-to-end system

behaviour. First, closed-form approaches cannot practically solve the inter-

slice RA problem due to such assumptions. For instance, in [66], the authors

consider the same data rate for all the URLLC and eMBB slice users. Fur-

thermore, the approximate models used in classic optimization methods inad-

equately capture the intricate dynamics of real-world networks. These models

often depend on simplifying assumptions regarding the underlying architectural

properties to maintain tractability within complex wireless networks, thereby

compromising their accuracy [89]. As a result, they lack both
exibility and

extensibility. For example, it is impractical to assume that the tra�c demand

rate is �xed for every slice user [90]. Consequently, alterations in scenario set-

tings, such as enforcing stricter SLAs or encountering user mobility, may render

these methods unsuitable [91]. Finally, beyond the signi�cant computational

complexity inherent in GT-based approaches, they frequently presuppose the

rational behaviour of all players [31].

ˆ Method De�ciency: The optimal algorithms are too complex to implement in

some network scenarios practically. The signi�cant computational complexity

associated with searching in large-scale, dynamic scenarios often causes perfor-

mance to be suboptimal [16]. Such approaches may also require perfect network

knowledge [92]. This leads to system designs that mainly depend on heuristics

2.3. APPROACHES TO INTER-SLICE RA 29

and other relaxation methods based on simple rules to solve large-scale prob-

lems within an acceptable timeframe. Relaxation and heuristic approaches

reduce complexity but are likely to lead to suboptimality. Their performance

can also be sensitive to design choices such as population size in genetic al-

gorithms [31]. The approximation quality of such approaches also depends on

the technique and degree of relaxation employed. This results in ine�cient

resource utilization and increases the cost of the RA process [93].

ML-empowered NGWNs can address network complexity while providing com-

petitive performance. Moreover, ML-based approaches can capture the underlying

unknown non-linearities of such dynamic wireless network environments. Further-

more, ML can strike the right balance between acceptable system performance and

complexity. Finally, NGWNs are expected to have ubiquitous intelligence as part of

the O-RAN architecture. This allows a customizable AI-native RAN slicing [94]. Ac-

cordingly, various ML-based approaches have been recently proposed to solve prob-

lems related to network slicing, including the inter-slice RA problem [95, 32, 96].

Such approaches can be classi�ed into two main categories of ML: SL and RL.

SL-Based Approaches

SL uses labelled data to train models that can predict the optimal RA strategies or

future network conditions. It requires historical data on network performance and

resource utilization. Two typical SL settings can be found in the inter-slice RA lit-

erature. The �rst employs time series forecasting models to predict future network

2.3. APPROACHES TO INTER-SLICE RA 30

conditions and decide RA among slices based on that. The second builds mod-

els that select the allocation con�guration directly based on the prevailing network

conditions.

Time Series Forecasting. In this category, ML-based forecasting approaches are

used as a step toward optimizing network slicing. For instance, an LSTM neural

network is used in [97] to perform periodic tra�c forecasting, and then resources are

allocated among slices based on such a forecast. Moreover, in [98], the authors extend

the LSTM neural networks architecture to forecast the PRB utilization in a slice.

Consequently, such information is used to adjust the amount of PRBs allocated to

over-utilized slices. They claim their approach outperforms autoregressive integrated

moving average (ARIMA) and traditional LSTM neural networks. Similarly, the

authors in [99] propose a convolutional LSTM to predict the tra�c of services in

the context of vehicular networks. They then employ a primal-dual interior-point

method to solve the inter-slice RA problem among three services: SMS, phone, and

web.

Moreover, in [100], the authors devise a custom low-complexity gated recurrent

unit (GRU) to predict the tra�c for each slice. Finally, the work in [101, 102] utilizes

the FL approach to exploit the knowledge across MNOs while preserving their data

privacy. The authors consider tra�c forecasting per slice on the BS level. It is worth

mentioning that some of the reviewed studies compare against other time series

forecasting approaches based on statistical methods such as exponential smoothing

and ARIMA [103, 104]. However, the dominant forecasting approaches used are ML-

based, and they are the ones typically included as part of the proposed approaches

2.3. APPROACHES TO INTER-SLICE RA 31

[96, 18].

Prediction. Supervised ML can also be used to directly predict the required re-

sources for each slice based on some input features re
ecting the relevant network

conditions. For instance, the authors in [105] used a deep neural network (DNN) to

predict the resources required by slices based on their tra�c. Similarly, in [100], after

using a GRU to predict the tra�c for each slice, such prediction is fed to a DNN to

estimate the resources required by slices. The models in both studies are trained to

consider desired KPIs de�ned by the slices' SLAs.

The work in [106, 107] also propose an SL approach to make inter-slice RA de-

cisions. The authors design a network slice resource management orchestrator that

employs a regression tree model to predict the inter-slice RA con�guration. Informa-

tion regarding time, the day of the week, ongoing events, and various environmental

factors is extracted and employed as input features for the SL model. As discussed

previously, some research studies also combine multiple approaches to solve the end-

to-end slicing problem. For example, in [108], the authors utilize a bidirectional

LSTM to predict the required resources for each slice on the inter-slice RA level,

then uses a DRL agent to decide the required resources on the intra-slice RA level.

Supervised ML approaches have proven to be useful in the RA problem, and

the deployment of some of them is relatively inexpensive. However, they rely on

computationally intensive o�ine training before deployment in a live network for

prediction. To achieve satisfactory performance, it is essential to have access to

high-quality training data that accurately represent the characteristics of the network

2.3. APPROACHES TO INTER-SLICE RA 32

slicing environment. However, acquiring large datasets in wireless networks neces-

sitates conducting measurement campaigns, which may be prohibitively expensive

and impractical. Additionally, wireless networks are highly dynamic, particularly in

outdoor settings, making it challenging to collect accurate data when mostly needed

[12]. Moreover, deep learning (DL) methods necessitate comprehensive hyperparam-

eter optimization and are hindered by limited explainability [31]. Finally, whenever

there are signi�cant changes in the environment dynamics, full retraining is often

required after incorporating representative samples of the changes into the training

data.

Reinforcement Learning-Based Approaches

Reinforcement Learning Basics. As seen in Fig. 2.4, RL involves training an

agent to maximize cumulative rewards by exploring possible actions in di�erent sys-

tem states [109]. The network control operation integrates seamlessly with this

feedback loop. RL can develop an approximate, continuously updated policy based

on its interactions with complex environments. Therefore, RL is particularly ben-

e�cial for dynamic wireless environments where the RA policy must adapt to un-

predictable changing conditions. RL-based approaches have recently emerged as the

state-of-the-art (SOTA) solution for inter-slice RA, and RRM in general, dominating

the literature and outperforming the other reviewed model-based and SL methods

[14, 110, 111, 18, 15, 16, 65, 11].

What distinguishes RL from other types of ML is its focus on evaluating actions

taken rather than providing a prede�ned set of correct actions. Unlike most of the

2.3. APPROACHES TO INTER-SLICE RA 33

Figure 2.4: Basic interactions between the DRL agent and the O-RAN environment.

reviewed approaches, RL does not require complete knowledge of the RAN system,

which is often impractical and ine�cient in stochastic environments like NGWNs.

RL follows the framework of the Markov decision process (MDP), a generalized model

for decision-making problems in which outcomes are uncertain [109].

An MDP is de�ned by a 5-tuple M = hS; A; P (s0 j s; a) ; R;
 i , whereS denotes

the �nite state space andA represents the �nite action set [109]. The termP (s0 j s; a)

de�nes the transition probability, representing the likelihood of transitioning to state

s0 2 S at time step t + 1 after taking action a 2 A in state s 2 S at time step t. The

function R(s; a) corresponds to the immediate reward received upon executing action

a in state s. Additionally,
 2 [0; 1] is a discount factor, capturing the diminishing

importance of future rewards relative to immediate ones. The primary objective

in an MDP is to derive an optimal policy � � that prescribes the actiona to be

taken in each states to maximize the value function. This value function is typically

expressed as the expected cumulative discounted reward and can be formulated using

the Bellman equation:

2.3. APPROACHES TO INTER-SLICE RA 34

V � (ŝ) = E�

"
1X

k=0

 kR
�
s(k) ; �

�
s(k)

��
j s(0) = ŝ

#

= E�

"

R(ŝ; � (ŝ)) +

X

s02S

P (s0 j ŝ; � (ŝ)) V � (s0)

#

:

(2.1)

whereV � (ŝ) is the value of states under policy � . An RL agent's objective is to

maximize the long-term reward expectation, that is,

argmax
a

Ef R(a; s)g; (2.2)

where E(�) represents the expectation of the argument. The main challenge in

solving (2.2) in the context of slicing is the limited radio resources and the variability

of the RAN environment. This includes radio channels, the number of admitted

slices, their SLA requirements, and user numbers and demands.

Some of the approaches reviewed in this thesis, such as dynamic programming,

can solve the Bellman equation whenP (s0 j s; a) is known in advance and determin-

istic. However, this is not the case in RAN slicing due to the mentioned variability.

The optimal solution can also be found through an exhaustive search, considering all

possible allocations at the start of each slicing window and recording the resulting

system performance. However, such approaches are both computationally expensive

and practically infeasible. RL, in contrast, aims to derive the optimal policy,� � ,

in environments with unknown and partially random dynamics. Therefore, RL pro-

vides a viable alternative for solving the inter-slice RA problem [97]. As RL lacks

precise awareness of how close it is to achieving the goal, it must balance exploring

new actions and exploiting the gained knowledge [65].

2.3. APPROACHES TO INTER-SLICE RA 35

In control problems based on system trajectory observations, selecting an appro-

priate approach is contingent upon the quality of prior knowledge regarding system

dynamics and cost functions. Learning-based methods like RL are strong candidates

for solving these problems, as shown by superior results in the literature. This advan-

tage holds even without leveraging prior knowledge, unlike model-based techniques

[112].

RL-Based Inter-Slice RA Literature. In inter-slice RA literature, an RL-based

RAN slicing controller is designed to interact with the RAN environment bidirection-

ally as shown in Fig. 2.5. When a slicing window begins, the RL agent �rst observes

the current state of the RAN system and then selects an action to take. The action in

inter-slice RA is the allocation of PRBs to each slice. The action taken modi�es the

RAN environment, and the RL agent receives feedback in the form of a reward value,

which re
ects the system's performance. Typically, the reward function is designed

by network experts and represented as a weighted sum of the relevant network KPIs

to guide the RL agent. This enables the RL-based RAN slicing controller to assess

the e�ectiveness of the action taken. This is estimated based on the agent's sampled

experience interacting with the RAN environment in a real-time and dynamic open-

control fashion. This way, the agent learns a policy to allocate resources to each slice

based on the changing network conditions.

The RL algorithms can be categorized in many ways. For instance, depending on

how they approach the problem of learning an optimal policy for decision-making,

2.3. APPROACHES TO INTER-SLICE RA 36

Figure 2.5: Detailed interaction between RL-based slicing controllers and RAN en-
vironments.

they can be categorized into value-based and policy-based algorithms [110]. Value-

based approaches such as Q-learning focus on estimating value functions (i.e., Q-

values) and, hence, derive policies indirectly. These are typically easier to implement

but struggle with large or continuous action spaces. On the other hand, policy-

based algorithms focus on directly learning the policy. They handle continuous and

stochastic actions well but can su�er from high variance in updates and often require

more careful tuning and variance reduction techniques.

Most early works that used RL approaches to solving the inter-slice RA problem

are value-based RL approaches. For instance, the work in [65] is among the earliest

2.3. APPROACHES TO INTER-SLICE RA 37

to use DRL in RAN slicing. They employ a deep Q-network (DQN) to ful�ll demand-

aware RA in inter-slice RA and core network slicing. They compare their approach's

performance expressed as network KPIs against a baseline that take the inter-slice

RA decisions based on an LSTM-forecasted number of users in each slice. They also

compare against simpler baselines that allocate a �xed amount of the PRBs to each

slice or those which do scheduling on the user level with no slicing. The authors do

not discuss the convergence performance of the DRL algorithm or how to improve

it. They also do not mention how to train and deploy the proposed DRL algorithm

in a live network setting.

In practice, many modern RL algorithms, such as actor-critic (AC) methods, com-

bine elements of both value and policy-based approaches to leverage their respective

strengths. For example, the study presented in [4] addresses the same problem by

employing the advantage actor-critic (A2C) algorithm, enhanced with an integrated

LSTM network. This approach is designed to capture demand
uctuations resulting

from user mobility. The objective of the proposed method is to maximize a utility

function, de�ned as the weighted sum of SE and the SLA satisfaction ratio across

multiple services. However, while the traditional A2C algorithm achieves faster con-

vergence, it performs relatively worse after about 3000 learning steps. Again, the

authors do not address training and deployment in a live network setting.

The work in [5] also adopts model-free Q-learning to perform inter-slice RA. It

proposes a multi-agent RL (MARL) approach to optimize the performance of URLLC

and eMBB slices. Each slice is assumed to be an agent competing for limited PRBs.

2.3. APPROACHES TO INTER-SLICE RA 38

Ta
bl

e
2.

1:
C

om
pa

ris
on

B
et

w
ee

n
th

e
R

ev
ie

w
ed

In
te

r-
S

lic
e

R
A

A
pp

ro
ac

he
s.

A
sp

ec
t

C
la

ss
ic

op
tim

iz
at

io
n

H
eu

ris
tic

m
et

ho
ds

G
am

e
th

eo
ry

S
L

R
L

Tr
ai

ni
ng

pr
o

ce
ss

N
o

tr
ai

ni
ng

re
qu

ire
d

N
o

tr
ai

ni
ng

re
qu

ire
d

S
ol

vi
ng

fo
r

eq
ui

lib
ria

R
eq

ui
re

s
la

b
el

ed

da
ta

Tr
ia

l-a
nd

-e
rr

or

tr
ai

ni
ng

D
ep

lo
ym

en
t

re
qu

ire
m

en
ts

H
ig

h
ov

er
he

ad
M

o
de

ra
te

ov
er

he
ad

H
ig

h
ov

er
he

ad
Lo

w
ov

er
he

ad

du
rin

g
de

pl
oy

m
en

t

M
o

de
ra

te
to

H
ig

h

ov
er

he
ad

D
at

a
ne

ed
ed

R
eq

ui
re

s
ex

ac
t

sy
st

em

m
o

de
l

Li
m

ite
d

em
pi

ric
al

da
ta

R
eq

ui
re

s
co

m
pl

et
e

ga
m

e
m

o
de

l

R
eq

ui
re

s
la

rg
e

la
b

el
ed

da
ta

se
t

R
eq

ui
re

s

in
te

ra
ct

io
n

da
ta

R
eq

ui
re

m
en

ts
of

sy
st

em
kn

ow
le

dg
e

C
om

pl
et

e
sy

st
em

kn
ow

le
dg

e

P
ar

tia
lk

no
w

le
dg

e
is

su
�c

ie
nt

C
om

pl
et

e
kn

ow
le

dg
e

of
in

te
ra

ct
io

ns

C
om

pr
eh

en
si

ve

la
b

el
ed

da
ta

N
o

co
m

pl
et

e

kn
ow

le
dg

e

re
qu

ire
d

D
ea

lin
g

w
ith

dy
na

m
ic

ne
tw

or
k

en
vi

ro
nm

en
t

Lo
w

ad
ap

ta
bi

lit
y

M
o

de
ra

te

ad
ap

ta
bi

lit
y

M
o

de
ra

te

ad
ap

ta
bi

lit
y

A
da

pt
ab

ili
ty

lim
ite

d
by

tr
ai

ni
ng

da
ta

H
ig

h
ad

ap
ta

bi
lit

y

C
on

ve
rg

en
ce

sp
ee

d

P
ot

en
tia

lly
sl

ow
M

o
de

ra
te

ly
fa

st
C

on
te

xt
-d

ep
en

de
nt

Fa
st

if
op

tim
al

ac
tio

ns
ar

e
kn

ow
n

P
ot

en
tia

lly
sl

ow

R
el

at
ed

w
or

k
[6

9,
70

,7
1,

72
,7

3,
74

,6
]

[3
1,

75
,

46
,

46
,

76
,

77
,

78
,

79
,

80
]

[3
1,

81
,

82
,

83
,

84
,

85
,

86
]

[9
7,

98
,

99
,

10
0,

10
1,

10
2,

10
3,

10
4,

96
,

18
,

10
7]

[6
5,

4,
5,

91
,

97
,

11
3,

11
4,

11
5,

11
6,

11
7]

2.3. APPROACHES TO INTER-SLICE RA 39

Compared with other Q-learning-based baselines, the approach has slightly lower

latency and higher throughput for URLLC and eMBB tra�c, respectively. The

authors still do not consider deployment in a live network setting. Additionally, the

MARL-based slicing agents must coordinate by exchanging Q-values. However, such

an overhead is not discussed.

Finally, the authors of [91] also employ a MARL approach in which each BS

represents an agent. They extend the DQN and the A2C methods to carry out RA

and compare their performance. The work does not address the performance of the

algorithms under extreme and changing conditions that can be experienced in a live

network setting. The study also does not demonstrate the algorithms' capability to

deal with realistic demand patterns, as well as their overhead and computational

complexity. Table 2.1 summarizes the di�erence between the reviewed approaches in

this chapter.

Addressing DRL Practical Challenges in Slicing Literature. As discussed,

most reviewed RL-based studies do not consider the deployment of their approaches

in a live network setting. They only address the convergence performance of their

proposed DRL approaches while being trained. They primarily focus on the inher-

ent properties of the DRL algorithms. This includes picking a DRL algorithm and a

hyper-parameter setting over another based on their relative performance in terms

of stability and convergence time. For example, the authors of [97] propose a col-

laborative learning framework for resource scheduling in RAN slicing. The authors

chose the asynchronous advantage actor-critic (A3C) algorithm as it is known to

have faster convergence than the AC algorithm.

2.3. APPROACHES TO INTER-SLICE RA 40

Moreover, the work in [113] integrates a discrete normalized advantage function

(DNAF) into a DQN to obtain faster convergence and accommodate a larger action

space. The results show that DNAF-based DQN can sometimes perform better

than classical DQN. Nevertheless, the DNAF-based approach could not achieve a

balance between QoS and SE. Furthermore, the work in [114] aims to meet the

RA requirements while serving various types of smart grid tra�c. The authors

investigate a double DQN (DDQN) method and compare its reward convergence

rate to a standard DQN approach. In this setting, both DQN and DDQN achieve

similar outcomes.

Similarly, in [116], the author utilizes the deep deterministic policy gradient

(DDPG) algorithm that also merges the strengths of both value-based and policy-

based RL, following an actor-critic approach. Part of the work addresses the inter-

slice RA among vehicle-to-infrastructure (V2I) and vehicle-to-vehicle (V2V) slices.

The results show that the DDPG-based agent achieves higher slice utility than

DDQN, conventional policy gradient, and AC algorithms.

More recently, in [117], the authors employ a DRL agent to conduct inter-slice

RA among URLLC and eMBB slices. The state representation comprises both queue

occupancy and channel quality information. In an attempt to accelerate training

convergence, queue occupancy was quantized, and users were grouped according to

channel qualities to reduce the state space.

In summary, most reviewed RL-based studies primarily rely on some design

choices to get better performance without explicitly considering the practical DRL

challenges identi�ed in Chapter 1. They also largely fail to consider realistic and

2.4. A TRUSTWORTHY DRL FRAMEWORK FOR O-RAN 41

standard-compliant deployment scenarios and to make the implementations of their

DRL-based approaches publicly available. This slows down the broad adoption of

DRL in commercial NGWNs and hampers reproducible research.

2.4 A Trustworthy DRL Framework for O-RAN

Figure 2.6: The proposed trustworthy DRL framework for RRM in O-RANs.

Despite outperforming other methods, existing RL-based solutions [118, 119] suf-

fer from sub-optimal performance. This is primarily due to the failure to system-

atically deal with the online deployment practical challenges highlighted in Chapter

1 even in recent studies [30]. This signi�cantly a�ects the slicing algorithm's over-

all performance and results in SLA violations, ine�cient resource utilization, and

degradation of the end user's QoE.

Accordingly, we propose a trustworthy DRL framework to address the practical

challenges of deploying RL-based slicing, and generally RRM, algorithms in next-

generation O-RANs. O-RAN serves as one example of implementing our proposed

framework; however, this framework is versatile and can be extended to resource

management in wireless networks within any architecture. The framework includes

2.4. A TRUSTWORTHY DRL FRAMEWORK FOR O-RAN 42

four modules, highlighted in Fig. 2.6, aiming at designing inter-slice RA algorithms

that generalize to di�erent network scenarios, adapt to network changes, and reduce

potential SLA violations. The decisions taken by such algorithms should also be

explainable. The modules fall under the umbrella of trustworthy RL techniques [21].

They jointly serve as a guideline for wireless network researchers and practitioners

to address the identi�ed challenges systematically.

2.4.1 Accelerated Generalization

The RL-based slicing algorithms must generalize to network scenarios that were not

previously seen. This capability is crucial since the o�ine simulation environments

are usually inaccurate and do not re
ect all the situations that could be experienced

in O-RAN deployment environments. Such a mismatch can be described as [21]:

� test (z) 6= � train (z) (2.3)

where � train (z) is the distribution of the environment in which the DRL slicing

agent is trained,� test (z) is the target testing or deployment environment distribution,

and z is the task context.

We propose an accelerated generalization module that addresses this challenge.

After training the DRL-based slicing agent in� train (z) for N train decision time steps,

the goal is to maximize a network KPI,P, when evaluated in� test (z) after N test

2.4. A TRUSTWORTHY DRL FRAMEWORK FOR O-RAN 43

decision time steps [21]:

max
(N test)

E�;z � � test (z)PN test
test (�; z)

s.t. � (N train)
train = arg max

�
E�;z � � train (z)P

N train
train (�; z),

� (0)
test = � (N train)

train

(2.4)

Here, PN (�; z) denotes the evaluated network KPI when following policy� within

task context z after N steps in a given environment. Moreover,� (N) signi�es the

slicing agent's policy afterN decision time steps in the corresponding training or

deployment environments.

The proposed module is concerned with making sure that the RL-based inter-

slice RA agents converge to an acceptable performance even when experiencing new,

signi�cantly di�erent states. However, the generalization of the DRL agents must

also be fast. Hence, DRL agents should converge to an acceptable performance while

N test is small. This is of great signi�cance in real network deployments. Only limited

exploration can be tolerated in the case of real-time functionalities [43]. Generaliza-

tion and acceleration are di�erent but strongly interrelated aspects, and therefore,

we combine them into one module. In this thesis, we demonstrate such a module

by proposing TL-aided algorithms focusing on the accelerated generalization of the

DRL-based inter-slice RA controllers deployed in O-RAN environments.

2.4. A TRUSTWORTHY DRL FRAMEWORK FOR O-RAN 44

2.4.2 Safety

The RL policies for inter-slice RA must integrate safety constraints to prevent an RL

agent from a�ecting the end user's QoE or system performance. An example of the

safety constraints would be avoiding the violation of the de�ned SLAs for each slice.

We, therefore, propose a safety module to address this challenge. The fundamental

objective of safe RL is to optimize the performance of a service or network function-

ality while adhering to constraint requirements. This can be de�ned in terms of the

trajectory-wise safety constraint. Such a constraint strives to guarantee that the cost

when following slicing policy ~� is below the threshold! over the entire sequence of

states and actions during which an MNO is enforcing! as follows [21]:

� � = arg max
�

V �
r (� 0) ; s.t. V ~�

c (� 0) � ! (2.5)

In this context, V �
r (� 0) = E� [

P
t
 t r (st ; at ; st+1)], de�nes the reward value func-

tion with an initial state distribution � 0. Similarly, the cost value function is given

by V �
c (� 0) = E� [

P
t c(st ; at ; st+1)]. Furthermore, ~� is determined by the safety re-

quirements of the di�erent services and network functionalities. For functionalities

requiring non-deterministic policies, ~� = f � 1; � 2; : : : ; � K g is de�ned, where each� k

for k 2 f 1; 2; : : : ; K g corresponds to the policy at thek-th optimization iteration,

and K represents the total number of policy updates.

Another formulation of safe RL addresses state-wise safety constraints, seeking to

keep the cost associated with each network state along the slicing policy trajectory

2.4. A TRUSTWORTHY DRL FRAMEWORK FOR O-RAN 45

below the threshold! as follows [21]:

� � = arg max
�

V �
r (� 0) ; s.t. 8 (st ; at ; st+1) � �; s 0 � � 0; c(st ; at ; st+1) � ! (2.6)

These two formulations correspond to instantaneous (state-wise) and cumulative

(trajectory-wise) constraints, respectively, as further discussed in Chapter 4. In this

thesis, we develop a sigmoid-based risk-sensitive RL reward function that explicitly

incorporates cumulative SLA constraints such as throughput and latency into the RL

design. We also build an SL cost model that serves as a safety layer, projecting the

slicing agent's actions to the nearest safe action, ensuring ful�llment of instantaneous

latency constraints.

2.4.3 Robustness

The RL-based inter-slice RA algorithms adopted in O-RAN must enhance their

worst-case performance under network uncertainties. Such uncertainties stem from

the gaps between training and real O-RAN environments, as well as the non-stationary

wireless environment. We propose a robustness module to handle such environment

mismatches. Uncertainty in the O-RAN environment can be represented by an uncer-

tain variable U that lies within an uncertainty set FU . This uncertainty can pertain

to the network state s, slicing action a, reward function R, or network transition

dynamicsP. Robust RL-based slicing algorithms strive to �nd a policy� that max-

imizes the network worst-case performance over all possible uncertaintiesU 2 F U .

2.4. A TRUSTWORTHY DRL FRAMEWORK FOR O-RAN 46

Hence, solving the following maximin optimization problem as follows [21]:

max
�

min
U2F U

JM (�; U); (2.7)

whereJM (�; U) denotes the expected cumulative return under slicing policy� , given

the MDP M and the uncertain variableU.

Demonstrating such a module is not the focus of this thesis. However, we explore

ways to enhance the performance of the RL-based approaches under changing and

extreme situations in Chapter 5. We propose a predictive approach for selecting the

optimal policy to be reused by a TL-aided DRL agent when MNOs
exibly change

the con�gurations of network slices. Additionally, we introduce a forecasting-aided

DRL approach incorporating predicted tra�c demand levels to guide DRL agents

in making informed inter-slice RA decisions under changing conditions and scarce

resources.

2.4.4 Explainability

MNOs must understand the reasoning behind the DRL agents' decisions. The dy-

namic nature of RL and the uncertainties present in O-RAN environments complicate

the task of o�ering comprehensive and veri�able explanations. Thus, an explainabil-

ity module is necessary to provide semantic and logical explanations for RL-based

RRM actions. This can be in the form of attention mechanisms based on Shapley

additive explanations (SHAP) [120]. Such mechanisms assess the importance of a

network state in the decision-making process. They also steer the RL agent towards

executing interpretable actions via explainable RL (XRL)-enhanced reward shaping.

2.4. A TRUSTWORTHY DRL FRAMEWORK FOR O-RAN 47

Hence, they do not only rely on the reward and cost signals but also on explainabil-

ity when deciding an action to take. While we acknowledge the importance of this

component, its realization is beyond the scope of this thesis.

48

Chapter 3

Accelerated Generalization for DRL-Based

Inter-Slice Resource Allocation

3.1 Introduction

The RICs within the O-RAN architecture pave the way for DRL-driven autonomous

network slicing, unlocking new levels of intelligent optimization. Nevertheless, the

practical adoption of DRL algorithms in commercial network deployments still falls

behind. One of the main reasons is the slow convergence that the DRL agents undergo

[43]. In network slicing, this is re
ected in the considerable number of time steps

the DRL agent takes to �nd or recover optimal RA con�gurations. The training of

DRL agents should typically be done o�ine �rst, according to the O-RAN Alliance

recommendations [52]. This ensures that the models being trained do not a�ect the

performance and stability of the network.

However, as mentioned in Chapter 1, there is a gap between the simulation and

real deployment environments, sometimes referred to as the sim2real gap [121]. This

is because o�ine simulation environments fail to accurately re
ect the multi-faceted

3.1. INTRODUCTION 49

complexities of the dynamic RANs over time and across diverse deployments. This is

not the case in other applications, such as training a DRL agent to play a computer

game. Unlike O-RAN-based networks, the game training environment will still match

the deployment environment. In the case of a deployed xApp in O-RAN's near-RT

RIC, online learning is still required by the incorporated DRL agent to adapt to the

live network environment [122]. This is particularly evident in two situations:

1. When an agent is newly deployed in a live network. This would happen even

for DRL agents trained in o�ine simulation-based environments due to the

sim2real gap [123].

2. Whenever the network experiences extreme situations or signi�cant changes in

context, such as the number and type of the available slices [124].

These situations re
ect network scenarios that were not previously seen, which

are typical in highly dynamic environments such as next-generation O-RANs. A

DRL agent must generalize to handle scenarios it has not explicitly seen, including

diverse network con�gurations and loads, to ensure acceptable network performance

without requiring extensive retraining. Without generalization, the agent risks failing

when encountering novel challenges, leading to suboptimal performance and network

instability.

Additionally, generalization in these situations needs to be quick. Next-generation

O-RANs can only tolerate limited exploration while optimizing near-RT functionali-

ties such as inter-slice RA [43]. Nevertheless, it may take a DRL agent thousands of

learning steps to recover, given the stochasticity of next-generation O-RAN systems

3.1. INTRODUCTION 50

and the exploratory nature of the DRL-based xApps. In such a period, the DRL

policy is not optimal [121]. The agent may take previously unexplored actions while

seeking the optimal policy given a certain state. Hence, drops in system performance

will potentially occur [123]. This is naturally unavoidable but of great signi�cance

in live network deployments. For instance, a DRL-based O-RAN slicing controller

that keeps exploring for a long time will experience SLA violations and degradation

in the end-users QoE. This consequently translates into monetary penalties imposed

on the InPs.

The accelerated generalization challenge is rarely tackled in the RRM literature

[43]. Techniques that aim at shortening the exploration and recovery duration of

DRL-based xApps deployed in O-RAN are highly required. These approaches can

help pave the way for the wide adoption of DRL to optimize dynamic RRM function-

alities in O-RAN, such as inter-slice RA. Inter-slice RA in next-generation O-RANs

requires a fast policy-learning scheme that minimizes the in-deployment learning du-

ration. Such a scheme will allow the slicing controller to adapt, in real-time, to the

time-varying wireless channel conditions and user activities of the provided services.

In this chapter, we review and categorize the techniques that address the accel-

erated generalization challenge in the wireless networks literature. We then propose

to use TL to guide deployed DRL-based xApps while learning the optimal policy in

network conditions they have not experienced before. A pre-trained policy can be

used as a guide toward accelerated generalization in such a case. This can be done

in several ways, as proposed in this chapter.

To this end, this chapter's contributions can be summarized as follows:

3.1. INTRODUCTION 51

ˆ We propose several TL-aided DRL approaches for accelerated generalization of

DRL-based O-RAN slicing xApps. This includes reward shaping, policy reuse,

policy distillation, and a novel hybrid TL approach. The hybrid approach

combines policy reuse and distillation TL methods to strike a balance between

�xed actions based on a pre-trained policy and more conservative actions based

on both online and saved policies.

ˆ We propose to incorporate TL as a core component of DRL-based control of

network functionalities in the O-RAN architecture. We propose training and

deployment work
ows in the non-RT and near-RT RICs, respectively. Such

ows aim at enhancing the convergence and generalizability of O-RAN DRL-

based xApps.

ˆ We conduct a thorough study on intelligent O-RAN slicing to demonstrate the

gains of the proposed TL-aided DRL approaches in terms of the number of

steps required to generalize to a scenario, the percentage of generalized scenar-

ios, and the average initial reward value. We analyze the reward convergence

behaviour of the proposed approaches and various SOTA DRL algorithms. We

also investigate the e�ect of using di�erent reward functions on the performance

of the DRL-based slicing agents.

ˆ Our evaluation studies support multiple services, including real VR gaming

tra�c to re
ect immersive scenarios of O-RAN slicing in next-generation O-

RANs. We develop and publicly share the implementation of our OpenAI Gym-

compatible DRL environment, and the proposed approaches and baselines to

3.2. RELATED WORK 52

facilitate research on trustworthy DRL in O-RAN.

The remainder of this chapter is structured as follows. In Section 3.2, we present

related work. The problem formulation and system model are detailed in Section

3.3. The proposed approaches are then presented in Section 3.4. The proposed

O-RAN training and deployment work
ows are described in Section 3.5. Section

3.6 includes the setup details of our three evaluation studies and an analysis of the

results. Finally, Section 3.7 summarizes chapter �ndings.

3.2 Related Work

Recent research e�orts have partially tackled the accelerated generalization chal-

lenges in the wireless research community. In this section, we categorize and discuss

these research e�orts, summarized in Table 3.1. While not all related works focus on

RAN slicing, we are broadening the scope to include general RRM due to the limited

research in the literature exclusive to slicing. The approaches can be classi�ed into

three main categories: design choices-aided, domain knowledge-aided, and machine

learning-aided approaches.

3.2.1 Design Choices-Aided Approaches

As discussed in Chapter 2, most RAN slicing studies rely on making e�cient DRL

design choices to shorten the exploration duration and enhance convergence perfor-

mance. Such approaches can be further classi�ed into the following three categories:

3.2. RELATED WORK 53

Table 3.1: Approaches to Tackle the Accelerated Generalization Challenge.

Approach category Approach sub-category

Design choices-aided
DRL initialization strategies [125]
Inherent DRL agent properties [97, 115, 44, 126]
Mode of Training [127, 128, 129, 122]

Domain knowledge-aided
Expert knowledge-aided DRL [130, 131, 132, 133]
Conventional solution-aided DRL [134]

Machine learning-aided
ML-based experience generation [123]
Meta-learning-aided DRL [124, 135]
TL-aided DRL [136, 135, 137, 138, 139, 140, 141]

DRL Initialization Strategies. Several parameters can be speci�ed for a DRL

agent. This includes the initial policy, learning rates, and neural network architec-

ture. The authors in [125] propose a decentralized approach for interference man-

agement between femtocells and macrocells. To overcome the slow convergence of

the Q-learning algorithm, they propose a Q-table initialization procedure. Given a

new state, not only the Q-value of the action taken is updated, but also the costs of

the other actions are estimated.

Inherent DRL Agent Properties. Some wireless network studies rely primarily

on the inherent properties of the DRL algorithms for improving the overall gener-

alization performance [97, 115, 44, 126]. This includes picking a DRL algorithm

and a hyper-parameter setting over another based on their relative performance in

terms of stability and convergence rate. For instance, in [115], the problem of RA in

O-RAN slicing is addressed. The authors mention that the implemented actor-critic

with experience replay (ACER) algorithm can produce faster convergence than the

proximal policy optimization (PPO) algorithm. ACER is an o�-policy RL algorithm

3.2. RELATED WORK 54

that has relatively improved sample e�ciency. However, the results show that the

ACER-based approach has a failed exploration initially and a lower reward value in

general. Moreover, both DRL-based solutions can take around 20 thousand learn-

ing steps to converge. Hence, fast and stable performance cannot be guaranteed if

such an approach is deployed in the near-RT RIC of O-RAN. Therefore, generalized

performance cannot be ensured solely based on the inherent properties of the DRL

algorithm chosen.

Mode of Training. Other studies rely on the mode of training of the DRL algo-

rithm to address the accelerated generalization challenges [127, 128, 129, 122]. For

instance, the authors of [129] employ the concept of federated reinforcement learning

(FRL) in the context of O-RAN slicing. The knowledge gained in one network appli-

cation is shared to solve a slightly di�erent problem in another application. This is

done by coordinating power control and radio RA xApps for network slicing. A joint

global model is created and then disassembled into local Q-tables for the di�erent

xApps to follow when deciding the actions to take. The authors indicate that FRL

can enable faster convergence but with relatively lower rewards. Moreover, a global

generic model can still be prone to instabilities and require some exploration when

transferred to make decisions in a target local context.

3.2.2 Domain Knowledge-Aided Approaches

These approaches make use of the following two classes of domain knowledge:

3.2. RELATED WORK 55

Expert Knowledge-Aided Approaches. This category exploits relevant knowl-

edge previously acquired by experts to guide the exploration phase. For instance,

the authors of [130] propose a structure-aware mechanism to solve a node-overload

protection problem in mobile edge computing. In this respect, the optimal policy

is known to have a multi-threshold structure. Hence, the agent can reject requests

with CPU utilization above a certain threshold. This allows the agent to recover

quickly whenever the request distribution changes. This category may also include

heuristic-based approaches such as in [131] and [132].

Conventional Solution-Aided Approaches. Here, a traditional RRM algo-

rithm is used to guide the exploration phase. For instance, in [134], the authors

use the PF algorithm as a separate agent competing with the main DRL agent to

solve a resource scheduling problem. The reward is calculated based on the di�erence

in the resulting KPIs between the DRL agent's action and the PF algorithm. The

results suggest that the agent's performance and convergence speed can be improved.

However, such a setting may be practically infeasible as the system's response to the

traditional algorithm's decisions is not available at the time of deployment and re-

quires a highly accurate digital twin. Also, being reliant on traditional algorithms

can result in sub-optimal decisions.

3.2.3 Machine Learning-Aided Approaches

This class of approaches employ ML in the following ways:

3.2. RELATED WORK 56

ML-Based Experience Generation. This approach proposes the idea of o�ine

experience building to accelerate generalization after deploying the agent in a live net-

work setting. The authors of [123] proposed this concept in the context of downlink

RA for URLLC. The experience is built by generative adversarial networks (GANs)

that pre-train the DRL agent using a mix of real and synthetic data. This allows

the agent to be exposed to a broader range of network conditions. The authors

demonstrate that this approach can help the agent to recover in fewer steps when

it experiences extreme conditions. However, the primary challenge of generalization

arises from the lack of diverse system response data for these new conditions, which

cannot be easily predicted or generated even from past real-world experiences.

Meta-Learning-Aided Approaches. Meta-learning was introduced in the con-

text of supervised ML to design models that can learn new skills or adapt to new

environments with relatively fewer training examples. The authors of [124] developed

a DRL-based solution to control drone BSs providing uplink connectivity to ground

users. They adopted a meta-RL approach in an attempt to generalize the learn-

ing to unseen environments. Unlike TL, this does not require prior knowledge from

agents previously trained on similar tasks. Despite recent advancements in genera-

tive networks and meta-learning, e�cient exploration remains a signi�cant challenge

in sparse-reward tasks [142].

Transfer Learning-Aided Approaches. TL has recently achieved some notice-

able results in the wireless communications domain, especially in the SL setting [143].

TL expedites the learning of new target tasks by exploiting knowledge from related

3.3. SYSTEM MODEL 57

source tasks. This can shorten the learning time of ML algorithms and enhance their

generalization abilities under changes in wireless environments. TL can also be ap-

plied to the RL setting, such as in [141], in which a DRL-based energy consumption

optimization strategy is proposed. The authors combine relational DRL with TL to

address the insu�cient generalization ability and the slow recovery when exposed

to new conditions. The authors suggest that the scheme combining DRL and TL

speeds up learning compared with training from scratch in new scenarios.

In this thesis, we propose TL-aided DRL approaches that are primarily concerned

with practical deployment in O-RAN. This is a distinct use case not addressed by

most reviewed studies. Our proposed hybrid TL-aided DRL approach ensures that

the maximum level of rewards is reached quickly. Furthermore, we propose sys-

tematic training and deployment work
ows that consider the O-RAN recommenda-

tions. Such
ows incorporate expert policies pre-trained on the same problem and

�ne-tuned using live network data to guide the DRL slicing agents. The
ows are

algorithm-agnostic and should work with any DRL algorithm or MNO con�guration.

Finally, we demonstrate our work using real network VR gaming tra�c to re
ect an

important immersive and latency-intolerant scenario in next-generation O-RANs.

Therefore, compared with the reviewed research, our proposed work is unique both

algorithmically and from a use-case perspective.

3.3 System Model

In this thesis, we focus on the downlink inter-slice RA problem. The objective is to

allocate the available PRBs to the admitted slices while ful�lling their SLAs. A list

3.3. SYSTEM MODEL 58

Table 3.2: List of Frequently Used Notations.

Symbol Description
S Number of available slices
B Available bandwidth shared among slices
U Number of available UEs
Rs Number of requests made by users belonging to a slices
Ds Total demand of users belonging to a slices
dr s Demand of a requestr s made by a user of slices
� s Contribution of slice s to overall BS's tra�c
A Set of available slicing PRB allocation con�gurations
a A given slicing PRB allocation con�guration
bs Bandwidth allocated to slices
R Reward function
ws Priority of ful�lling the latency requirement of slice s

 Slicing window size
ls Average latency in the previous slicing window for slices
� RL agent's policy
� E Expert policy
� L Learner policy
PE Set of stored expert policies
c1 A sigmoid function parameter to decide the point to start penalizing

the agent's actions
c2 A sigmoid function parameter to re
ect the latency threshold for each

slice
M Source domain
T Knowledge transfer duration
� Transfer rate which decides whether to follow the transferred knowledge

or the learner policy
� Transfer rate decay
� Hybrid approach parameter which decides the policy transfer method

to follow

of frequently used notations in this chapter is provided in Table 3.2.

3.3. SYSTEM MODEL 59

3.3.1 Problem Statement

The inter-slice radio RA problem can be formulated as follows [43]:

Any given BS supports multiple services that are re
ected by a set of slices,

S = f 1; 2; : : : ; Sg, that share the available bandwidth,B . We consider a set of UEs,

U = f 1; 2; : : : ; Ug, connected to a BS. Each UE,u, can request one type of service at a

time for downlink transmission. A slice,s, has a set of requests,R s = f 1; 2; : : : ; Rsg,

whereRs is the number of requests made by users belonging to a slices. The total

demand,Ds, of such users can be represented as follows:

Ds =
X

r s 2R s

dr s ; (3.1)

where dr s is the demand of a request,r s, made by a user belonging to slices.

Moreover, any given slice,s, contributes to the overall BS's tra�c as follows:

� s =
Ds

P kSk
i =1 D i

(3.2)

The allocation of PRBs among the available slices,S, needs to be optimized.

This can be described by the vector,a 2 IRS, re
ecting the percentage of bandwidth

allocated to the available slices. At the beginning of any slicing window, an O-RAN

slicing xApp decides to choose a speci�c slicing PRB allocation con�guration,a, out

of the A possible con�gurations, whereA = f 1; 2; : : : ; Ag. Based on such a decision,

the system performance is a�ected. For the purpose of this chapter, the system

performance is primarily represented in terms of the average latency of the admitted

3.3. SYSTEM MODEL 60

slices. This mainly depends on a queue maintained at the BS for the duration of a

slicing window.

3.3.2 Mapping to Deep Reinforcement Learning

We describe our DRL design in the following subsections.

State Representation. As previously highlighted in Fig. 2.4, the slicing xApp

deployed in the near-RT RIC begins with observing the system state. We represent

the state of the O-RAN system in terms of the slices' contribution to the overall BS's

tra�c within the preceding slicing window,
 t � 1. This can be re
ected by a vector

of sizeS as follows:

� = (� 1; :::; � s; :::; � S) (3.3)

We also investigate representing the state as the number of packets within a

preceding slicing window in one of our evaluation studies as described in Section 3.6.

Action Space. Based on the observed state, the xApp takes an action at the

beginning of each slicing window. It selects the PRB allocation con�guration per

slice. We represent it as the percentage of bandwidth allocated to each slice as

follows:

a = (b1; :::; bs; :::; bS); subject to b1 + ::: + bS � B (3.4)

Reward Function Design. After taking the action, the DRL-based xApp receives

reward feedback in terms of network KPIs calculated at the end of every slicing

3.3. SYSTEM MODEL 61

window. We design a risk-sensitive sigmoid-based [144] reward function as part of

the safety module discussed in Chapter 4. The reward function includes parameters

to re
ect the acceptable SLAs for each slice. This enables penalizing the xApp for

undesirable actions that get the system close to violating the de�ned SLAs of each

slice as follows:

R =
kSkX

s=1

ws �
1

1 + e c1;s � (ls � c2;s)
(3.5)

The weight, ws, re
ects the priority of ful�lling the latency requirement of slice

s, and ls is the average latency experienced within slices during the previous slicing

window. We use latency as a variable as we prioritize the delay-intolerant VR gaming

service and for better results' interpretability as highlighted in Section 3.6.3. The

function's e�ect can be adjusted by con�guring two parameters, namelyc1 and c2.

The parameter c1 sets the slope for the sigmoid function, thereby indicating when

penalties should start being applied to the agent's actions. On the other hand,c2

represents the in
ection point. Such a point re
ects the minimum acceptable delay

performance for each slice according to its respective SLAs. Di�erent constant values

of c1 and c2 are utilized for the slices based on the de�ned SLAs.

A linear reward function does not su�ciently discourage the DRL agent from

approaching the threshold, as it penalizes the agent proportionally to the cost. Unlike

linear reward functions, the designed function has di�erent behaviours depending on

the distance from the de�ned thresholds, as seen in Fig. 3.1:

3.3. SYSTEM MODEL 62

Figure 3.1: Example of the reward function's behaviour, illustrated with three slices
corresponding to di�erent services and distinct latency requirements. The parameter
c1 speci�es when the agent starts incurring penalties, whilec2 represents the latency
threshold for each slice.

1. Far from Threshold. When the latency is well below the threshold, the sig-

moid function outputs values close to its maximum, providing a relatively high

reward and not overly penalizing minor latency increments.

2. Near Threshold. As the latency approaches the threshold, the steep slope of

the sigmoid causes the reward to decrease rapidly.

3. Beyond Threshold. If the agent exceeds the threshold, the reward quickly

diminishes towards the minimum value, imposing a signi�cant penalty.

The sharp penalty near the threshold discourages the agent from taking actions

that risk approaching the de�ned latency limit. This promotes safer and more con-

servative strategies, as the agent learns that costs close to the threshold are heavily

penalized. We also explore other representations of the reward function to study

3.4. PROPOSED TL APPROACHES FOR ACCELERATED
GENERALIZATION 63

their e�ect on the DRL convergence behaviour as described in Sections 3.6.1 and

3.6.2.

3.4 Proposed TL Approaches for Accelerated Generalization

In this section, we propose four variants of TL to address the challenge of slow conver-

gence and lack of generalizability of DRL-based xApps. The di�erence between one

type of TL and another mainly depends on the form of knowledge to be transferred

[136].

Policy Transfer Preliminaries. Policy transfer is a class of TL in which a source

DRL policy is transferred to an agent with a similar target task [136]. In the following

subsections, we �rst propose to employ two variants of policy transfer, namely, policy

reuse and distillation. We then propose a novel policy transfer method which is a

hybrid of such two approaches to achieve an improved generalization performance.

Policy transfer can be carried out by directly reusing expert policies to guide a

target learner agent. Alternatively, this can be done via distilling previously acquired

knowledge. This can be obtained from the target learner's perspective or the source

expert's perspective [145]. In this chapter, we focus on policy distillation from the

expert perspective. The knowledge transferred in both policy reuse and distillation

approaches is the same. Here, the policy of one or more pre-trained DRL agents is

used to guide a DRL-based xApp when newly deployed or when signi�cant changes

occur in network conditions.

The main di�erence between the two approaches is how the transferred policies

3.4. PROPOSED TL APPROACHES FOR ACCELERATED
GENERALIZATION 64

are used to guide the deployed agent to take action. Given a source expert policy

� E that is trained on data from a source domainM . A learner policy � L is trained

on data from a target domain guided by the knowledge obtained fromf � E g. When

more than one source expert policy is used, a more generic case can be described as

follows [145]: Given a set of source policies� E1 ; � E2 ; : : : ; � EP trained on data from

a set of source domainsM 1; M 2; : : : ;M K . A learner policy � L is trained on data

from a target domain by making use of knowledge fromf � E i g
P
i =1 .

3.4.1 Policy Reuse

The �rst policy transfer technique that we propose to employ for accelerated general-

ization of the DRL-based slicing xApp is known as policy reuse. One or more source

expert policies are �rst trained and �ne-tuned as detailed in Section 3.5. Then, an

expert policy is directly reused to guide the target policy of a learner DRL agent of a

deployed xApp [145, 136]. Policy reuse in this situation can be done in several ways

[145]. In this chapter, we propose to carry out policy reuse in two ways.

The �rst policy reuse approach falls under the �rst category in Section 3.2.1. It

initializes the target policy with one of the learnt source policies as follows:

� learner (t = 0) = � expert (t = N) (3.6)

where � learner is the learner policy, � expert is the expert policy, N is the number of

learning iterations carried out by the expert RL agent until convergence, andt = 0

refers to the time when a learner agent is newly deployed in the network, or when

learning is triggered due to a change in the network's context. The initialization,

3.4. PROPOSED TL APPROACHES FOR ACCELERATED
GENERALIZATION 65

in this case, includes reusing the architecture and weights from the expert agent's

trained model.

The second proposed policy reuse approach is described in Algorithm 1. Unlike

the �rst policy reuse approach, the learner agent is con�gured to consult the expert

policy rather than using it to initialize its own policy. The learner agent follows the

expert policy's recommended actions given a state forT time steps, namely transfer

duration. Meanwhile, the target learner policy is continuously updated based on the

reward feedback the learner agent receives. The expert policy is deterministic and is

not updated. We employ the concept of transfer rate similar to [146]. This gives the

deployed agent the
exibility to not rely fully on the expert policy but also consult

the learner policy being trained. This is particularly important since, although the

expert policy is trained using real network data as described in Section 3.5, the data's

granularity and generalization limits restrict such policy.

Having a transfer rate enables consulting both the source and target policies

based on a parameter� con�gured by the MNO where � = (1 � �) � L + � � E . If

� = 1, this indicates that the action recommended by the expert policy is always

taken during the �rst T time steps after deployment or after detecting a signi�cant

conditions change. Then, the actions recommended by the updated learner policy

are followed afterward. However, a smaller transfer rate can be con�gured to switch

between the source expert and target learner policies during exploration.

Upon deploying the O-RAN slicing xApp,� E is expected to perform better than

� L . The newly deployed DRL agent's policy may be more uncertain than the expert

policy, given a speci�c network context. However, as time passes,� L gradually

3.4. PROPOSED TL APPROACHES FOR ACCELERATED
GENERALIZATION 66

Algorithm 1 Proposed Policy Reuse Approach
Input: � E , MNO con�gurations, �
Parameters: � , T,
, bu�er size, � , transfer rate decay,�
Output: PRB Allocation per slice

1: Load the appropriate pre-trained expert policy from the stored policiesPE

2: Initialize the learner action value function with random weights or from a policy
pre-trained using a signi�cantly di�erent tra�c pattern

3: if t < T do:
4: Generate a random numberx, where 0� x � 1
5: if x � � do:
6: Consult the expert policy
7: Choose an action according to Theorem (3.4.1)
8: else if x > � do:
9: Choose an action according to the learner policy

10: end if
11: else if t � T do:
12: Choose an action according to the learner agent's policy
13: end if
14: The DRL-based xApp acts based on the action recommended in the previous

algorithm steps,at

15: Allocate PRBs to the available slices according toat

16: Execute scheduling within each slice
17: Calculate rewardR using (3.5)
18: Update the learner agent's policy based on the reward received every� step
19: t t + 1
20: � � � �

becomes more adapted to the real network environment compared to the source

expert policy. Thus, a decaying transfer rate is proposed so that the target learner

policy takes more control as it approachesT time steps.

If more than one expert policy is used, policy reuse can be in the form of a

weighted combination of these source policies. Here, for a given state, the xApp

greedily picks the action with the highest reward from all the available policies. This

3.4. PROPOSED TL APPROACHES FOR ACCELERATED
GENERALIZATION 67

is referred to as the generalized policy improvement theorem for policy reuse of one

or more source policies. It can be represented as follows [147]:

Theorem 3.4.1 (Generalized Policy Improvement) Let f � i g
n
i =1 be n poli-

cies and let
n

Q̂� i

on

i =1
be their approximated action-value functions, s.t:

�
�
�Q� i (�; a) � Q̂� i (�; a)

�
�
� � � 8� 2 K ; a 2 A , and i 2 [n]. De�ne � (�) =

arg max
a

max
i

Q̂� i (�; a), then: Q� (�; a) � max
i

Q� i (�; a) � 2
1� � �; 8� 2 K ; a 2 A , where

� is a discounted factor,� 2 (0; 1].

3.4.2 Policy Distillation

The second policy transfer approach we propose is policy distillation. In policy

distillation, one or more source policies guide a target learner policy. This is done by

minimizing the divergence of action distributions between the source expert policy

� E and target learner policy� L , which can be written asH � (� E (� t) j � L (� t)) [145]:

min
L

E� � � E

2

4
j � jX

t=1

r L H � (� E (� t) j � L (� t))

3

5 (3.7)

where this re
ects an expectation that is taken over trajectories,� , sampled from

the source expert policy� E . In expert distillation approaches,N expert policies are

individually learned for N source tasks. Consequently, each expert policy results in a

datasetD E = f � i ; qi g
N
i =0 . Such datasets are mainly comprised of states� and action

valuesq, such that

qi = [Q (� i ; a1) ; Q (� i ; a2) ; : : : j aj 2 A] (3.8)

3.4. PROPOSED TL APPROACHES FOR ACCELERATED
GENERALIZATION 68

Finally, expert policies should be distilled into one policy. As mentioned before,

this can be done by minimizing the divergence between each expert policy� E i (a j �)

and the learner policy� L . One example is the Kullback-Leibler (KL)-divergence that

can be calculated as follows given the datasetD E [148]:

minL DKL
�
� E j � L

�
�

P jD E j
i =1 softmax

�
qE

i
�

�
ln

�
softmax (qE

i)
softmax (qL

i)

�
(3.9)

We are using one deterministic expert policy at a time in the slicing xApp sce-

nario. Moreover, the actions are vectors re
ecting the percentage of bandwidth

allocated to each slice. Hence, we follow a similar approach by computing the mid-

point action, amidpoint , between the actions recommended by the expert policy� E

and the learner policy� L given a state as follows:

amidpoint ;i =
aexpert ;i + alearner;i

2
; 8i 2 f 1; 2; : : : ; Sg (3.10)

As described in Algorithm 2, if the de�ned action space is discretized, the action

with the shortest Euclidean distance to the midpoint action is selected as follows:

aclosest = arg min
a2A

vu
u
t

SX

i =1

(amidpoint ;i � ai)
2 (3.11)

where amidpoint ;i and ai are the i -th component of the midpoint action and an

action a in the action space, respectively. Again, the learner agent of the deployed

xApp follows the distilled policy with a probability that depends on the transfer rate,

� , con�gured by the MNO.

3.4. PROPOSED TL APPROACHES FOR ACCELERATED
GENERALIZATION 69

Algorithm 2 Proposed Policy Distillation Approach
Input: � E , MNO con�gurations, �
Parameters: � , T,
, bu�er size, � , transfer rate decay,�
Output: PRB Allocation per slice

1: Load the appropriate pre-trained expert policy fromPE

2: Initialize the learner action value function with random weights or from a policy
pre-trained using a signi�cantly di�erent tra�c pattern

3: if t < T do:
4: Generate a random numberx, where 0� x � 1
5: if x � � do:
6: Consult the expert policy
7: Choose an action according to Theorem (3.4.1)
8: Consult the learner agent's policy
9: Find the midpoint between the actions recommended by the expert and

learner policies
10: Calculate the Euclidean distance between such a vector and all actions in

the action space according to (3.11) to get the closest action
11: else if x > � do:
12: Choose an action according to the learner policy
13: end if
14: else if t � T do:
15: Choose an action according to the learner agent's policy
16: end if
17: The DRL-based xApp acts based on the action recommended in the previous

algorithm steps,at

18: Allocate PRBs to the available slices according toat

19: Execute scheduling within each slice
20: Calculate rewardR using (3.5)
21: Update the learner agent's policy based on the reward received every� step
22: t t + 1
23: � � � �

3.4. PROPOSED TL APPROACHES FOR ACCELERATED
GENERALIZATION 70

3.4.3 Proposed Hybrid Policy Transfer Approach

Employing TL should generally result in gains when compared with the non-TL-

aided DRL approach. The knowledge of expert policies �ne-tuned in a live network

is reused to guide the learner agent instead of randomly exploring the action space.

The policy reuse approach, however, is expected to perform poorly when the expert

policy is trained on tra�c patterns that are very di�erent from those of the actual

deployment environment. Hence, policy reuse delays the DRL agent's recovery when

there is a big discrepancy between the source and target domains.

On the other hand, policy distillation may prevent the learner agent from gaining

the maximum possible rewards in some cases. For instance, this may happen when it

is being guided by an expert policy that was trained on tra�c patterns that are very

similar to those of the actual deployment environment. Hence, it is expected that

these two policy transfer approaches will have some drawbacks in certain situations.

We propose a hybrid of the two approaches to achieve a more robust TL-aided

DRL exploration and increase the overall reward feedback. This is helpful when the

transferred policies are not generic enough to robustly adapt to new tra�c patterns.

We introduce a parameter,� , similar to � to balance exploiting the expert policy

and exploring a distilled action.

The proposed approach is implemented using the deployment work
ow proposed

in Section 3.5 that adheres to the O-RAN architecture. Guidance is carried out by

modifying the exploration process [149]. This allows the learner agent to use an

expert policy with probability � , and minimize the divergence between the expert

and learner policies with probability (1 - �) as highlighted in Fig. 3.2. The reused

3.4. PROPOSED TL APPROACHES FOR ACCELERATED
GENERALIZATION 71

Figure 3.2: The proposed hybrid TL-aided DRL-based slicing approach's components
and interactions.

policy may have been learned under similar or di�erent tra�c conditions relative to

the current conditions.

Our proposed hybrid approach combines two TL approaches to accommodate

these two situations. The �rst is policy reuse, which directly follows the expert pol-

icy's recommended action. This is bene�cial when the reused policy is pre-trained

under conditions similar to those of the learner agent. The second is policy distil-

lation, which minimizes the divergence between the expert and the learner policies'

actions. This is useful when the reused policy is pre-trained under di�erent condi-

tions from that of the learner agent. A hybrid approach allows the DRL agent to

start with a good reward value whenever it is newly deployed in a live network or

when contextual changes are detected. It also enables the agent to converge quickly

to the optimal slicing con�guration compared with the two separate approaches.

3.4. PROPOSED TL APPROACHES FOR ACCELERATED
GENERALIZATION 72

The main components of the proposed hybrid approach and the interactions be-

tween its components are visualized in Fig. 3.2. As summarized in Algorithm 3, the

proposed approach follows the steps below:

1. The slicing xApp consults both the expert and the learner policies to get their

recommended actions given the current system state.

2. The expert and the learner policies provide the xApp with their recommended

actions to take.

3. The learner agent of the slicing xApp decides whether to follow its own policy,

the expert policy, or a distilled policy. This is mainly determined by the con-

�guration of � and � set by the MNO as described in Algorithm 3. A bigger

value of� implies that the distillation will happen less often during the transfer

time T. Based on that decision, the slicing xApp executes the proper action

to allocate PRBs among the admitted slices.

4. The slicing xApp receives the relevant KPIs and calculates the reward feedback

based on the reward function de�ned by the MNO.

5. The slicing xApp updates the learner policy based on the received reward.

The frequency of such updates depends on parameters such as the bu�er size.

Moreover, the policy update equation depends on the DRL algorithm followed

by the learner agent. The expert policy is deterministic and cannot be updated.

6. After T time steps, the xApp follows the latest version of the learner policy

until experiencing signi�cant changes in the network conditions. This can be

3.4. PROPOSED TL APPROACHES FOR ACCELERATED
GENERALIZATION 73

Algorithm 3 Proposed Hybrid Policy Transfer Approach
Input: � E , MNO con�gurations, �
Parameters: � , T,
, � , bu�er size, � , transfer rate decay,�
Output: PRB Allocation per slice

1: Load the appropriate pre-trained expert policy from the stored policiesPE

2: Initialize the learner action value function with random weights or from a policy
pre-trained using a signi�cantly di�erent tra�c pattern

3: if t < T do:
4: Generate a random numberx, where 0� x � 1
5: if x � � do:
6: Generate a random numberr , where 0� r � 1
7: if r < � do:
8: Consult the expert policy
9: Choose an action according to Theorem (3.4.1)

10: else if r � � do:
11: Consult the learner policy
12: Find the midpoint between the actions recommended by the expert and

learner policies
13: Calculate the Euclidean distance between such a vector and all actions in

the action space according to (3.11) to get the closest action
14: end if
15: else if x > � do:
16: Choose an action according to the learner policy
17: end if
18: else if t � T do:
19: Choose an action according to the learner agent's policy
20: end if
21: The DRL-based xApp acts based on the action recommended in the previous

algorithm steps,at

22: Allocate PRBs to the available slices according toat

23: Execute scheduling within each slice
24: Calculate rewardR using (3.5)
25: Update the learner agent's policy based on the reward received every� step
26: t t + 1
27: � � � �

3.5. TRAINING AND DEPLOYMENT FLOWS IN TL-AIDED
O-RAN ARCHITECTURE 74

detected in many ways, but it is not the focus of this thesis.

3.5 Training and Deployment Flows in TL-Aided O-RAN Architecture

We propose incorporating TL as a core component of the training and deployment

work
ows of DRL-based xApps in the O-RAN architecture. The DRL training and

deployment work
ows are proposed to be hosted in O-RAN non-RT and near-RT

RICs, respectively. They aim to enhance the DRL convergence and generalizability.

3.5.1 Training Work
ow

The proposed O-RAN training work
ow makes use of real network data collected at

the non-RT-RIC to train the policy of a learner agent planned for deployment as seen

in Fig. 3.3. It does not rely on pure o�ine simulations or mathematical models in

training. Nevertheless, the DRL agent training is still carried out in the non-RT RIC

according to O-RAN Alliance recommendations as seen in the �gure [44]. The O1

interface is employed to collect data every
 seconds, re
ecting the slicing window

size. The data collected represents the relevant network measurements during a

slicing window. This includes, but is not limited to, throughput, delay, number

of available slices, types of services supported, and tra�c load for each slice. The

number of PRBs allocated to each slice should also be logged. The compiled data

mainly re
ects the system state, action taken, and reward parameters. This allows

building o�ine simulations to train a DRL agent in the non-RT RIC using such

data. However, this data does not guarantee that all the state-action pairs are

represented. Hence, the training environment, even if using function approximators

3.5. TRAINING AND DEPLOYMENT FLOWS IN TL-AIDED
O-RAN ARCHITECTURE 75

Figure 3.3: The TL-aided DRL-based O-RAN system architecture.

such as arti�cial neural networks (ANNs), still does not re
ect all the cases that a

DRL agent can experience if deployed in an xApp in the near-RT RIC.

In the training phase, several DRL agents are trained using the collected data to

re
ect various contexts. The DRL agent's actions are taken based on the system's

state. Rewards are calculated from the collected KPIs corresponding to the logged

state-action pairs. This is done until the agents being trained converge. The compiled

data should re
ect BSs having di�erent contexts and properties. As an initial step,

the MNO can store a set of expert policies,PE = f 1; 2; : : : ; � E; : : : ; � Eg, that result in

good convergence performance for the various contexts during the training process.

Subsequently, they will be loaded to guide deployed DRL agents via policy transfer.

Such a set of policies should also be updated based on the policies' performance after

being �ne-tuned in a live network setting.

As proposed in the section 3.4, policy transfer is carried out whenever a new

3.5. TRAINING AND DEPLOYMENT FLOWS IN TL-AIDED
O-RAN ARCHITECTURE 76

DRL-based xApp is deployed or when the BS context changes. The context can be

in the form of the number of slices, types of services supported by the BS, and the

MNO's SLA ful�llment priorities at a given time. An approach to choosing the right

policy for a given context can be regarded as a way to enhance the robustness of the

DRL-based slicing xApps as discussed in Chapter 5.

3.5.2 Deployment Work
ow

Accommodating the Sim2Real Gap

Given a live network context, a policy of a trained DRL agent is deployed as an

xApp. Such a DRL-based xApp will still experience some exploration due to the

sim2real gap [122]. Upon the termination of the training phase, the xApp loads

the proper policy from a policy directory in the non-RT RIC via the A1 interface

as highlighted in Fig. 3.3. The policy is loaded based on the context of the BS to

be controlled. Such a policy is used to guide the DRL agent of a newly deployed

xApp. This also allows the policies to get �ne-tuned using live network data. Once

they prove to meet the various slices' SLAs in certain network contexts, the policy

directory should be updated.

Handling Changes in Network Conditions

In addition to being newly deployed, the xApp may also experience conditions that

were not re
ected in the training data. The proposed deployment
ow reuses ex-

isting knowledge from saved expert policies that were proven to provide reasonable

3.5. TRAINING AND DEPLOYMENT FLOWS IN TL-AIDED
O-RAN ARCHITECTURE 77

performance in certain live network contexts. Hence, the deployment work
ow ac-

commodates the di�erence between the training data and the actual live network

conditions. It also accommodates signi�cant changes in the network context. The

expert policies are used as guidance for the current agent while trying to recover

instead of randomly exploring the action space.

Handling MNO Recon�gurations

O-RAN supports customizing the network. Hence, an MNO may decide to change

some DRL-related con�gurations. The MNO can do so through the open interfaces

supported by O-RAN. For instance, the MNO can recon�gure the slicing window size,

state representation, action space, or reward function. As an example, the MNO may

decide to modify the weights of the utilized reward function. Such modi�cations can

re
ect a change in the MNO's priorities of ful�lling the SLAs of the di�erent network

slices as discussed in Chapter 5.

TL-Aided RA Deployment Work
ow

In both situations of extreme conditions and MNO recon�gurations, a new policy

can be loaded from the policy directory to match the latest context of the BSs

of interest. One or more policies can be loaded at once, depending on the policy

transfer con�gurations set by the MNO. The loaded policies guide the DRL-based

xApp depending on the TL approach chosen. Such MNO con�gurations and priorities

are inputted to the O-RAN slicing xApp via the A1 interface, as seen in Fig. 3.3.

Upon deployment, the recommended action is decided based on the system state,

3.6. NUMERICAL RESULTS AND DISCUSSION 78

and the previously mentioned MNO con�gurations. This should be done within the

time range of the near-RT RIC [127]. The xApp then executes the action taken via

the E2 interface to allocate resources among the available slices for the duration of

 seconds. Accordingly, scheduling is carried out per slice based on the scheduling

algorithm con�gured by the MNO. Then, the state of the system per slicing window

is captured based on the state representation chosen by the MNO. Finally, the DRL-

based xApp's policy is updated depending on the selected DRL algorithm and other

settings, such as bu�er size and learning rate.

Policy Updates

Loading a new policy to guide the DRL-based xApp can also be triggered by the

reward feedback for the di�erent states. For instance, if the reward value drops below

a pre-de�ned threshold value for some time, this may indicate that the context has

signi�cantly changed. Hence, the used DRL agent's policy needs an update. This

will consequently lead to incorporating a new expert policy to guide the DRL agent

toward recovery. The questions of how to identify signi�cant changes in network

conditions, when to load a new policy, and which policy to reuse for TL-aided DRL

slicing are not the focus of this chapter. However, we conducted another study to

address a subset of these topics as discussed in Chapter 5.

3.6 Numerical Results and Discussion

In this chapter, we present the results of three evaluation studies of TL-aided DRL.

The �rst study explores the convergence performance of the SOTA DRL algorithm

3.6. NUMERICAL RESULTS AND DISCUSSION 79

used in the inter-slice RA literature. It also examines the viability of TL to accelerate

the generalization of DRL-based RAN slicing using the �rst policy reuse approach

de�ned in (3.6). In the second performance study, we change the DRL design to

show its e�ect on the convergence performance of the SOTA DRL algorithms. We

then evaluate the suitability of all the other TL approaches discussed in Section 3.4

for DRL generalization. Finally, we conduct a thorough study to test the proposed

O-RAN training and deployment
ows. We examine the generalization performance

of the proposed hybrid TL-aided DRL approach in the context of O-RAN slicing.

We incorporate real VR gaming tra�c [51] to re
ect various practical scenarios of

immersive applications in 6G networks.

Reproducing an existing DRL-based RAN slicing solution is not straightforward

due to the absence of DRL-based RRM benchmark environments that can be eas-

ily integrated and reused out of the box. Hence, the algorithms and environment

implementations will vary. The developed simulation environments and the imple-

mentation of the proposed methods are available on GitHub1. Such RL environments

follow OpenAI Gym standards2. This allows the development of methods that can

interact instantly with the environment. Hence, it enables fellow researchers to reuse,

extend, and compare the proposed approaches with their own. All the performance

studies carried out in this chapter were conducted on a Linux machine with 8 CPUs,

64 GB of RAM, and an NVIDIA GeForce RTX 2080Ti GPU. The SOTA DRL algo-

rithms included in this chapter are implemented in the Tensorforce Python package3.

1Available at https://github.com/ahmadnagib/
2OpenAI Gym: https://www.gymlibrary.dev/
3Available at http://www.github.com/tensorforce/tensorforce

3.6. NUMERICAL RESULTS AND DISCUSSION 80

3.6.1 Generalization Performance of Policy Reuse against SOTA DRL

Algorithms

Simulation Settings

Learner Agents Tra�c Models. In the �rst evaluation study, multiple varia-

tions are used for the deployed learner agents to re
ect the expected di�erence from

the expert agents' training environment as seen in Table 3.3. We examined the gen-

eralization behaviour against three main levels of variation, which can be categorized

as follows:

ˆ Di�erent seed : Tra�c and number of users are generated based on the same

models experienced by the expert agents but with a di�erent random seed.

ˆ Di�erent number of users : Tra�c is generated based on a number of users

model di�erent from the expert agents and with a di�erent random seed.

ˆ Di�erent tra�c model : The tra�c generated follows models di�erent from

the ones used in the expert agents' environment. Additionally, the number of

users models and random seeds are also di�erent.

We simulate a scenario in the training environment with three types of services:

voice over new radio (VoNR), video and URLLC. Since the prevalent cellular net-

works mainly classify services into voice and best e�ort, it is hard to access real

network traces of the services addressed. We then simulate several other tra�c sce-

narios in the deployment environment to re
ect the sim2real gap and changes in

the deployment environment's conditions. This allows us to test the viability and

3.6. NUMERICAL RESULTS AND DISCUSSION 81

Table 3.3: Performance Study 1 Setup: Simulation Parameters Settings.

Video VoNR URLLC
Scheduling al-
gorithm

Round-robin per 0.5 ms slot

Slicing window
size

PRB allocation among slices every 2000 scheduling time slots

Packet interar-
rival time

Expert and learner agents

Truncated Pareto
(mean = 6 ms,
max = 12.5 ms)

Uniform (min = 0
ms, max = 160
ms)

Exponential
(mean = 180 ms)

Learner agents
Truncated Pareto
(mean = 4 ms,
max = 6 ms)

Uniform (min = 0
ms, max = 100
ms)

Exponential
(mean = 100 ms)

Packet size Expert and learner agents
Truncated Pareto
(mean = 100 B,
max = 250 B)

Constant (40 B) Truncated lognor-
mal (mean = 2
MB, standard de-
viation = 0.722
MB, max = 5 MB)

Learner agents
Truncated Pareto
(mean = 60 B,
max = 150 B)

Constant (80 B) Truncated lognor-
mal (mean = 1
MB, standard de-
viation = 0.5 MB,
max = 2 MB)

Number of
users

Expert agents

Poisson (max =
20, mean = 12)

Poisson (max =
20, mean = 12)

Poisson (max = 7,
mean = 2)

Learner agents
Poisson (max =
13, mean = 8)

Poisson (max =
36, mean = 23)

Poisson (max = 4,
mean = 1)

3.6. NUMERICAL RESULTS AND DISCUSSION 82

generality of our approach. The number of users for each service at a given slicing

window follows a Poisson distribution as shown in Table 3.3. Additionally, user re-

quests are generated based on the distributions shown in the table. The ones used in

the training environment are similar to those in [65]. In such a case, URLLC users

generate the largest but the least frequent packets compared with users of the other

services. VoNR users generate the smallest packets, while video packets are the most

frequent ones.

For the intra-slice RA, users belonging to the same slice share bandwidth equally.

More speci�cally, an RR scheduler is used within each slice at the granularity of 0.5

ms. The RR algorithm is one of the common scheduling algorithms that ensure

fairness [18]. Moreover, the slicing window size is one second. In other words, the

DRL agent takes an action to adjust the PRB allocation to each slice every second.

Unsatis�ed users with unful�lled transmission requests during a slicing window leave

the system.

We summarize the parameters used to create the environment and train various

DRL agents in Table 3.4. As shown in the table, we have evaluated various SOTA

DRL algorithms used in the inter-slice RA literature. We mainly tested two classes

of DRL algorithms, namely value-based and the ones that combine both value-based

and policy-based approaches. DQN and its variants DDQN and Dueling DQN belong

to the �rst class. AC and its variants, A2C and PPO, belong to the second class.

3.6. NUMERICAL RESULTS AND DISCUSSION 83

Table 3.4: Performance Study 1 Setup: RAN Slicing DRL Settings.

Setting name Setting value
State representation The number of packets within a speci�c time

window for each slice
Reward function A weighted sum of throughput and latency

experienced in a slicing window
Reward function weights wVoNR = 0:1, wURLLC = 0:7, wVideo = 0:2
DRL algorithm DQN, DDQN, dueling DQN, AC, A2C, PPO
Learning steps per run Expert agents: 200,000, learner agents:

60,000
Exploration rates Expert agents: 0.9, learner agents: 0.1
Exploration decay rates Expert agents: 0.1, learner agents: 0.01
Batch size 20

Transfer Reinforcement Learning Settings

The objectives of both the expert and the learner agents are the same. However, as

seen in Table 3.3, we generate di�erent tra�c loads in the learner agents' deployment

environment to explore the approach's capacity for generalization. We use the RL

mapping de�ned in Table 3.4.

Baselines

While analyzing the generalization behaviour of the trained expert DRL agents,

they are compared against the following traditional slicing baseline methods similar

to those used in [65]:

1. Number of users forecasting-based allocation : The number of active

users in the upcoming slicing window for each service type is forecasted assum-

ing a perfect predictor. Then the available bandwidth is sliced based on the

predicted ratio.

3.6. NUMERICAL RESULTS AND DISCUSSION 84

2. Number of packets forecasting-based allocation : The number of packet

requests in the upcoming slicing window for each service type is forecasted

assuming a perfect predictor. Then the available bandwidth is sliced based on

the predicted ratio.

3. Hard-slicing : The bandwidth is equally distributed among the available slices.

Therefore, one-third of the available PRBs are allocated to each slice.

The three methods above decide the inter-slice RA con�guration. Afterwards, an

RR scheduler is used for intra-slice RA, as in the case of the DRL-based approach.

Results

Expert Policies Training. It is obvious that the di�erent classes of algorithms

behave di�erently with the problem at hand, given the settings used. Fig. 3.4 shows

the normalized reward averaged over 200 slicing windows. Most of the examined

algorithms could not converge to the optimal policy. The performance of the PPO

algorithm is entirely random. The change in the DQN variants' performance is

less frequent, but the jumps are much more signi�cant. Finally, the AC variants

experience the best performance, both in terms of stable exploration of the action

space and convergence rate.

The A2C agent has the best behaviour in terms of convergence rate. However,

compared with AC, it takes a longer time to get closer to the best reward. Nev-

ertheless, it still took the AC variants around 5800 learning iterations to converge.

Moreover, the DQN and PPO variants could not converge during the entire simu-

lation period. They received suboptimal reward values for an extended duration.

3.6. NUMERICAL RESULTS AND DISCUSSION 85

Figure 3.4: Comparison of expert policies' training performance using SOTA DRL
algorithms. Results are shown in terms of normalized rewards, averaged over 200
decision time steps.

If this happens in the deployment environment, the RAN system will su�er from

poor throughput and latency, which are the KPIs used in the reward function. This

could lead to SLA violations for such a prolonged duration. This also translates into

monetary penalties in practical settings.

Finally, all the examined RAN slicing baselines perform poorly as, unlike DRL,

they only consider tra�c loads without paying attention to the latency and actual

temporal distribution of such loads. Hence, they perform badly in cases when latency

is more important, as re
ected in the reward function used in the �rst evaluation

study. We meant to use the same initial DRL con�gurations for all the trained

algorithms to highlight the importance of the DRL agent's hyper-parameter tun-

ing. The results indicate the sensitivity and importance of hyper-parameter opti-

mization in accelerating and stabilizing the agents' learning process. The process

3.6. NUMERICAL RESULTS AND DISCUSSION 86

of hyper-parameter setting, including its automation, is not straightforward and is

computationally expensive.

(a) Di�erent seed (b) Di�erent number of users

(c) Di�erent tra�c model (d) Di�erent tra�c and number of users

Figure 3.5: Comparison of TL-aided and non-TL-aided DRL-based inter-slice RA
under various deployment conditions. Results are shown in terms of normalized
rewards, averaged over 200 decision time steps. The two SOTA DRL algorithms,
A2C and PPO, are demonstrated.

Learner Agents Performance. We simulated the three tra�c variations de�ned

in Section 3.6.1. The results for di�erent seed, di�erent number of users, and di�erent

tra�c model variations are shown in Fig. 3.5. We chose PPO and A2C as they had

3.6. NUMERICAL RESULTS AND DISCUSSION 87

the worst and best performance, respectively, while training the expert policies. This

allows us to examine TL's ability to enhance the performance of poor and already

well-performing agents. The proposed TL-aided DRL improves performance in all

the de�ned target tra�c scenarios in the learner agents' environment. The PPO,

which had a random performance in the training environment, started at a high

reward value when aided by our �rst proposed policy transfer method. This is a

remarkable feature as it allows TL to guide the poorly-tuned DRL agents.

The non-TL-aided A2C performs relatively well in the deployment environment.

However, the TL-aided approach still contributed to reducing the convergence time

in all the A2C cases. The reduction exceeded 17,000 learning iterations in some

cases, as seen in Fig. 3.5b. Moreover, as seen in Fig. 3.5a and Fig. 3.5b, the TL-

aided approach not only helped the A2C agent in reducing the convergence rate but

also in avoiding being stuck with a sub-optimal solution for a long time, and hence

generalizing to a better solution.

Even when there is a big variation in the tra�c model, such as the case in Fig.

3.5c and Fig. 3.5d, the TL-aided approach still contributes to the improvement of

both A2C and PPO performance. This is promising for MNOs as such di�erences are

expected when moving from a simulation-based environment to a real network. How-

ever, the PPO agent seems unstable and may need careful hyperparameter tuning.

Although the �rst proposed policy reuse approach managed to generalize to di�erent

scenarios, more investigation will be carried out in the next two performance stud-

ies to investigate the e�ect of the TL-based approaches on the various RAN slicing

scenarios.

3.6. NUMERICAL RESULTS AND DISCUSSION 88

Table 3.5: Performance Study 2 Setup: Simulation Parameters Settings.

Video VoNR URLLC
Scheduling
algorithm

Round-robin per 0.5 ms slot

Slicing win-
dow size

PRB allocation among slices every 40 scheduling time slots

Packet in-
terarrival
time

Truncated Pareto
(mean = 6 ms,
max = 12.5 ms)

Uniform (min = 0
ms, max = 160 ms)

Exponential (mean
= 180 ms)

Packet size Truncated Pareto
(mean = 100 B,
max = 250 B)

Constant (40 B) Truncated log-
normal (mean =
2 MB, standard
deviation = 0.722
MB, max = 5 MB)

3.6.2 E�ect of Reward Function Design and TL Approach on General-

ization

In the second evaluation study, we study the e�ect of reward function design and the

other TL-aided approaches de�ned in Section 3.4 on generalization. We re
ect the

di�erence between the training and deployment environments by varying the avail-

able slices' types. The implementation of the environment was updated to support

scheduling multiple transmissions per TTI if resources were available. Requests are

generated based on the parameters described in Table 3.5.

It is important to design a reward function that re
ects the requirements of the

various slices. In this evaluation study, we focus more on the delay requirements.

Latency is relatively more important in URLLC slices. Hence, a large weight is

con�gured for the URLLC slices in the weighted sum reward functions, as shown in

Table 3.6.

3.6. NUMERICAL RESULTS AND DISCUSSION 89

Table 3.6: Performance Study 2 Setup: RAN Slicing DRL Settings.

Setting name Setting value
State representation Slices' contribution to the overall BS's tra�c

within preceding
 as in (3.3)
Reward function 1 A weighted sum of the slices' average latency

in a slicing window
Reward function 2 A weighted sum of a sigmoid function of the

average latency experienced in a slicing win-
dow by the various slices as de�ned in (3.5)

Reward function 3 Same as function 2 with extra reward when
URLLC slice requirements are satis�ed

Reward function weights wVoNR = 0:1, wVR gaming = 0:7, wVideo = 0:2
DRL algorithm Dueling DQN, A2C, PPO, REINFORCE,

TRPO
Learning steps per run Expert agents: 50,000, learner agents: 20,000
Exploration rates Expert agents: 0.9, learner agents: 0.2
Exploration decay rate 0.99
Batch size 4 - 8

Simulation Settings

Transfer Reinforcement Learning Settings

We follow the training and deployment work
ows de�ned in Section 3.5. The learner

agents in this evaluation study are deployed in an environment with one URLLC

slice and two VoLTE slices. In contrast, the expert policies are trained in a scenario

that includes one of each service listed in Table 3.5. We use the following settings

for the approaches de�ned in Section 3.4.

Policy Reuse Settings. We con�gure the learner agents to follow the expert

policy for the �rst 500 time steps. The target policy is continuously updated based

on the reward feedback the learner agent receives. We use a transfer rate,� = 1,

3.6. NUMERICAL RESULTS AND DISCUSSION 90

during these time steps, meaning that we always follow the source policy. We follow

the target policy afterward.

Policy Distillation Settings. The learner agent is con�gured to follow the dis-

tilled policy for the �rst 1000 time steps, during which a transfer rate,� = 1, is

used.

Hybrid Policy Transfer Settings. We balance exploiting the expert policy and

exploring a distilled action during the �rst 700 time steps. Then, the updated target

policy is followed for the rest of the deployment scenario.

Reward Function Change Settings. We also investigate the e�ect of the reward

function design on the convergence performance of DRL agents. The �rst designed

function is a weighted sum of the slices' average latency in a slicing window. The

second one is the sigmoid function-based reward de�ned in (3.5). The third is used

as part of reward shaping, as de�ned below.

Reward Shaping Settings. Reward shaping is another class of TL, according to

[145]. It uses external knowledge to render auxiliary rewards that guide the DRL

agent toward the desired policy. This can help the agent reach an optimal policy

faster. We propose to use such an approach to explore its e�ect on generalization

performance. We demonstrate this by modifying the reward function de�ned in (3.5)

to provide additional rewards whenever an action leads to satisfying the URLLC

latency requirements. As previously mentioned, we prioritize URLLC slices due to

their intolerance to delay. This is referred to as reward function 3.

3.6. NUMERICAL RESULTS AND DISCUSSION 91

Similar to the �rst evaluation study, we use a hard-slicing baseline. We also use

a �xed slicing in which the shares of each slice are pre-determined.

Results

(a) (b)

Figure 3.6: Numerical results: (a) Training performance of SOTA DRL algorithms
and baselines, shown in terms of normalized rewards averaged over 500 decision time
steps; (b) Deployment performance of the proposed reward functions and TL-aided
DRL-based slicing approaches, shown in terms of normalized rewards averaged over
1000 decision time steps.

We �rst illustrate the training performance of the various SOTA DRL algorithms

used in slicing literature in Fig. 3.6a. Hard and �xed slicing still have the lowest

reward values as they do not explicitly consider the latency. Compared with perfor-

mance study 1, the results show that proper hyperparameter tuning can signi�cantly

enhance the DRL performance. However, the results still highlight the challenge of

slow convergence of DRL algorithms. It can take an agent more than 17,000 learn-

ing steps to converge. This is a concern in next-generation O-RANs because live

networks cannot tolerate a non-optimal performance for a long duration.

3.6. NUMERICAL RESULTS AND DISCUSSION 92

In Fig. 3.6b, we show the results of the rest of the TL-aided approaches de-

scribed in Section 3.4. We also show the e�ect of the reward function design on

generalization. The agent using reward function 1 has the lowest reward throughout

most deployment scenario duration. This is because, similar to performance study

1, function 1 re
ects the average latency in a slice without considering the latency

requirements for each service type. On the other hand, reward function 2 explicitly

includes the latency requirements and penalizes the agent whenever it takes actions

that violate them. Hence, the agent using function 2 has an enhanced generalization

performance. However, it still converges close to the 20,000 steps mark.

Reward shaping succeeds in accelerating convergence. The auxiliary rewards

consistently guide the agent toward satisfying the latency requirements of URLLC.

Furthermore, the two policy transfer approaches performed relatively better through-

out most of the simulation in terms of convergence rate and reward value. However,

they exhibit considerably di�erent behaviours at the beginning of the simulation.

This is mainly a result of the nature of each approach.

Policy reuse starts with a relatively high reward value as the transferred policy

recommends actions close to the optimal ones. On the other hand, policy distillation

starts with a lower value as it tries to reduce the divergence between the actions

recommended by the learner policy and the expert policy. This smooths out the

reward to some value in between. However, it converges faster as it explores more

actions at the beginning rather than steadily following a transferred policy.

Both policy transfer techniques experience signi�cant performance drops, unlike

the approaches previously analyzed in this evaluation study. This is mainly because

3.6. NUMERICAL RESULTS AND DISCUSSION 93

they both rely on a non-generic expert policy. This a�ects exploration robustness

and, hence, the end-user's QoE. Finally, the proposed hybrid approach combines

a good starting reward value, a more stable exploration performance, and a fast

convergence rate. This is mainly because it balances between entirely relying on

an expert policy trained on a speci�c scenario and more conservative actions based

on both online and saved policies. The proposed approaches, especially the hybrid

approach, improved the generalization in the learning agents' deployment scenario,

which di�ers from the expert policies' training scenario. We move to evaluate that

more thoroughly in the third performance study.

3.6.3 Performance of the Proposed Hybrid TL-Aided Approach for O-

RAN Slicing including Realistic Immersive Services

In the third study, we incorporate real VR gaming tra�c [51] to re
ect practical sce-

narios of immersive applications in next-generation O-RANs. The VR gaming data

includes multiple games and multiple con�gurations per game. We use various tra�c

patterns from the VR gaming dataset to re
ect two main learner agent scenarios:

1. A scenario that includes DRL-based slicing xApps that are deployed in an

environment experiencing tra�c patterns similar to those used to train the

expert policies guiding such xApps.

2. A scenario in which the slicing xApps are experiencing tra�c patterns that

are di�erent from those used to train the expert policies that guide the policy

transfer process.

3.6. NUMERICAL RESULTS AND DISCUSSION 94

Table 3.7: Performance Study 3 Setup: RAN Slicing DRL Settings.

Setting Value
Reward function weights wVoNR = 0:1, wVR gaming = 0:7, wVideo = 0:2
Reward function parameters c2VoNR = 10, c2VR gaming = 1, c2Video = 5
DRL algorithm PPO
Learning steps per run 10,000
Exploration rates 0.2, exploration ends at step 4000
Exploration decay rates 0.99, 0.7, 0.5, 0.3
Transfer rate 0.9, 0.7, 0.5, 0.3,T = 3000
Hybrid approach parameter 0.99, 0.9, 0.7, 0.5, 0.3
Learning rate 0.01
Batch size 4

Simulation Settings

We follow the DRL design described in Section 3.3.2 and summarized in Table 3.7.

Based on the
ows de�ned in Section 3.5, we �rst train several expert models. In

addition to the real VR gaming traces, VoNR and video requests are generated based

on the parameters described in Table 3.8. Here, VR gaming users generate the largest

requests.

We then save these various models in a policy directory as shown in Fig. 3.3.

After that, we start the deployment process in which the saved policies are used

to guide the DRL-based slicing xApp following the proposed
ow. We assume that

the DRL agent is newly deployed in an environment or that the context has just

changed signi�cantly. We also assume that an expert policy is already chosen and

loaded at the beginning of our simulation runs to guide the learner agent. In this

study, the learner policy is initialized randomly. Such a con�guration is set to re
ect

the big di�erence between the o�ine training simulation and the real deployment

3.6. NUMERICAL RESULTS AND DISCUSSION 95

Table 3.8: Performance Study 3 Setup: Simulation Parameters Settings.

Video VoNR VR gaming
Scheduling al-
gorithm

Round-robin per 1 ms slot

Slicing window
size

PRB allocation among slices every 100 scheduling time slots

Packet interar-
rival time

Truncated Pareto
(mean = 6 ms,
max = 12.5 ms)

Uniform (min = 0
ms, max = 160
ms)

Real VR gaming
dataset [150]

Packet size Truncated Pareto
(mean = 100 B,
max = 250 B)

Constant (40 B) Real VR gaming
dataset [150]

Number of
users

Poisson (max =
43, mean = 20)

Poisson (max =
104, mean = 70)

Poisson (max = 7,
mean = 1)

environments. This also re
ects a signi�cant change in the network's conditions and,

hence, the need for online learning in both cases. This enables evaluation of the

proposed approach's performance against the baselines under extreme conditions.

However, our framework can be con�gured to accommodate any pre-trained policy

to be used as an initial policy for the learner DRL agent.

We compare the three proposed TL-aided DRL algorithms with their traditional

non-TL-aided DRL counterparts. This allows us to study the gains in convergence

performance in terms of the average initial reward value, convergence rate, number

of converged scenarios, and the reward variance per run. This evaluates some of the

acceleration and generalization aspects of the proposed approaches.

In both the training and deployment
ows, the DRL-based slicing xApp allocates

the limited PRBs to the available 3 slices. After that, RR scheduling is executed

within each slice at the granularity of 1 ms. The slicing window size is 100 ms.

3.6. NUMERICAL RESULTS AND DISCUSSION 96

Hence, scheduling continues for 100 TTIs.

Transfer Reinforcement Learning Settings

We used the con�gurations de�ned in Table 3.7 for all the expert and learner agents.

For better generality of the results, we ran all the possible combinations out of the

listed hyper-parameters of the implemented approaches. The agents considered in

this study employ the PPO algorithm [151] as an underlying DRL algorithm. We

adopt the PPO implementation from the Tensorforce Python package4. We modi�ed

it accordingly to accommodate the
ows and the policy transfer algorithms proposed

in Section 3.5. VR gaming slices are relatively more latency intolerant. Therefore,

the reward function weights and parameters are con�gured to re
ect such sensitivity

as seen in Table 3.7.

The O-RAN speci�cations mandate that any ML-based solution should not be

trained online. It can only be �ne-tuned online to ensure that the trained models

do not a�ect the performance and stability of the network [52]. To avoid that, we

con�gure the DRL agent to have a low initial exploration rate. We also employ an ex-

ploration decay to restrict the random actions exploration of the learner agents. We

study three primary aspects of the results. We start with analyzing the reward con-

vergence behaviour of the di�erent approaches. We then evaluate their accelerated

generalization aspects. We �nally investigate the e�ect of the introduced parameter

� on the performance of the proposed hybrid TL-aided DRL approach.

4Available at https://github.com/tensorforce/tensorforce

3.6. NUMERICAL RESULTS AND DISCUSSION 97

Results

Reward Convergence Behaviour. It is better to reuse local expert policies that

were trained in contexts similar to the deployment environment. However, these are

not always available. Hence, we show the reward convergence performance of the

proposed approaches when an expert policy trained in a similar or di�erent context

is reused. As described in Section 3.6.3, we run all the combinations in Table 3.7.

We choose the best 64 runs of each approach in terms of the average normalized

reward per run and show the average rewards throughout a simulation run in Fig.

3.7.

Fig. 3.7a and Fig. 3.7c show the average convergence performance of the ap-

proaches in scenarios where the expert policy is trained using a tra�c pattern similar

to the deployment environment pattern. The hybrid approach has the highest initial

reward value in both cases. The policy reuse approach comes second, and its con-

vergence behaviour is very similar to that of the hybrid approach. This is primarily

attributed to the similarity between the source and target policies' environments.

The policy reuse follows the expert policy's actions, and they are of high return most

of the time due to such similarity. Nevertheless, unlike the other approaches, the

hybrid approach accommodates the small di�erences between training and deploy-

ment environments by additionally following a distilled action for some time during

the transfer time, depending on the� parameter setting. This enables it to explore

in a safer way. Hence it converges to the best average reward in both situations.

On the other hand, Fig. 3.7b and Fig. 3.7d show the average performance of the

approaches in scenarios where the expert policy is trained using a di�erent tra�c

3.6. NUMERICAL RESULTS AND DISCUSSION 98

(a) (b)

(c) (d)

Figure 3.7: Reward convergence performance of the proposed TL-aided DRL algo-
rithms for inter-slice RA. Panels (a) and (c) show tra�c patterns 1 and 2 guided
by an expert policy trained on a similar tra�c pattern, while panels (b) and (d)
show tra�c patterns 1 and 2 guided by an expert policy trained on a di�erent tra�c
pattern. Results are presented as normalized rewards, averaged over the best 64
simulation runs.

pattern. The proposed approach still has the best overall generalization perfor-

mance. The policy reuse approach, however, has almost the worst start and average

reward values for a signi�cant percentage of the simulation run duration. This can

be attributed to the di�erences between the source and target policies environment.

3.6. NUMERICAL RESULTS AND DISCUSSION 99

Hence, blindly following the expert policy given the restricted exploration will not

lead to optimal actions as the network conditions are di�erent. The policy distilla-

tion approach has a much better start; however, it converges to a sub-optimal value

function as it carefully explores by �nding an action that minimizes the divergence

between the expert and the learner policies' actions. This prevents policy distillation

from exploring the other possible high-return actions before the end of the limited

4000 exploration steps. Again, the hybrid approach accommodates the di�erences

between training and deployment environments by switching between an expert pol-

icy reuse action and a distilled action depending on the� parameter setting.

The non-hybrid approaches are not able to explore the whole action space given

the deployment environment's restricted exploration setting in terms of initial ex-

ploration, exploration decay, and exploration end step de�ned in Table 3.7. Con-

sequently, they fail to converge to the optimal slicing con�gurations. On the other

hand, the DRL agents following the hybrid approach are guided by two kinds of live

network knowledge. The exploration process of the hybrid approach is modi�ed to

incorporate such knowledge. Thus, it does not require as much random exploration

or following the learner policy as the other approaches during the transfer time,T.

Accelerated Generalization Evaluation. We now present statistics compiled

from the best 64 runs of all the approaches given tra�c patterns 1 and 2 in Fig. 3.8a

and Fig. 3.8b, respectively. We measure the initial average normalized reward, vari-

ance in the reward, number of steps to converge to the best reward, and percentage

of converged simulation runs for each approach. This re
ects whether an approach

starts with a good reward value, the change in reward values afterward, the speed of

3.6. NUMERICAL RESULTS AND DISCUSSION 100

convergence, and the ability to �nally generalize to a scenario, respectively.

(a) Results for tra�c pattern 1.

(b) Results for tra�c pattern 2.

Figure 3.8: Accelerated generalization performance of the proposed TL-aided DRL-
based slicing approaches, averaged over the best 64 runs. The start reward indicates
whether an approach begins at a high reward value (higher is better), the reward
variance indicates
uctuations in reward values (lower is better), the convergence rate
indicates the number of steps required to reach the best reward (lower is better), and
the percentage of converged runs indicates the ability to generalize to each scenario
(higher is better).

Such observations con�rm the results presented in performance study 2, Fig. 3.7

and the hypothesis made in Section 3.4.3. The proposed hybrid approach tries to

3.6. NUMERICAL RESULTS AND DISCUSSION 101

maximize the reward for some time. It also tries to cautiously explore new actions by

striking a balance between a deterministic and a guided exploratory action at other

times. It inherits the best of both policy reuse and distillation approaches regardless

of the nature of the expert policy's training environment and the actual deployment

tra�c conditions.

Consequently, the proposed hybrid approach has the highest initial reward value

and the highest percentage of converged runs with at least 7.7% and 20.7% improve-

ments over the policy reuse approach, respectively. The hybrid approach also yields

the lowest variance in reward values per run, with at least a 70.3% decrease in vari-

ance when compared with policy reuse. It does so while still having the second-best

performance in terms of the number of steps to converge. However, policy reuse,

which comes �rst in this metric, only converges up to 82.8% of the time. Hence, the

number of steps to converge is averaged over a smaller number of data samples.

The hybrid approach can switch between two approaches of knowledge transfer.

This enables it to deal with various expert policies' pre-training conditions, whether

they are similar or di�erent from the experienced live network conditions. The non-

TL-aided approach has no sources of knowledge. It only relies on its own policy

and random exploration, which is restricted in such an O-RAN deployment scenario.

Thus, it has almost the worst performance on all the compared aspects except for

the percentage of converged runs in the scenario presented in Fig. 3.8a. It failed

to generalize to 25% and 100% of tra�c 1 and tra�c 2 scenarios, respectively. On

the other hand, the hybrid approach managed to generalize to all the experienced

scenarios. The policy reuse and distillation are close in their overall performance

3.6. NUMERICAL RESULTS AND DISCUSSION 102

except for the percentage of converged runs. This occurs mainly because policy

distillation compromises between the actions recommended by the expert and learner

policies, preventing it from fully utilizing either one's potential. As a result, it

conservatively converges to a signi�cantly lower average reward.

E�ect of the Introduced Hybrid TL Parameter. We also examine the e�ect

of the introduced parameter� as shown in Fig. 3.9. The two sub-�gures show the

average performance of the proposed approach based on the best 64 runs for each

value of � . Fig 3.9a shows that the number of steps needed by a learner agent to

converge increases with the decrease of� value. The hybrid TL-aided approach with

� = 0:3 needs around 57.7% of the simulation run steps to converge to the optimal

reward value. It also shows a slight increase in the reward variance per run and a

slight decrease in the initial reward value. This can be attributed to more policy

distillation-based actions as de�ned in Algorithm 3 and showcased in Fig. 3.9b.

An overall slight degradation in performance is expected with the increase of

the distilled actions, as mentioned earlier. However, the hybrid approach still shows

robust behaviour given the di�erent � values. This is due to restricting random

actions and relying on both distillation and reuse during most of the transfer time,

as seen in Fig. 3.9b. It is worth noting that the probability of taking a reuse or

distillation action does not only rely on � and, hence, their counts do not change

identically when changing� .

3.7. SUMMARY 103

(a) Generalization performance across di�erent� values.

(b) Ratios of action types during the transfer time T.

Figure 3.9: The e�ect of the introduced parameter� on the generalization perfor-
mance of the proposed hybrid TL-aided DRL-based slicing approach. Results are
averaged over the best 64 simulation runs for tra�c pattern 2.

3.7 Summary

Our case studies on intelligent RAN slicing demonstrate that DRL agents can take

thousands of learning time steps to converge to a good policy. This results in viola-

tions of the various slices' SLAs and, consequently, monetary penalties and undesir-

able QoE. In this chapter, we proposed several approaches to tackle the accelerated

3.7. SUMMARY 104

generalization challenges. Our extensive experiments highlight that the proposed

TL-based approaches, and speci�cally the hybrid policy transfer approach, proved

their superiority over the SOTA DRL techniques used in the context of inter-slice

RA. This was demonstrated using di�erent RL settings and diverse model-based and

live network tra�c.

Utilizing the TL-based strategies does not necessarily guarantee slices SLA en-

forcement. Hence, we focus on that in Chapter 4. However, from the results, we can

still conclude that TL can also indirectly tackle the instabilities experienced during

deployment. By modifying the exploration process, TL-aided DRL can avoid risky

situations by receiving guidance based on prior knowledge. Therefore, reusing exist-

ing network knowledge is not only a signi�cant step towards having accelerated and

generalizable DRL-based xApps in the O-RAN paradigm but also trustworthy DRL,

in general.

105

Chapter 4

Safe DRL-Based Inter-Slice Resource Allocation

\Once you de�ne SLAs and enforce

them, I think more enterprises will

be able to consider mobile networks

for use cases."

Hannes Ekstr•om, CEO Ericsson-LG

4.1 Introduction

As outlined in Chapter 2, RL policies for inter-slice RA need to incorporate safety

constraints while learning to ensure that the RL agent does not compromise the sys-

tem performance. In the context of slicing in next-generation O-RANs, these safety

constraints would involve ensuring that the de�ned network SLAs for slices are not

violated. RL algorithms have achieved signi�cant success in simulated environments.

However, their direct application to physical systems such as O-RANs is often chal-

lenging, particularly when such constraints must be met [152]. In traditional RL

4.1. INTRODUCTION 106

frameworks, the agent is primarily driven to explore any policy that maximizes re-

ward. In contrast, real-world applications necessitate the additional requirement of

satisfying certain constraints throughout the deployment process, such as the strict

latency requirements of VR gaming applications in O-RANs [152].

Online learning will still be needed to allow RL agents to tune their policies in

real time. This typically occurs to adapt to the evolving user tra�c and diversity of

the available slices. In these situations, due to the absence of prior knowledge about

the environment in model-free RL, the agent is likely to violate constraints during

online exploration. Deploying inter-slice RA agents in real-world O-RANs presents

a signi�cant challenge. If this process is not managed carefully, it can violate the

various slices' SLAs. Thousands of unsafe learning steps may be required for the

system to recover. This is due to the inherent stochasticity of RAN systems and the

potential cascade e�ects triggered by the actions of the RL agent. This translates to

a signi�cant negative impact on the end user's QoE.

One of the critical problems in slicing is allocating the minimum possible share of

RAN resources while simultaneously meeting the speci�ed SLAs of the diverse slices.

This is particularly challenging as there is no straightforward function to ful�ll such

con
icting objectives for each observed network state. This is further complicated

by the interactions with the mechanisms functioning within each slice on a per-
ow

basis, including scheduling algorithms and adaptive MCS.

The traditional RL framework is usually limited to a single objective function.

However, to deal with this challenge, the majority of the existing slicing literature

combines both the abovementioned objectives into the reward function [10, 88]. This

4.1. INTRODUCTION 107

is usually done in the form of a weighted sum. This approach cannot solely guar-

antee the satisfaction of the diverse slices' SLAs, especially on the instantaneous

(state-wise) level. The traditional RL agents aim to maximize cumulative reward

over time, and hence, it takes time to adapt to signi�cant changes in the network

conditions. Also, as discussed later in Chapter 5, changing the weights of such a

multi-objective reward function can a�ect the overall online learning performance

of RL agents deployed in a live network. Such changes are typically carried out by

MNOs to modify the priority of ful�lling the slices' SLAs or change the de�ned SLA

thresholds for a given slice.

In this chapter, we address this challenge by proposing a safety module as part

of our O-RAN's trustworthy RL framework. We address the risky online exploration

of deployed RL slicing agents in a model-free DRL setting. We consider both the

cumulative (trajectory-wise) and instantaneous (state-wise) latency constraints of

VR gaming slices. We include the cumulative constraints by designing a risk-sensitive

reward function that re
ects the slices' latency requirements. Moreover, we address

the instantaneous constraints by learning a cost function that estimates the expected

latency attached to an action given a certain state. Hence, actions expected to violate

the de�ned latency thresholds are overridden.

Our proposed approach accommodates the changes in such threshold settings.

Unlike most slicing studies, we predict the latency resulting from an RA action rather

than whether a violation is expected. Our approach is, therefore, not restricted by

speci�c cost or reward function de�nitions. The contribution of this chapter can be

summarized as follows:

4.1. INTRODUCTION 108

ˆ We propose a novel, safe RL approach that tackles both the cumulative and

instantaneous latency constraints of VR gaming slices. We design a multi-

objective reward function that minimizes resource consumption while ful�ll-

ing the cumulative latency requirements of VR gaming. The reward function

includes a risk-sensitive sigmoid-based component with parameters re
ecting

acceptable slices' SLAs. This enables penalizing the DRL-based xApp for un-

desirable actions that get the system close to violating the de�ned SLAs.

ˆ We address the instantaneous latency constraints using a safety layer at the

end of the policy's ANN to project the actions to the nearest feasible actions.

We speci�cally build a model to predict the action cost in terms of latency. If

an action is expected to violate the de�ned latency thresholds, the safety layer

overrides it with the closest safe action expected to abide by the instantaneous

latency constraints. This approach is algorithm-agnostic, and hence, any RL

method can be used. We demonstrate such an approach by extending the A2C

algorithm, which is commonly used in slicing literature.

ˆ We propose constrained DRL as a core component of intelligent DRL-based

control of network functionalities in the O-RAN architecture. We propose

training and deployment work
ows in the non-RT and near-RT RICs, respec-

tively. Such
ows include collecting data to build the cost model and deploying

the proposed safe DRL-based inter-slice RA approach in O-RANs.

ˆ We conduct an exhaustive performance study to evaluate the proposed algo-

rithm's performance against multiple de�ned baselines using metrics speci�c

4.2. RELATED WORK 109

to the constrained RL framework. Our approach not only adapts to changing

and extreme tra�c conditions but also to modifying latency threshold settings.

This chapter proceeds as follows: In Section 4.2, we review the related work per-

tinent to our study. Section 4.3 provides a detailed description of the system model.

Our proposed approaches are introduced in Section 4.4, followed by an overview of

the O-RAN training and deployment work
ows in Section 4.5. The experimental

setup and analysis of our evaluation study are presented in Section 4.6. Finally,

Section 4.7 concludes the chapter by summarizing the key �ndings.

4.2 Related Work

A few studies have recently considered safety aspects when proposing an RL-based

approach to RA in network slicing. Such studies primarily use a form of constrained

RL. For instance, the authors of [153] propose to use a variant of the PPO algo-

rithm that considers slice requirements during exploration. Such constraints are

incorporated into the reward function of the PPO-based agent using the Lagrangian

primal-dual method that penalizes actions violating the constraints. A cost function

is de�ned to re
ect performance degradation experienced by a slice as compared

to its performance requirement. Furthermore, an ANN model is built to learn the

cost value function primarily to switch to a baseline approach if the model predicts

a degradation. Similarly, the authors of [25] propose a model-free multi-agent RL

approach that combines the AC and Lagrangian methods to re
ect cost constraints

in the objective function.

4.2. RELATED WORK 110

The authors of [154] use an algorithm that extends the soft actor-critic (SAC)-

Lagrangian to minimize bandwidth allocation. The cost function is de�ned as the

degradation in the QoS. They incorporate the concept of domain randomization

(DR) in training as a way to improve the generalization of the policy. Similarly,

the authors of [155] propose a model-free constrained RL algorithm based on the

SAC algorithm. Their main concern, however, is simultaneously handling both dis-

crete and continuous action spaces for channel allocation and energy harvesting time

division. As part of the learning policy update, they utilize a vector of Lagrangian

multipliers to address the queue constraints that re
ect latency in addition to energy

constraints.

Furthermore, [10] proposes a model-based RL approach for online learning with-

out previous knowledge of the system. The model is designed to learn how network

dynamics in
uence an SLA violation indicator function that predicts whether a viola-

tion will occur in a speci�c slice. The authors of [156] propose a model-free RL-based

network slice management framework to maximize the throughput over time while

satisfying latency and bandwidth constraints. They employ an adaptive constrained

RL algorithm based on AC methods to deal with cumulative user dissatisfaction

constraints. They also consider instantaneous latency and bandwidth constraints by

adjusting the RA actions to align with the nearest feasible action.

Despite the progress in adopting constrained RL approaches in the context of

slicing, the existing studies still experience limitations in the following aspects:

Cumulative and Instantaneous Constraints. The majority of the reviewed

studies do not distinguish between instantaneous and cumulative constraints. For

4.2. RELATED WORK 111

instance, it is unclear how and whether the instantaneous violations are mitigated

in [153] as they primarily focus on the cumulative ones. Only the authors of [156]

address this distinction. However, similar to [11], they do not include design, train-

ing or deployment details about the approach to address the instantaneous latency

constraints. They also do not analyze the performance under di�erent and extreme

conditions or relative to the longer-term cumulative latency.

Accommodating Changes in SLAs. The reviewed studies neither accommodate

nor evaluate the performance of their approaches under changes in the acceptable

SLA thresholds. For example, the model in [10] resembles an SLA violation indicator

function that predicts whether a violation will occur in a certain slice. This approach

is not
exible to accommodate changes to the constraint settings. Such a restricted

binary classi�cation model must be retrained using new cost feedback data to re
ect

the new constraint con�gurations.

Performance Under Extreme and Varying Conditions. The scenarios con-

sidered in most existing studies [153, 155, 10] do not re
ect the network being sub-

stantially overloaded or having signi�cant changes in the network conditions. Hence,

the performance of the proposed approaches under varying and extreme situations

is not assessed. Such conditions are the primary triggers for the risky exploration

challenge. Accomplishing near-zero violations is primarily signi�cant under an ex-

treme situation. For instance, in [25], the authors apply constrained learning during

training only, which is insu�cient to handle varying deployment conditions.

4.2. RELATED WORK 112

Comparison Against Baselines Most reviewed studies do not compare against

other constrained RL baselines. For instance, in [10], the model-free RL baselines

are mostly non-constrained. The baselines in the reviewed studies also do not in-

clude su�cient details about the RL design of the baselines, such as whether the

constraints are incorporated in the reward function. For example, in [155, 10], the

unconstrained RL baselines do not include a representation of the constraints in their

reward functions. Additionally, the baselines have di�erent action spaces in [155],

and their training and testing process is unclear in [156]. This results in an unfair

comparison biased towards the proposed approaches. Moreover, in [25], although the

baselines include resource utilization and SLA satisfaction in their reward functions,

the di�ering RL design choices make it di�cult to compare constrained and uncon-

strained DRL approaches. Finally, the cost of taking safe actions to abide by the

constraints is rarely quanti�ed with respect to extra resources utilized. For instance,

in [155, 156], resource utilization is not re
ected in the reward function or any other

parts of the RL design.

Assumptions and Experiment Settings. The majority of the reviewed studies

include impractical assumptions and settings. For instance, the authors of [154] use

only one slice and treat di�erent transmissions of one user as multiple users of the

slice due to restrictions of the used tool. Moreover, having basic settings, such as

con�guring the same packet arrival rate for all slices in [155] with only a di�erence

in packet size, limits the practicality of the proposed approach. Finally, in [153],

the authors assume the existence of a rule-based approach that is guaranteed not

to violate the de�ned SLAs for each slice. They switch to such an approach when

4.2. RELATED WORK 113

QoS degradation is predicted, and they also use it to learn such a prediction model.

Such a rule-based approach is infeasible to implement in real-time as it performs grid

search.

Standard-Compliant Flows. The live network training and deployment
ows,

especially in the context of O-RAN, have not been addressed in detail, even in O-

RAN-oriented studies such as [25]. For instance, the authors of [10] proposed to carry

out learning solely online while an agent is being deployed in an operating network

without prior knowledge of the system. This is not recommended by standard archi-

tectures such as O-RAN. Finally, in their experiments, both [10] and [153] assume

an online learning phase that ends after a speci�c large number of time steps and is

followed by a prede�ned inference phase in which changes in the network conditions

are infrequent.

As explained in Section 4.4, to address these limitations, we consider both in-

stantaneous and cumulative latency constraints of the VR gaming slices. Moreover,

we investigate the performance of the constrained RL framework against that incor-

porating a multi-objective reward function. We also analyze resource utilization to

examine the costs of being more conservative to avoid violations. Unlike the existing

literature, we consider that learning can happen whenever an agent is deployed in the

testing environment and whenever a signi�cant change in network conditions occurs.

Hence, in this chapter, we show the deployment performance of the proposed and

baseline methods under varying and extreme situations. Our approach incorporates a

cost model that
exibly accommodates changes in the latency threshold settings. We

consider scenarios with three heterogeneous services, including VR gaming, based on

4.3. SYSTEM MODEL 114

real traces of diverse gaming tra�c. Finally, we propose realistic O-RAN-compliant

training and deployment
ows for implementing our approach.

4.3 System Model

We base our system on the model de�ned in Section 3.3. The primary di�erence in

this chapter is that we model the problem of inter-slice RA as a constrained Markov

decision process (CMDP). The traditional MDP aims to maximize the cumulative

reward. On the contrary, the CMDP problem is more challenging as it strives to max-

imize long-term rewards while keeping certain costs under some de�ned acceptable

thresholds.

A CMDP extends the traditional MDP de�ned in Chapter 2 by incorporating

a set of cost functionsC. CMDP is represented by the tuple (S; A; R; C; P; �;
)

[152]. Similar to MDP, S denotes the set of states,A represents the set of actions,

R : S � A � S 7! R is the reward function,P : S � A � S 7! [0; 1] is the transition

probability function, � : S 7! [0; 1] represents the initial state distribution, and

is the discount factor applied to future rewards. Di�erent from an MDP, each cost

function Ci 2 C is de�ned asCi : S� A � S 7! R and is subject to speci�c constraints

based on the nature of the problem.

An action a 2 A is deemed feasible if it meets all the required constraints. In a

CMDP, the goal is to choose a policy� � that maximizes the long-term reward while

ensuring all constraints are satis�ed. This can be formally expressed as [152]:

4.3. SYSTEM MODEL 115

max� J � �
R ;

s.t. the feasibility of at :
(4.1)

Hence, in this chapter, the problem of inter-slice RA is modelled as learning to

minimize resource consumption while considering the instantaneous and cumulative

latency constraints for the VR gaming service, as elaborated later in this section. In

our system, the latency is proportional to a queue length at a given BS,B j .

Each user associated with a slice establishes a connection to download tra�c. For

such downlink connections, the BS maintains a queue for each slices of maximum

capacity qs
max to store incoming packets intended for the slice users. The users of a

given slice share the gNB resources allocated to such a slice equally. Let the number

of packets arriving for a slice's users during thet-th TTI of a slicing window be

denoted by H s
t , which is assumed to follow a distribution with an arrival rate and

packet size ofn0 bits that depend on the service supported by the slice. A slice's

queue length at a TTI can be determined by [155]:

qs
t =

�
min

�
qs

t � 1 + H s
t � 1 � ns

t � 1; qs
max

	�
; (4.2)

wherens
t � 1 represents the number of packets transmitted.

In this study, we consider the two general types of CMDP constraints intro-

duced in Chapter 2, cumulative (trajectory-wise) and instantaneous (state-wise) con-

straints, as de�ned in [152].

4.3. SYSTEM MODEL 116

Cumulative Constraints

This constraint requires that the sum or average of a variable from the start to the

current time step stays within a speci�ed limit. Such constraints are usually modelled

based on the expectation of some cost signal. A discounted cumulative constraint is

expressed as follows [152]:

J � �
Ci

= E� � � �

"
1X

t=0

 tCi (st ; at ; st+1)

#

� � i (4.3)

In this equation, � = (s0; a0; s1; a1; : : :) represents a trajectory, where� � � � , and

� i denotes the minimum threshold for each cumulative constraint. In this chapter,

we focus on the cumulative latency constraint of VR gaming services. In a CMDP

with cumulative constraints, the objective is to identify a policy� � that maximizes

the discounted cumulative reward while adhering to these constraints. This problem

is formulated as [152]:

max� J � �
R

s.t. J � �
Ci

� � i :
(4.4)

Instantaneous Constraints

Di�erent from cumulative constraints, this type of constraint requires that the se-

lected action must satisfy certain conditions at each step. Instantaneous constraints

can be classi�ed into two types: explicit and implicit. An explicit constraint has

a closed-form expression that allows for direct numerical evaluation, such as the

4.4. PROPOSED APPROACH 117

availability of radio resources. These constraints can be accurately assessed for ev-

ery action. In contrast, an implicit constraint does not have a precise closed-form

representation due to the system's complexity, such as network latency. Implicit

constraints are often tied to the results of actions. The unknown relationship with

those actions requires either modelling or learning from existing data or exploration.

Enforcing instantaneous constraints can be represented as follows [152]:

max� J � �
R

s.t. Ci (st ; at ; st+1) � ! i ;
(4.5)

where ! i represents the threshold for each instantaneous constraint. In our sys-

tem, these thresholds correspond to a prede�ned constant based on the latency re-

quirements of the service supported by a slice. We consider a vital O-RAN scenario

where MNOs can recon�gure such a constant whenever needed.

4.4 Proposed Approach

In this chapter, unlike most of the slicing RA literature, we simultaneously address

the cumulative and instantaneous latency constraints. We tackle the cumulative

constraints by designing a risk-sensitive multi-objective reward function that con-

siders the latency constraints in addition to its primary goal of minimizing resource

consumption when taking the inter-slice RA decisions. Furthermore, we address the

instantaneous constraints by proposing a safety layer at the end of the policy's ANN.

Such a layer projects the inter-slice RA decisions generated by the DRL agent to its

closest feasible decision.

4.4. PROPOSED APPROACH 118

We speci�cally build a model to predict the action's cost represented as instanta-

neous latency. If an action is expected to violate the SLAs, the safety layer overrides

it with the nearest safe action expected to abide by the de�ned instantaneous la-

tency threshold. This approach is algorithm-agnostic, and hence, any RL method

can be used. The following two subsections describe how we propose to address the

cumulative and instantaneous latency constraints in more detail.

4.4.1 Risk-Sensitive Multi-Objective Reward Function

In this study, we design a multi-objective reward function that minimizes resource

consumption while ful�lling the cumulative constraints. To address the cumulative

latency constraints, we embed them in the reward function as a sigmoid-based [144]

component that includes parameters to re
ect the acceptable SLAs for each slice.

This enables penalizing the DRL agent for undesirable actions that get the system

close to violating the de�ned acceptable latency thresholds of each slice as follows:

R =

"

wu �

1 �
P kSk

s=1 bs

B

!#

+

2

4 wl �
kSkX

s=1

ws �
1

1 + e c1;s � (ls � c2;s)

3

5 (4.6)

The weights,wu and wl 2 [0; 1], re
ect the importance of the goals of minimizing

resource consumption and ful�lling the latency constraints, respectively. A [wu = 0:5,

wl = 0:5] setting means that both goals are equally important. The weight,ws,

re
ects the priority of ful�lling the latency requirement of slice s, and ls is the average

latency experienced by the users of slices during the previous slicing window. Finally,

4.4. PROPOSED APPROACH 119

bs represents the bandwidth resources utilized by the users of slices out of the total

bandwidth shared among slices,B .

As detailed in Chapter 3, the function's e�ect can be adjusted by con�guring

two parameters, namelyc1 and c2. The parameterc1 sets the slope for the sigmoid

function, thereby indicating when penalties should start being applied to the agent's

actions. On the other hand,c2 represents the in
ection point. Such a point re
ects

the minimum acceptable delay performance for each slice according to its respective

SLAs. Di�erent constant values ofc1 and c2 are utilized for the slices based on the

de�ned SLAs.

We use latency as a variable as we prioritize the delay-intolerant VR gaming

service and for better results' interpretability. It is risky to model safety constraints

solely based on the expected long-term costs. In order to avoid unsafe actions at

the decision time step level, cumulative constraints are reinforced by instantaneous

constraints, as explained in the next subsection.

4.4.2 Safety Layer

A feasible action space is one that includes a set of actions leading to instantaneous

latency less than the de�ned thresholds. To satisfy the instantaneous latency con-

straints, we project the inter-slice RA actions generated by the RL agent onto a

feasible space. This can be done in many ways. In this work, we introduce a safety

layer to the end of the inter-slice RA DRL policy's ANN to perform such a projec-

tion. In a given state, the slicing policy outputs an RA action and then passes it to

the safety layer, which projects the action to the nearest feasible action. The safety

4.4. PROPOSED APPROACH 120

layer aims to solve [152]:

min
a0

t

1
2

ka0
t � atk

2

s.t. Ci
�
st ; a0

t ; s0
t+1

�
� ! i

(4.7)

Here,a0
t is the new feasible action,at is the original infeasible action,Ci

�
st ; a0

t ; s0
t+1

�

is the cost signal under new actiona0 in state s at time t, and ! i is the prede�ned

instantaneous latency threshold. This is considered an Euclidean distance projection

since the action is a vector of the bandwidth ratio allocated to each slice as de�ned

in Section 3.3.2. Hence, we override the RA actions if their cost is expected to exceed

the de�ned latency threshold.

The new action chosen by the safety layer not only has to satisfy the latency

threshold but should also have the smallest Euclidean distance from the original

action among the feasible actions. The latter condition is primarily imposed to

ensure that the new action is closely e�cient to the original one with respect to

resource consumption. A key challenge is that the cost functionCi (�) for implicit

instantaneous latency constraints is unknown. To address this problem, we propose

to learn Ci (�) using a supervised learning approach. Accordingly, such a learnt model

is used to predict the cost of a given policy's actions at each decision time step.

4.4.3 Supervised Learning for Cost Prediction

We propose to build and employ a supervised regression model to predict the cost

of actions given a certain state. This allows the agent to consider the cost of the

action on a time-step basis when allocating resources to the available slices. The

4.4. PROPOSED APPROACH 121

Figure 4.1: The inputs and outputs of the proposed SL-based cost model.

inputs to such a model are the state-action pairs and the cost signal observed from

the preceding action. The cost signal is represented in our system in terms of the

average latency experienced by a slice's users in a slicing window as follows:

C
 t ;s =
1
Us

UsX

u=1

L
 t ;s;u (4.8)

whereC
 t ;s is the cost signal for slices received after a slicing window
t , Us is

the number of users in slices, L
 t ;s;u is the latency experienced by useru in slice s

during a slicing window
 t . The inputs and outputs of the proposed cost model are

highlighted in Fig. 4.1.

As de�ned in Section 3.3.2, the state represents the contribution of slices to

the overall tra�c demand in the previous slicing window, denoted as� (s)(t). Based

on such an observed state and the last received cost signal, the cost model,C,

provides the predicted cost for an action,at , suggested by the policy. Hence, the

cost model predicts the average latency of a slice's users, given that such an action

has been taken. This prediction re
ects the cost signal expected to be received at the

beginning of the following slicing window,
t+1 . Consequently, if the predicted cost

4.5. O-RAN TRAINING AND DEPLOYMENT FLOWS 122

violates the de�ned latency thresholds of a slice, the cost model is used to provide a

set of feasible actions,A f de�ned as follows:

A f =
�

a0 2 A
�
� Ci (� t ; a0) � ! i ; 8i

	
(4.9)

whereA represents the entire set of possible actions,Ci (� t ; a0) is the cost signal

under action a0 in state � at time t, and ! i is the prede�ned instantaneous latency

threshold. The safety layer �nally picks the feasible action closest to the original

action suggested by the policy as de�ned in (4.7). The proposed approach is sum-

marized in Algorithm 4.

4.5 O-RAN Training and Deployment Flows

We propose O-RAN-compliant training and deployment
ows that incorporate con-

strained DRL as a core component of RRM in next-generation O-RANs.

Training Work
ow

The O-RAN architecture provides
exibility in collecting data of interest at di�erent

levels. Hence, we propose to collect data that re
ects the state-action-reward-cost

experience in the real O-RAN environment. This is to be saved at the non-RT RIC

as highlighted in Fig. 4.2. Such data measures the system's reaction to the inter-

slice RA decisions made by the DRL agents. This primarily includes the reward and

cost signals received by the DRL agent after taking an RA action given a network

condition.

The data is then used to train our proposed cost model as proposed in Algorithm

4.5. O-RAN TRAINING AND DEPLOYMENT FLOWS 123

Algorithm 4 Proposed Safe DRL-Based Inter-Slice RA
Input: trained cost regression model,C, current DRL policy, � , current state,
(� 1; :::; � S)t � 1, slice cost, (c1; :::; cS)t � 1, set of possible actions,mathcalA, cost thresh-
old, ! i , for each slicei
Output: closest safe action,a0

t as de�ned in Section 4.5
1: for each deployment decision time steptdeploy = 1 to T do:
2: Compute the action suggested by the policy:

at = � (� t)

3: For each slicei , predict the cost:

Ci (� t ; at) = C� (� t ; at)

4: if there exists any slicei such that Ci (� t ; at) > ! i then :
5: De�ne the set of feasible safe actions:

A f =
�

a0 2 A
�
� Ci (� t ; a0) � ! i ; 8i

	

6: Select the actiona0
t 2 A f closest toat :

a0
t = arg min

a2A f

ka � atk

7: else:
8: Set a0

t = at

9: end if
10: Execute the actiona0

t
11: Observe the rewardRt , actual costCt , and the next state� t+1

12: Update the agent's policy
13: end for

4.5. O-RAN TRAINING AND DEPLOYMENT FLOWS 124

Figure 4.2: The proposed safe DRL-based O-RAN slicing system.

5. Part of the data is also used to pre-train DRL agents before their deployment

into a real environment, similar to the approach introduced in Section 3.5. The

more collected data, the closer the o�ine training environment is to a digital twin of

the real O-RAN environment. This allows for a more accurate representation of the

O-RAN environment and provides historical data to be exploited by the cost and

forecasting models proposed in this chapter and the following chapter, respectively

[157, 158].

Guided Domain Randomization for Cost Function Estimation Since we do

not have full access to real O-RAN interactions, we follow a guided DR approach to

imitate the proposed data collection process at the non-RT RIC. Vanilla DR operates

under the assumption that real data is unavailable. As a result, the randomization

con�guration is sampled as broadly and uniformly as possible in the simulation. This

broad distribution is assumed to encompass the real environment [159].

A more re�ned approach would involve replacing uniform sampling with strate-

gies guided by task performance, real data, or a simulator. Guided DR is motivated

4.5. O-RAN TRAINING AND DEPLOYMENT FLOWS 125

Algorithm 5 Cost Model Training
Input: state-action-cost data collected at the non-RT RIC, and ground truth costc
Output: a supervised regression model,C, trained using input data to predict c

1: for each training time stept train = 1 to N
2: Construct the input vector x t :

x t = [� i;t ; bi;t ; ci;t � 1 j i = 1; 2; : : : ; S]

3: Construct the output vector yt :

yt = [ci;t j i = 1; 2; : : : ; S]

4: end for
5: Use the datasetX = f (x t ; yt)gN

t=1 to train the supervised regression modelC to
�nd model parameters, � , that minimize the prediction error:

min
�

1
N

NX

t=1

kyt � C(x t ; �)k2

6: Apply k-fold cross-validation to evaluate the performance of the model:

1. Split X into k equal-sized foldsf X1; X2; : : : ;Xkg.

2. for each foldi = 1 to k:

ˆ UseXtrain = X n X i for training
ˆ UseXval = X i for validation
ˆ Train the model C(i) on Xtrain

ˆ Compute the validation error:

E (i)
val =

1
jXval j

X

(x t ;yt)2 Xval

 yt � C(i)(x t ; � (i))

 2

7: Choose the modelC� with the lowest average validation error:

C� = arg min
C

1
k

kX

i =1

E (i)
val

!

8: Return the best-performing modelC�

4.5. O-RAN TRAINING AND DEPLOYMENT FLOWS 126

by the desire to conserve computational resources by avoiding training in unreal-

istic conditions. Additionally, it aims to prevent infeasible solutions arising from

excessively broad randomization distributions, which can impede successful policy

learning.

Therefore, instead of randomly performing a grid search over various RAs at

di�erent tra�c levels, we use both realistic and model-based datasets to �lter the

tra�c levels in such a DR process. This includes real VR gaming traces [150] and

common VoNR and video mathematical tra�c models. Various discretized levels

of inter-slice RA actions are then explored to estimate the system response under

varying network conditions. Consequently, the collected data is used to pre-train the

DRL agents and the proposed cost model. The di�erent scenarios addressed in this

chapter are detailed in Section 4.6.1.

Deployment Work
ow

Algorithm 4 and Fig 4.2 summarizes the control sequence of the proposed approach.

This includes the interactions between the DRL agent, the cost model, the safety

layer, and the virtualized O-RAN environment. At each decision time stept, the

learner agent observes the system state via O-RAN's E2 interface in addition to the

SLA con�gurations of each slice as set by the MNO through the A1 interface. The

agent then selects an inter-slice RA con�guration based on the state representation

vector re
ecting the contribution of each slice to the overall tra�c as de�ned in

Section 3.3.2.

4.6. NUMERICAL RESULTS AND DISCUSSION 127

This step is followed by consulting the trained cost model via O-RAN's A1 in-

terface. Such a model takes the state-action pair in addition to the previous cost as

input and predicts the cost of such an action. If the expected cost exceeds the latency

threshold de�ned by the MNO, the safety layer will override such an action with the

closest one that ful�lls the threshold. More speci�cally, the safety layer masks the

actions to keep those expected to have a cost less than the de�ned threshold and

choose the one with the smallest Euclidian distance to the original action measured

following (4.7).

This action satisfying such conditions is then communicated with the virtualized

O-RAN environment via the E2 interface. Hence, the system operates using such an

inter-slice RA con�guration throughout the slicing window duration until the next

decision time stept + 1. The intra-slice RA is then carried out among the users of

each slice. At the end of the slicing window, the agent collects the reward and cost

signals re
ecting the system's performance with regard to its goals and constraints.

The objective of this control loop is to allocate the PRBs e�ciently while abiding by

the SLAs de�ned by the MNO with high probability.

4.6 Numerical Results and Discussion

4.6.1 Simulation Setup

In this experiment, we carry out guided DR as described in Section 4.5. This simu-

lates various situations a DRL agent experiences when newly deployed to a network

or when there is a change in the network conditions. We base such a DR on models

de�ned in Table 4.1. The VR gaming traces used in this chapter are based on two

4.6. NUMERICAL RESULTS AND DISCUSSION 128

Table 4.1: Performance Study Setup: Simulation Parameters Settings.

Video VoNR VR gaming
Scheduling al-
gorithm

Round-robin per 1 ms slot

Slicing window
size

PRB allocation among slices every 100 scheduling time slots

Base station
maximum ca-
pacity

18,750 B per TTI

Latency
threshold
(cumulative
and instanta-
neous)

12 ms 20 ms Pre-training: 10
ms, Testing: 10
and 5 ms

Packet interar-
rival time

Truncated Pareto
(mean = 6 ms,
max = 12.5 ms)

Uniform (min = 0
ms, max = 160
ms)

Real VR gaming
traces (mean =
11.1 - 18 ms)

Packet size Truncated Pareto
(mean = 100 B,
max = 250 B)

Constant (40 B) Real VR gaming
traces (mean =
43.73 KB - 58.933
KB)

Number of
users

Poisson (mean =
19 - 76)

Poisson (mean =
38 - 152)

Poisson (mean = 1
- 3)

heterogeneous games played under di�erent data rate limits, as explained in [150].

We �rst pre-train all the DRL policies using the train split of the three services

tra�c. We then use the pre-trained policies to carry out inter-slice RA when expe-

riencing demands based on the test split of the tra�c generated. We evaluate the

system's performance based on these test situations, as it is more challenging for a

DRL agent to adapt when changes happen to the network. We de�ne three main

4.6. NUMERICAL RESULTS AND DISCUSSION 129

tra�c levels based on the number of users in each slice. These levels are further

expanded by the average VR gaming tra�c demand per user per slicing window.

The nine training-deployment scenarios experienced by the agents are described in

Table 4.2.

As an example, in the �rst scenario, the agents are trained in an environment

with a low number of video and VoNR users and 1 user of VR gaming with low

demand. Then, the pre-trained policies are deployed in an environment with a high

number of video and VoNR users and 2 users of VR gaming with high demand. In

scenarios where the policy is tested in an environment whose tra�c demands closely

match those of its pre-training environment, such as Low to Low, a separate data

split is used for testing.

Table 4.2: Training-Deployment Scenarios Experienced by the Agents.

Scenario
Training Environment Deployment Environment

Video & VoNR Users VR Gaming Users Video & VoNR Users VR Gaming Users

Low to High 1 Low number 1 user (low demand) High number 2 users (high demand)
Low to High 2 Low number 1 user (low demand) High number 3 users (high demand)
Low to Mid 1 Low number 1 user (low demand) Medium number 1 user (medium demand)
Low to Mid 2 Low number 1 user (low demand) Medium number 2 users (medium demand)
High to High 1 High number 2 users (high demand) High number 2 users (high demand)
High to High 2 High number 3 users (high demand) High number 3 users (high demand)
Mid to Mid 1 Medium number 1 user (medium demand) Medium number 1 user (medium demand)
Mid to Mid 2 Medium number 2 users (medium demand) Medium number 2 users (medium demand)
Low to Low Low number 1 user (low demand) Low number 1 user (low demand)

These scenarios are further extended to include di�erent VR gaming latency

thresholds to evaluate the performance of the proposed method and baselines under

changing constraints. The simulation settings, including ranges of number of users

and the slices' latency thresholds used in this study, are de�ned in Table 4.1. With

the nine de�ned training-deployment scenarios, the test cases can be categorized into

the following four classes:

4.6. NUMERICAL RESULTS AND DISCUSSION 130

1. A policy is tested in an environment with tra�c demands and latency threshold

similar to the environment in which it was pre-trained.

2. A policy is tested in an environment with tra�c demands similar to the envi-

ronment in which it was pre-trained. However, it has a more restricted latency

threshold.

3. A policy is tested in an environment with tra�c demands di�erent from the

environment in which it was pre-trained. However, it has a similar latency

threshold.

4. A policy is tested in an environment with di�erent tra�c demands and a more

restricted latency threshold than the environment in which it was pre-trained.

DRL algorithm. Since our approach is algorithm-agnostic, we demonstrate it by

modifying the A2C DRL algorithm, commonly used in the slicing literature. We refer

to such a modi�ed version as A2C-C. The main DRL settings used in this experiment

are highlighted in Table 4.3.

Cost Model. We use the extreme gradient boosting (XGBoost) algorithm [160]

to build a model for slice cost prediction. XGBoost is a popular ML algorithm

that is widely regarded particularly for its ability to produce highly accurate models

for structured data. It is an implementation of gradient boosting optimized for

performance, scalability, and speed in deployment, which is our main concern [161].

The XGBoost regression algorithm is speci�cally designed for regression tasks, where

the goal is to predict a continuous output variable based on input features.

4.6. NUMERICAL RESULTS AND DISCUSSION 131

Table 4.3: Performance Study Setup: RAN Slicing DRL Settings.

Setting Value
State Slices' contribution to the overall BS's tra�c

relative to the maximum capacity within a
speci�c time window as de�ned in (3.3)

Action PRBs allocated to each slice as de�ned in
(3.4)

Reward function A2C and A2C-C : A multi-objective reward
function that minimizes resource consump-
tion while ful�lling the cumulative latency re-
quirements of VR gaming as de�ned in (4.6),
SAC-L : Only the part minimizing resource
consumption in (4.6)

Cost de�nition Average latency experienced by the VR gam-
ing service users

Reward function weights wu = 0:5, wl = 0:5
DRL algorithm A2C, Proposed A2C-C, SAC-L
Learning steps per run Training : 20,000 - 40,000,Testing : 10,000
Discount factor 0.7 - 0.95
Learning rate 0.0005 - 0.01
Batch size 200

We use XGBoost implementation from the Distributed (Deep) Machine Learning

Community (DMLC)'s GitHub repository 1. XGBoost is a highly e�cient,
exible,

and portable distributed gradient boosting library. However, it includes numerous

hyperparameters, such as the learning rate, tree depth, number of trees, and regu-

larization parameters, which require careful tuning to ensure optimal performance.

In this study, we train the proposed XGBoost cost model by combining DMLC's

XGBoost implementation and RAPIDS cuML [162], which is a suite of GPU-accelerated

ML algorithms. We employ an automated ML (AutoML) tool called TPOT [163]

1Available at https://github.com/dmlc/xgboost

4.6. NUMERICAL RESULTS AND DISCUSSION 132

Table 4.4: Settings and Performance of the Trained Cost Prediction Model.

Features
Input Observed state, inters-slice RA action, and

observed cost
Output Expected cost of the original action sug-

gested by the policy
Estimator XGBRegressor

Hyperparameters
Alpha 10
Learning rate 0.5
Max depth 9
Minimum child weight 14
Number of estimators 100
Objective Squared error
Subsample 1.0

Performance
RMSE on test data 4.42 (average latency2 [0; 50])
R-Squared score 0.94

to realize such a combination to train several XGBoost models using multiple hy-

perparameter settings. We con�gure TPOT to optimize such settings to minimize

the regression error of the trained models. We then follow a 5-fold cross-validation

approach and calculate the performance metrics listed in Table 4.4 using the model

with the best hyperparameter settings among the ones tested.

4.6.2 Baselines

Unconstrained A2C We use A2C as the unconstrained RL baseline. For a fair

comparison, we use the same multi-objective reward function de�ned in Section 4.4.1

in both the proposed A2C-C approach and the unconstrained A2C.

4.6. NUMERICAL RESULTS AND DISCUSSION 133

A2C-C with Perfect Predictor. We also evaluate the performance of our pro-

posed approach when using a perfect cost model that always correctly predicts the

instantaneous cost and enforce alternative safe actions to avoid the violation of the

de�ned constraints.

SAC-Lagrangian Lagrangian methods work by relaxing constraints using La-

grangian multipliers and iteratively updating decision variables and multipliers using

gradient descent [154]. By using adaptive penalty coe�cients to enforce constraints,

Lagrangian methods convert the solution of a constrained optimization problem to

the solution of an unconstrained optimization problem. The Lagrangian approach

can be easily included in most existing RL methods. We adopt a well-known AC-

based algorithm: SAC [164]. In this chapter, we refer to the Lagrangian-augmented

RL version of SAC as SAC-L. We chose SAC-L as a baseline because SAC-L-based

approaches have been recently proposed in several reviewed slicing studies as dis-

cussed in Section 4.2 [155, 154, 165].

SAC-L [166] combines SAC with Lagrangian methods to address instantaneous

constraints [167]. SAC-L employs an actor network to represent the policy and two

critic networks to estimate the expected reward and cost for a given state-action pair

[154]. The critic networks guide the policy update, aiming to maximize returns while

ensuring compliance with the expected cost constraints.

Metrics

We use the following metrics to evaluate the e�cacy of the proposed algorithm and

baselines [152].

4.6. NUMERICAL RESULTS AND DISCUSSION 134

Cumulative Constraints. We examine the long-term average latency of the VR

gaming service users.

Instantaneous Constraints. We investigate the violation percentage re
ecting

the total number of constraint violations divided by the number of deployment in-

teraction steps. We also look at the number of instantaneous violations accumulated

over decision time steps.

Resource Consumption. We �nally look at resource consumption over time.

The performance study carried out in this chapter was conducted on a Linux

machine with 8 CPUs, 64 GB of RAM, and an NVIDIA GeForce RTX 2080Ti GPU.

A2C algorithm is implemented in the Tensorforce Python package2. We extended

it to implement the proposed A2C-C approach. Finally, we adopted a PyTorch

implementation of SAC-L available on GitHub3 and integrated it within our DRL-

based slicing environment.

4.6.3 Results

Overall Performance

We present the overall safety performance of the proposed and baseline approaches

in Fig. 4.3 and 4.4. The results show that our approach, A2C-C, outperforms both

SAC-L and the unconstrained A2C in average latency and the instantaneous violation

percentage. Moreover, A2C-C still have better resource consumption in all the test

2Available at http://www.github.com/tensorforce/tensorforce
3Available at https://github.com/ammarhydr/SAC-Lagrangian

4.6. NUMERICAL RESULTS AND DISCUSSION 135

(a) Same tra�c and latency threshold.

(b) Same tra�c, di�erent latency threshold.

Figure 4.3: Safety performance of the proposed safe DRL-based inter-slice RA under
the same tra�c test categories.

categories than SAC-L. The �gure also shows that A2C-C can achieve an overall

performance close to its variant that uses a perfect forecasting model. This indicates

that the proposed approach is robust to errors in the cost model, meaning the cost

models do not need to be ideal. Our method achieves reductions of up to 83.23% in

average cumulative cost, 93.24% in instantaneous latency violations, and 22.13% in

4.6. NUMERICAL RESULTS AND DISCUSSION 136

resource consumption compared to the SAC-L algorithm.

(a) Di�erent tra�c, same latency threshold.

(b) Di�erent tra�c and latency threshold.

Figure 4.4: Safety performance of the proposed safe DRL-based inter-slice RA under
di�erent tra�c test categories.

SAC-L tends to overutilize resources when not needed. Even when this is the case,

it does not assign such resources properly among the slices. The only exception is

when it experiences previously seen tra�c and latency threshold conditions, as in Fig.

4.3a. Unconstrained A2C is the best in terms of resource consumption. However,

4.6. NUMERICAL RESULTS AND DISCUSSION 137

relying solely on the multi-objective reward function to re
ect the constraints results

in failing to abide by them both in the short and the long term, as seen in the �gure.

Cumulative Latency Performance

Looking at the long-term average latency in Fig. 4.5, it can still be noticed that SAC-

L does not perform well when there are changes in the deployment environment. This

is especially obvious when tested in an environment with a latency threshold similar

to its training environment but with di�erent tra�c demands. Since the threshold is

the same, it uses its trained policy's ANN as a function approximator for the optimal

actions. However, due to the signi�cant changes in tra�c demand, the previously

unseen scenarios render the ANN's predictions inaccurate.

We can also note that the proposed A2C-C abides by the long-term latency

constraints. It instantaneously overwrites actions that may lead to violating the

de�ned latency threshold. This happens at the cost of more resource consumption

than unconstrained A2C, as discussed later. The unconstrained A2C fails to comply

with the long-term constraints in all scenario categories. This shows that embedding

the constraints into a multi-objective reward function is not enough.

Violations Performance

Fig. 4.6 shows the number of instantaneous violations accumulated over time. Our

proposed approach performs signi�cantly better in all four categories of test scenarios.

It manages to keep a low violation rate even when experiencing changes in tra�c

and latency threshold con�gurations. However, it performs relatively worse when the

4.6. NUMERICAL RESULTS AND DISCUSSION 138

(a) Same tra�c and latency threshold. (b) Same tra�c, di�erent latency threshold.

(c) Di�erent tra�c, same latency threshold. (d) Di�erent tra�c and latency threshold.

Figure 4.5: Cumulative latency of the proposed safe DRL-based slicing approach
compared with baseline methods across the four di�erent tra�c test categories.

4.6. NUMERICAL RESULTS AND DISCUSSION 139

(a) Same tra�c and latency threshold. (b) Same tra�c, di�erent latency threshold.

(c) Di�erent tra�c, same latency threshold. (d) Di�erent tra�c and latency threshold.

Figure 4.6: Number of instantaneous violations accumulated over decision time steps.
Results show the performance of the proposed safe DRL-based slicing approach com-
pared with baseline methods across the four di�erent tra�c test categories.

4.6. NUMERICAL RESULTS AND DISCUSSION 140

threshold con�guration is changed than in the other situations. This could be due to

the cost model's higher sensitivity to error with a lower latency threshold, especially

given that its RMSE is 4.42. It may also be unable to capture the dynamics of such

a scenario compared to the others.

SAC-L performs well only when similar tra�c demands are experienced. It strug-

gles to enforce instantaneous constraints when experiencing new scenarios. It cannot

adapt quickly to online changes in tra�c load and latency thresholds. Moreover, the

unconstrained A2C performs almost the same in all the categories, as it only deals

with constraints as part of the reward function.

Resource Consumption Performance

We �nally examine resource consumption over time in Fig. 4.7. The proposed A2C-C

is slightly better than the SAC-L algorithm in the four test categories. As discussed,

SAC-L exhausts resources unnecessarily, and unconstrained A2C is the best, but this

comes at the considerable cost of failed constraint enforcement.

Although SAC-L and its variants are frequently used in the slicing literature, the

results show that it performs poorly in an online deployment setting. It struggles

with real-time adaptation to changes in the deployment environment, such as traf-

�c distribution shifts and latency threshold variations. Its policy's ANN seems to

be prone to over�tting, which makes generalization to unseen conditions di�cult.

To be e�ective in dynamic and evolving environments such as O-RANs, DRL-based

approaches require mechanisms for continuous learning and adaptation during de-

ployment.

	Abstract
	Co-Authorship
	Acknowledgments
	Statement of Originality
	Contents
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Motivation
	Research Statement
	Thesis Contributions
	Thesis Organization

	Background and Overview
	Network Slicing
	RAN Slicing
	Inter-Slice RA
	Intra-Slice RA

	Slicing in Next-Generation O-RANs
	O-RAN Intelligent Controllers
	Slicing in the Context of O-RAN

	Approaches to Inter-Slice RA
	Optimization-Based Approaches
	Game Theory-Based Approaches
	Machine Learning-Based Approaches

	A Trustworthy DRL Framework for O-RAN
	Accelerated Generalization
	Safety
	Robustness
	Explainability

	Accelerated Generalization for DRL-Based Inter-Slice Resource Allocation
	Introduction
	Related Work
	Design Choices-Aided Approaches
	Domain Knowledge-Aided Approaches
	Machine Learning-Aided Approaches

	System Model
	Problem Statement
	Mapping to Deep Reinforcement Learning

	Proposed TL Approaches for Accelerated Generalization
	Policy Reuse
	Policy Distillation
	Proposed Hybrid Policy Transfer Approach

	Training and Deployment Flows in TL-Aided O-RAN Architecture
	Training Workflow
	Deployment Workflow

	Numerical Results and Discussion
	Generalization Performance of Policy Reuse against SOTA DRL Algorithms
	Effect of Reward Function Design and TL Approach on Generalization
	Performance of the Proposed Hybrid TL-Aided Approach for O-RAN Slicing including Realistic Immersive Services

	Summary

	Safe DRL-Based Inter-Slice Resource Allocation
	Introduction
	Related Work
	System Model
	Proposed Approach
	Risk-Sensitive Multi-Objective Reward Function
	Safety Layer
	Supervised Learning for Cost Prediction

	O-RAN Training and Deployment Flows
	Numerical Results and Discussion
	Simulation Setup
	Baselines
	Results

	Summary

	Enhancing the Performance of DRL-Based Inter-Slice Resource Allocation under Extreme Situations
	Introduction
	Related Work
	Enhancing the Performance of TL-Aided DRL
	Time Series Forecasting-Aided DRL

	System Model
	Transfer Learning Model
	Time Series Forecasting Model

	Proposed Approaches for Enhancing RL-Based Slicing Performance under Extreme Situations
	Predictive Policy Transfer for TL-Aided RL-Based O-RAN Slicing
	Forecasting-Aided DRL-Based O-RAN Slicing

	PRB Utilization Data Description
	Numerical Results and Discussion
	Performance of Predictive Policy Transfer for TL-Aided RL-Based O-RAN Slicing
	Performance of Forecasting-Aided DRL-Based O-RAN Slicing

	Summary

	Conclusion and Future Direction
	Thesis Summary
	Future Directions
	Integration with O-RAN Systems and Standardization Needs
	Addressing Robustness and Explainability of DRL-Based Algorithms
	Combining Approaches for a Comprehensive Trustworthy DRL-Based Solution
	Extending the Comparison with Other Emerging Approaches
	Incorporating More Flexibility in Slicing Controller Design

	Concluding Remarks

	Bibliography

